Natural molecular dye, anthocyanin, is described here as safe sensitizer for TiO2 particles in photo-degradation of organic contaminants in water. The dye is a promising replacement for the more costly and hazardous heavy metal based systems, such as CdS particles and Ru-compounds. TiO2/anthocyanin effectively catalyzed the photo-degradation of methyl orange contaminant under solar simulator radiation. The new TiO2/anthocyanin catalyst showed comparable efficiency to earlier systems, while avoiding their hazardous nature. When supported onto activated carbon (AC) particles, the resulting AC/TiO2/anthocyanin system showed enhanced efficiency and ease of recovery from the catalytic reaction mixture. The natural dye molecules showed the tendency to degrade under photo-degradation conditions, just like earlier hazardous sensitizers. However, complete mineralization of anthocyanin occurred leaving no traces of organic species in solution. Sensitizer degradation caused deactivation of the supported catalyst on recovery. Such a shortcoming was overcome by re-treatment of the recovered catalysts with fresh dye.
Effects of different reaction parameters on the catalyst efficiency were studied. A mechanism, similar to earlier CdS-sensitized catalyst systems, is proposed for the TiO2/anthocyanin catalyst.
Natural molecular dye, anthocyanin, is described here as safe sensitizer for TiO2 particles in photo-degradation of organic contaminants in water. The dye is a promising replacement for the more costly and hazardous heavy metal based systems, such as CdS particles and Ru-compounds. TiO2/anthocyanin effectively catalyzed the photo-degradation of methyl orange contaminant under solar simulator radiation. The new TiO2/anthocyanin catalyst showed comparable efficiency to earlier systems, while avoiding their hazardous nature. When supported onto activated carbon (AC) particles, the resulting AC/TiO2/anthocyanin system showed enhanced efficiency and ease of recovery from the catalytic reaction mixture. The natural dye molecules showed the tendency to degrade under photo-degradation conditions, just like earlier hazardous sensitizers. However, complete mineralization of anthocyanin occurred leaving no traces of organic species in solution. Sensitizer degradation caused deactivation of the supported catalyst on recovery. Such a shortcoming was overcome by re-treatment of the recovered catalysts with fresh dye.
Effects of different reaction parameters on the catalyst efficiency were studied. A mechanism, similar to earlier CdS-sensitized catalyst systems, is proposed for the TiO2/anthocyanin catalyst.
Anatase TiO2 surfaces have been treated with 2,4,6-triphenylpyrilium hydrogen sulfate (TPPHS) dye to yield the modified TiO2/TPPHS surface. The modified TiO2/TPPHS surface was then supported onto activated carbon (AC) surfaces to yield a new class of catalytic system AC/TiO2/TPPHS. The catalytic activities of naked TiO2, TPPHS solution, TiO2/TPPHS and AC/TiO2/TPPHS systems were examined in photo-degradation of phenol and benzoic acid in water, using both UV and visible regions. All studied systems showed low catalytic activity when used in the visible region. In UV, the AC/TiO2/TPPHS showed highest activity, whereas the naked TiO2 and TPPHS solutions were the least active systems. The dye role, in enhancing activity of modified surfaces in UV degradation of contaminants, is understandable by a charge-transfer catalytic effect rather than a sensitizing effect. AC role is explainable by its ability to adsorb contaminant molecules and bringing them closer to catalytic sites.
Natural molecular dye, anthocyanin, is described here as safe sensitizer for TiO2 particles in photo-degradation of organic contaminants in water. The dye is a promising replacement for the more costly and hazardous heavy metal based systems, such as CdS particles and Ru-compounds. TiO2/anthocyanin effectively catalyzed the photo-degradation of methyl orange contaminant under solar simulator radiation. The new TiO2/anthocyanin catalyst showed comparable efficiency to earlier systems, while avoiding their hazardous nature. When supported onto activated carbon (AC) particles, the resulting AC/TiO2/anthocyanin system showed enhanced efficiency and ease of recovery from the catalytic reaction mixture. The natural dye molecules showed the tendency to degrade under photo-degradation conditions, just like earlier hazardous sensitizers. However, complete mineralization of anthocyanin occurred leaving no traces of organic species in solution. Sensitizer degradation caused deactivation of the supported catalyst on recovery. Such a shortcoming was overcome by re-treatment of the recovered catalysts with fresh dye.
Effects of different reaction parameters on the catalyst efficiency were studied. A mechanism, similar to earlier CdS-sensitized catalyst systems, is proposed for the TiO2/anthocyanin catalyst.
Mineralization of phenazopyridine, 1, in water, under solar-simulator radiation was efficiently achieved using nanoparticle CdS-sensitized rutile TiO2, TiO2/CdS, 2, as photo-catalysts. Despite that, 2 showed two main drawbacks. Firstly, the system was difficult to recover by simple filtration, and demanded centrifugation. Secondly, the sensitizer CdS showed relatively high tendency to leach out hazardous Cd2+ ions under photo-degradation reaction conditions. In an attempt to solve out such difficulties, 2 was supported onto sand surface. The sand/TiO2/CdS system, 3, was easier to recover but showed slightly lower catalytic activity compared to 2. On the other hand, the support failed to prevent leaching of Cd2+. This indicates limited future applicability of CdS-sensitized TiO2 photo-catalyst systems, in solar-based water purification strategies, unless leaching out tendency is completely prevented.
Mineralization of phenazopyridine, 1, in water, under solar-simulator radiation was efficiently achieved using nanoparticle CdS-sensitized rutile TiO2, TiO2/CdS, 2, as photo-catalysts. Despite that, 2 showed two main drawbacks. Firstly, the system was difficult to recover by simple filtration, and demanded centrifugation. Secondly, the sensitizer CdS showed relatively high tendency to leach out hazardous Cd2+ ions under photo-degradation reaction conditions. In an attempt to solve out such difficulties, 2 was supported onto sand surface. The sand/TiO2/CdS system, 3, was easier to recover but showed slightly lower catalytic activity compared to 2. On the other hand, the support failed to prevent leaching of Cd2+. This indicates limited future applicability of CdS-sensitized TiO2 photo-catalyst systems, in solar-based water purification strategies, unless leaching out tendency is completely prevented.
Natural molecular dye, anthocyanin, is described here as safe sensitizer for TiO2 particles in photo-degradation of organic contaminants in water. The dye is a promising replacement for the more costly and hazardous heavy metal based systems, such as CdS particles and Ru-compounds. TiO2/anthocyanin effectively catalyzed the photo-degradation of methyl orange contaminant under solar simulator radiation. The new TiO2/anthocyanin catalyst showed comparable efficiency to earlier systems, while avoiding their hazardous nature. When supported onto activated carbon (AC) particles, the resulting AC/TiO2/anthocyanin system showed enhanced efficiency and ease of recovery from the catalytic reaction mixture. The natural dye molecules showed the tendency to degrade under photo-degradation conditions, just like earlier hazardous sensitizers. However, complete mineralization of anthocyanin occurred leaving no traces of organic species in solution. Sensitizer degradation caused deactivation of the supported catalyst on recovery. Such a shortcoming was overcome by re-treatment of the recovered catalysts with fresh dye.
Effects of different reaction parameters on the catalyst efficiency were studied. A mechanism, similar to earlier CdS-sensitized catalyst systems, is proposed for the TiO2/anthocyanin catalyst.