We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method.
By using the wave function ansatz method, we study the energy eigenvalues and wave function for any arbitrary m-state in two-dimensional Schrödinger wave equation with various power interaction potentials in constant magnetic and Aharonov–Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We calculate the energy levels of some diatomic molecules in the presence and absence of external magnetic and AB flux fields using different potential models. We found that the effect of the Aharonov–Bohm field is much as it creates a wider shift for m≠0 and its influence on m=0 states is found to be greater than that of the magnetic field. To show the accuracy of the present model, a comparison is made with those ones obtained in the absence of external fields. An extension to 3-dimensional quantum system have also been presented.