By using the wave function ansatz method, we study the energy eigenvalues and wave function for any arbitrary m-state in two-dimensional Schrödinger wave equation with various power interaction potentials in constant magnetic and Aharonov–Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We calculate the energy levels of some diatomic molecules in the presence and absence of external magnetic and AB flux fields using different potential models. We found that the effect of the Aharonov–Bohm field is much as it creates a wider shift for m≠0 and its influence on m=0 states is found to be greater than that of the magnetic field. To show the accuracy of the present model, a comparison is made with those ones obtained in the absence of external fields. An extension to 3-dimensional quantum system have also been presented.
The Killingbeck potential consists of oscillator potential plus Cornell potential, i.e. ar2+ br - c/r, that it has received a great deal of attention in particle physics. In this paper, we study the energy levels and wave function for arbitrary m-state in two-dimensional (2D) Schrödinger equation (SE) with a Killingbeck potential under the influence of strong external uniform magnetic and Aharonov–Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We use the wave function ansatz method to solve the radial problem of the Schrödinger equation with Killingbeck potential. We obtain the energy levels in the absence of external fields and also find the energy levels of the familiar Coulomb and harmonic oscillator potentials.