Adsorption of Some Organic Phenolic Compounds Using Activated Carbon From Cypress Products

sjodeh's picture
Journal Title, Volume, Page: 
Journal of Chemical and Pharmaceutical Research 03/2014; 2(6):713
Year of Publication: 
2014
Authors: 
S Jodeh
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
Current Affiliation: 
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
N Basalat
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
A Abu Obaid
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
D Bouknana
LCAE-URAC18, Faculty of Sciences, University Mohammed I er , Oujda, Morocco
B Hammouti
LCAE-URAC18, Faculty of Sciences, University Mohammed I er , Oujda, Morocco
T B Hadda
Laboratoire LCM, Faculty of Sciences, University Mohammed 1 er , Oujda, Morocco
W Jodeh
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
I Warad
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
Preferred Abstract (Original): 

Phenolic organic compounds are extremely highly generated from many resources which disposed to sewerage system without treatments that increase the risk of contaminating water resources. This study is focused on preparing and studying the properties of activated carbon produced from cypress fruit by chemically activation using phosphoric acid (H 3 PO 4) as an activating agent. The activated carbon used to adsorb p-nitrophenol (PNP) from the aqueous solution. Result show that the activated carbon produces from cypress fruit gives good percentage yields which reach up to 51.8%. Surface area determined by iodine number showed 524.1m 2 /g. The adsorptive properties of CFAC were investigated in terms of adsorbent dose, PNP concentration, pH, and temperature and contact time in a batch system. Results indicate that the optimum percent of PNP removal 90.9 % when adsorbent dosage 0.3g and PNP concentration 80mg/L and percentage removal of PNP increase when the concentration of PNP decrease which maximum percentage removal reach 93.2% when PNP concentration 20mg/L and 0.1g CFAC. The effect of temperature on adsorption by CFAC has also been investigated in the range of 15-45 °C. The results indicate that the temperature slightly affected effectiveness of CFAC adsorption. The results showed that equilibrium time for PNP adsorption is 150min, but most the adsorption attained within the first ten minute. Results investigate that the produced cypress fruit activated carbon (CFAC) adsorption equilibrium is represented by both Frenundlich and Langmuir equilibrium model, but Langmuir model describe very well the adsorption. The main properties of Langmuir equation can be expressed in term of separation factor, R L . The R L equal 0.053 that indicate the adsorption favorable.

AttachmentSize
Adsorption_of_Some_Organic_Phenolic_Compounds_Using_Activated_Carbon_From_Cypress_Products.pdf353.39 KB