diatomic molecules

2669's picture

Polynomial Solutions of the Mie-type potential in the D-dimensional Schrödinger Equation

Journal Title, Volume, Page: 
Journal of Molecular Structure: THEOCHEM Volume 855, Issues 1–3, Pages 13–17
Year of Publication: 
2008
Authors: 
Sameer M. Ikhdair
Department of Physics, Near East University, Nicosia, TRNC, Mersin-10, Turkey
Current Affiliation: 
Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine
Ramazan Sever
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
Preferred Abstract (Original): 

The polynomial solution of the D-dimensional Schrödinger equation for a special case of Mie potential is obtained with an arbitrary l≠0 states. The exact bound state energies and their corresponding wave functions are calculated. The bound state (real) and positive (imaginary) cases are also investigated. In addition, we have simply obtained the results from the solution of the Coulomb potential by an appropriate transformation.

2669's picture

Exact Polynomial Eigensolutions of the Schrödinger Equation for the Pseudoharmonic Potential

Journal Title, Volume, Page: 
Journal of Molecular Structure: THEOCHEM 806, 155–158
Year of Publication: 
2007
Authors: 
Sameer Ikhdair
Department of Physics, Near East University, Nicosia, North Cyprus, Mersin-10, Turkey
Current Affiliation: 
Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine
Ramazan Sever
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
Preferred Abstract (Original): 
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigen functions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
2669's picture

Equivalence of the Empirical Shifted Deng–Fan Oscillator Potential for Diatomic Molecules

Journal Title, Volume, Page: 
Journal of Mathematical Chemistry, Volume 51, Issue 1, pp 227-238
Year of Publication: 
2013
Authors: 
S. M. Ikhdai
Physics Department, Near East University, North Cyprus, Mersin 10, 922022, Nicosia, Turkey
Current Affiliation: 
Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine
M. Hamzavi
Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
K.-E. Thylwe
KTH-Mechanics, Royal Institute of Technology, 100 44, Stockholm, Sweden
Preferred Abstract (Original): 

We obtain the bound-state solutions of the radial Schrödinger equation with the shifted Deng–Fan oscillator potential in the frame of the Nikiforov-Uvarov method by employing Pekeris-type approximation to deal with the centrifugal term. The analytical expressions for the energy eigenvalues and the corresponding normalized wave functions are obtained in closed form for arbitrary l-state. The ro-vibrational energy levels for a few diatomic molecules are also calculated. They are found to be in good agreement with those ones previously obtained by the Morse potential.

2669's picture

On Solutions of the Schrödinger Equation for Some Molecular Potentials: Wave Function Ansatz

Journal Title, Volume, Page: 
Central European Journal of Physics September, Volume 6, Issue 3, pp 697-703
Year of Publication: 
2008
Authors: 
Sameer M. Ikhdair
Department of Physics, Near East University, Nicosia, North Cyprus, Mersin-10, Turkey
Current Affiliation: 
Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine
Ramazan Sever
Department of Physics, Middle East Technical University, 06531, Ankara, Turkey
Preferred Abstract (Original): 

Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrödinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, δ and ν are also given, where η depends on a linear combination of the angular momentum quantum number and the spatial dimensions D and δ is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigensolutions recover their standard analytical forms in literature.

Syndicate content