Quinoxalines

warad's picture

A Theoretical Investigation on the Corrosion Inhibition of Copper by Quinoxaline Derivatives in Nitric Acid Solution

Journal Title, Volume, Page: 
Int. J. Electrochem. Sci., 7 ( 2012 ) 6353 - 6364
Year of Publication: 
2012
Authors: 
A.Zarrouk
LCAE-URAC18, Faculté des Sciences, Université Mohammed 1er, Oujda-60000, Morocco
H. Zarrok
Laboratoire des Procèdes de Séparation, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco
R. Salghi
Equipe de Génie de l’Environnement et Biotechnologie, ENSA, Université Ibn Zohr, BP1136 Agadir, Morocco
B. Hammouti
LCAE-URAC18, Faculté des Sciences, Université Mohammed 1er, Oujda-60000, Morocco
S.S. Al-Deyab
Petrochemical Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
R. Touzani
Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, BP 300, Selouane 62700, Nador, Morocco
I. Warad
Petrochemical Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Ri yadh 11451, Saudi Arabia
Current Affiliation: 
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
T. B. Hadda
Laboratoire de Chimie des Matériaux, Faculté des Sciences, Université Mohammed Premier, Oujda60000, Morocco
M. Bouachrine
UMIM, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
Preferred Abstract (Original): 
In the present work, a theoretical study of two quinoxaline-type organic compounds, (2Z)-2-[(3E)-3(2-oxo-2-phenylethylidene)-3, 4-dihydroquinoxalin-2(1H)-ylidene]-1 phenylethanone (Q5) and (Z)-2((E)-3-(2-oxo-2-phenylethylidene)-3, 4-dihydroquinoxalin-2(1H)-ylidene)-1-phenylethanone (Q6), has been performed using density functional theory (DFT) at the B3LYP/6-31G(d) level in order to elucidate the different inhibition efficiencies and reactive sites of these compounds as corrosion inhibitors. The efficiencies of corrosion inhibitors and the global chemical reactivity relate to some parameters, such as highest occupied molecular orbital energy (E ), lowest unoccupied molecular orbital energy (E LUMO HOMO ), energy gap (ΔE), dipole moment (µ), electronegativity (χ), electron affinity (A), global hardness (η), softness (s), ionization potential (I), the fraction of electrons transferred (∆N), the global electrophilicity (ω) and the total energy (TE), were calculated. All calculation has been performed by considering Density Functional Theory (DFT) using the GAUSSIAN03W suite of programs. The calculated results are in agreement with the experimental data on the whole.
warad's picture

Theoretical Approach to the Corrosion Inhibition Efficiency of Some Quinoxaline Derivatives of Steel in Acid Media Using The DFT Method

Journal Title, Volume, Page: 
Research on Chemical Intermediates March 2013, Volume 39, Issue 3, pp 1125-1133
Year of Publication: 
2013
Authors: 
I. El Ouali
LCAE-URAC18, Faculté des Sciences, Université Mohammed 1er, Oujda, Morocco
A. Zarrouk
LCAE-URAC18, Faculté des Sciences, Université Mohammed 1er, Oujda, Morocco
M. Bouachrine
UMIM, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
B. Hammouti
LCAE-URAC18, Faculté des Sciences, Université Mohammed 1er, Oujda, Morocco
Y. Ramli
Laboratoire de Chimie Organique Hétérocyclique, URAC 21, Université Mohammed V-Agdal, Rabat, Morocco
E. M. Essassi
Laboratoire de Chimie Organique Hétérocyclique, URAC 21, Université Mohammed V-Agdal, Rabat, Morocco
I. Warad
Department of Chemistry–College of Science, King Saud University, B.O. 2455, Riaydh, 11451, Saudi Arabia
Current Affiliation: 
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
R. Salghi
Equipe de Génie de l’Environnement et Biotechnologie, ENSA, Université Ibn Zohr, BP 1136, Agadir, Morocco
Preferred Abstract (Original): 
Corrosion inhibition efficiencies of 1,4-dihydroquinoxaline-2,3-dione (Q1) and 2-phenylthieno[2,3-b]quinoxaline (Q2) as corrosion inhibitors against the corrosion of steel surface in hydrochloric acid is studied by means of density functional approach B3LYP/6-31G calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (E HOMO), lowest unoccupied molecular orbital energy (E LUMO), energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), the fraction of electrons transferred (∆N), the global electrophilicity ω, and the total energy were calculated. All calculations have been performed by considering density functional theory using the GAUSSIAN03W suite of programs.
Syndicate content