The penetration of drugs into the human brain through the blood-brain barrier (BBB) is a major obstacle limiting the development of successful neuropharmaceuticals. This restricted permeability is due to the delicate intercellular junctions, efflux transporters and metabolizing enzymes present at the BBB. The pharmaceutical industry and academic research relies heavily on permeability studies conducted in animals and in vitro models of the BBB. This text reviews the available animal and in vitro BBB models with special emphasis on the situation in freshly isolated human brain microvessels and the unique tightness between brain endothelial cells, drug transport pathways and metabolic capacity. We first outline the delicate structure of the intercellular junctions and the particular interaction between the brain endothelial cells and other components of the neurovascular unit. We then examine the differences in transporters and metabolizing enzymes between species and in vitro systems and those found in isolated brain microvessels. Finally, we review the possibilities of benchmarking in vitro models of the BBB in terms of gene and protein expression.
Since the discovery of P-glycoprotein (P-gp) in brain microvessels composing the human blood-brain barrier (BBB), ATPbinding cassette (ABC) transporters have been recognized as bottlenecks in the development and delivery of neuropharmaceuticals. ABC transporters are expressed predominately at the plasma luminal membrane of brain capillary endothelial cells. These ABC transporters are responsible for the efflux of their substrates from the endothelial cells to the bloodstream against the concentration gradient and thus limit the entry of some drugs within the central nervous system (CNS). Advanced quantitative molecular biology tools allowed gene and protein quantification of the components of microvessels isolated from different species including human. Recently, positron emission tomography using radiolabelled probes that are substrates of ABC transporters allowed the determination of their functional activity at the human BBB. Here, we summarized new information regarding the relative expression, substrate recognition pattern for CNS drugs and functional activity of ABC transporters that are quantitatively expressed at the human BBB.