Mie-type potential

2669's picture

Relativistic Effect of Pseudospin Symmetry and Tensor Coupling on the Mie-Type Potential via Laplace ‎Transformation Method

Journal Title, Volume, Page: 
Chin. Phys. B Vol. 23, No. 12
Year of Publication: 
2014
Authors: 
Sameer M. Ikhdair
Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine
Current Affiliation: 
Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine
M. Eshghi
Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Preferred Abstract (Original): 

A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin (p-spin) symmetry setting Σ = Cps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin—orbit coupling number κ. Special attention is devoted to the case Σ = 0 for which p-spin symmetry is exact. The Laplace transform approach (LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods.

2669's picture

On Solutions of the Schrödinger Equation for Some Molecular Potentials: Wave Function Ansatz

Journal Title, Volume, Page: 
Central European Journal of Physics September, Volume 6, Issue 3, pp 697-703
Year of Publication: 
2008
Authors: 
Sameer M. Ikhdair
Department of Physics, Near East University, Nicosia, North Cyprus, Mersin-10, Turkey
Current Affiliation: 
Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine
Ramazan Sever
Department of Physics, Middle East Technical University, 06531, Ankara, Turkey
Preferred Abstract (Original): 

Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrödinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, δ and ν are also given, where η depends on a linear combination of the angular momentum quantum number and the spatial dimensions D and δ is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigensolutions recover their standard analytical forms in literature.

Syndicate content