Modelling Fracture and Delamination of Spray Applied Fire Resisting Materials under Static and Impact Loads

Mahmud's picture
Journal Title, Volume, Page: 
Journal of Engineering Mechanics, ASCE,Vol 137, No. 12, pp. 901-910
Year of Publication: 
Mahmud Dwaikat
Dept. of Civil and Environmental Engineering, Michigan State Univ.
Current Affiliation: 
Department of Civil Engineering, An-Najah National University, Palestine
Venkatesh Kodur
Dept. of Civil and Environmental Engineering, Michigan State Univ.
Preferred Abstract (Original): 
A specially developed two-dimensional cohesive zone finite element (CZFE) scheme is applied to simulate the fracture and delamination phenomena that occur in spray-applied fire-resisting material (SFRM) on steel structures. A cohesive zone material model for the SFRM is introduced and utilized to model both the internal cohesion in SFRM and the interfacial adhesion at the steel-SFRM interface. The CZFE model is validated by comparing predictions from the model with results from an adhesion test conducted at ambient temperature. The validated model is successfully applied to simulate the spontaneous initiation and propagation of cracks in the SFRM under static and impact loads. Results from the numerical studies indicate that the proposed model is capable of predicting the initiation and propagation of cracks within the insulation material and at the interface. The results show that the development of transverse cracks in the insulation layer help prevent further delamination of the SFRM. Also, it was found that for larger thicknesses of insulation, delamination occurs at less direct tension or flexural stresses. Results from impact simulations show that there is an optimum insulation thickness for resisting the delamination induced by impact loads.