Anatase TiO2 surfaces have been treated with 2,4,6-triphenylpyrilium hydrogen sulfate (TPPHS) dye to yield the modified TiO2/TPPHS surface. The modified TiO2/TPPHS surface was then supported onto activated carbon (AC) surfaces to yield a new class of catalytic system AC/TiO2/TPPHS. The catalytic activities of naked TiO2, TPPHS solution, TiO2/TPPHS and AC/TiO2/TPPHS systems were examined in photo-degradation of phenol and benzoic acid in water, using both UV and visible regions. All studied systems showed low catalytic activity when used in the visible region. In UV, the AC/TiO2/TPPHS showed highest activity, whereas the naked TiO2 and TPPHS solutions were the least active systems. The dye role, in enhancing activity of modified surfaces in UV degradation of contaminants, is understandable by a charge-transfer catalytic effect rather than a sensitizing effect. AC role is explainable by its ability to adsorb contaminant molecules and bringing them closer to catalytic sites.
Mineralization of phenazopyridine, 1, in water, under solar-simulator radiation was efficiently achieved using nanoparticle CdS-sensitized rutile TiO2, TiO2/CdS, 2, as photo-catalysts. Despite that, 2 showed two main drawbacks. Firstly, the system was difficult to recover by simple filtration, and demanded centrifugation. Secondly, the sensitizer CdS showed relatively high tendency to leach out hazardous Cd2+ ions under photo-degradation reaction conditions. In an attempt to solve out such difficulties, 2 was supported onto sand surface. The sand/TiO2/CdS system, 3, was easier to recover but showed slightly lower catalytic activity compared to 2. On the other hand, the support failed to prevent leaching of Cd2+. This indicates limited future applicability of CdS-sensitized TiO2 photo-catalyst systems, in solar-based water purification strategies, unless leaching out tendency is completely prevented.
Mineralization of phenazopyridine, 1, in water, under solar-simulator radiation was efficiently achieved using nanoparticle CdS-sensitized rutile TiO2, TiO2/CdS, 2, as photo-catalysts. Despite that, 2 showed two main drawbacks. Firstly, the system was difficult to recover by simple filtration, and demanded centrifugation. Secondly, the sensitizer CdS showed relatively high tendency to leach out hazardous Cd2+ ions under photo-degradation reaction conditions. In an attempt to solve out such difficulties, 2 was supported onto sand surface. The sand/TiO2/CdS system, 3, was easier to recover but showed slightly lower catalytic activity compared to 2. On the other hand, the support failed to prevent leaching of Cd2+. This indicates limited future applicability of CdS-sensitized TiO2 photo-catalyst systems, in solar-based water purification strategies, unless leaching out tendency is completely prevented.
Mineralization of phenazopyridine, 1, in water, under solar-simulator radiation was efficiently achieved using nanoparticle CdS-sensitized rutile TiO2, TiO2/CdS, 2, as photo-catalysts. Despite that, 2 showed two main drawbacks. Firstly, the system was difficult to recover by simple filtration, and demanded centrifugation. Secondly, the sensitizer CdS showed relatively high tendency to leach out hazardous Cd2+ ions under photo-degradation reaction conditions. In an attempt to solve out such difficulties, 2 was supported onto sand surface. The sand/TiO2/CdS system, 3, was easier to recover but showed slightly lower catalytic activity compared to 2. On the other hand, the support failed to prevent leaching of Cd2+. This indicates limited future applicability of CdS-sensitized TiO2 photo-catalyst systems, in solar-based water purification strategies, unless leaching out tendency is completely prevented.
Anatase TiO2 surfaces have been treated with 2,4,6-triphenylpyrilium hydrogen sulfate (TPPHS) dye to yield the modified TiO2/TPPHS surface. The modified TiO2/TPPHS surface was then supported onto activated carbon (AC) surfaces to yield a new class of catalytic system AC/TiO2/TPPHS. The catalytic activities of naked TiO2, TPPHS solution, TiO2/TPPHS and AC/TiO2/TPPHS systems were examined in photo-degradation of phenol and benzoic acid in water, using both UV and visible regions. All studied systems showed low catalytic activity when used in the visible region. In UV, the AC/TiO2/TPPHS showed highest activity, whereas the naked TiO2 and TPPHS solutions were the least active systems. The dye role, in enhancing activity of modified surfaces in UV degradation of contaminants, is understandable by a charge-transfer catalytic effect rather than a sensitizing effect. AC role is explainable by its ability to adsorb contaminant molecules and bringing them closer to catalytic sites.