Quantum Mechanics

jaber's picture
Course Code: 
Course Outline: 

Quantum Mechanics 22354

Fall 2010


Instructor: Prof. Dr. Sami M. AL-Jaber ( Professor of Theoretical Physics)


                   Office:       Room 2780, 2nd floor, Science Building.

                   Phone:       (09) 23 45 113/6 Ext. 2306  (New campus)

                   Office Hours: S T Thu. 9:00 – 11:00 + M W 8:00 – 9:30

                  E. Mail: jaber@najah.edu

Home page: http://www.staff.najah.edu/sami-m-al-jaber


Textbook: D. J. Griffiths," Introduction to quantum Mechanics", 1995,

                 Prentice Hall.

Lecture Time: 12:00 – 1:00 S T Thu.

Place:   Room 14G0340


The successful student will obtain a thorough introduction to the theory Quantum Mechanics including:

  • Quantum mechanical solution of simple systems such as the harmonic oscillator and a particle in a potential well.
  • Improved mathematical skills necessary to solve differential equations and eigenvalue problems.

The overall intent of this course is to build upon your foundation from Modern Physics. Quantum Mechanics has many new concepts including operators, observables, Hilbert space, and state functions. The book starts with the Schrödinger equation and applies it to simple physical systems. You should, of course, already be familiar with simple quantum systems and the semi-classical Bohr theory of hydrogen. The more rigorous mathematical approach presented by Griffiths provides the quantum mechanical basis used by practicing physicists.

Relation to departmental goals:

The course gives the student the mathematical skills for solving

quantum mechanical problems and to understand the microscopic

nature of physical systems. In addition, it provides the experience to

compute the relevant quantum quantities like energy bound states.



Course Outlines:


Chapter 1: The wave function

              Schrödinger equation, Interpretation, Probability, Normalization

              Momentum in quantum mechanics.

Chapter 2: Time-independent Schrödinger equation in 1- dimension.

             Stationary states, Infinite square-well, One-dimensional harmonic

             oscillator, Free particle, Wave packet, delta-function potential,

             the finite square well, Scattering matrix.

Chapter 3: Formal structure of quantum mechanics

             Linear algebra, function spaces, generalized interpretation of

             quantum mechanics, the uncertainty principle.

Chapter 4: Quantum mechanics in three dimensions

             Three-dimensional Schrödinger equation, angular equation,

             radial equation, the hydrogen atom, energy eigenvalues and

             eigen functions,    


Assignments: There will be about eight home work problems during

the semester.


Two – midterm exams                 40%

                 Home works                10%

                 Final Exam                   50%


Academic Integrity Statement:

Violation of academic integrity is absolutely and totally prohibited by

University regulations. If an academic dishonesty is committed by a student then he will be subjected to hard university punishment.