3-Di-2-pyridylketone-2-thiophenylhydrazone

2043's picture

Kinetics and Mechanism of Oxidation of L-Cysteine by Bis-3-di-2-pyridylketone-2-thiophenylhydrazoneiron( III) Complex in Acidic Medium

Journal Title, Volume, Page: 
E-Journal of Chemistry;2010 Supplement 1, Vol. 7, pS527
Year of Publication: 
2010
Authors: 
Ismail Warad
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
Mohammed Al-Nuri
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
Maher Abu Eid
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
Current Affiliation: 
Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
Zeid Al-Othman
Department of Chemistry, King Saud University P.O Box 2455, Riyadh-11451, Saudi Arabia
Saud Al-Resayes
Department of Chemistry, King Saud University P.O Box 2455, Riyadh-11451, Saudi Arabia
Nizam Diab
Department of Chemistry Arab American University-Jenin, P.O. Box 240, Jenin, Palestine
Preferred Abstract (Original): 

The kinetics of oxidation of L-cysteine by 3-di-2-pyridylketone-2-thiophenylhydrazone-iron(III), [Fe(DPKTH)2]3+ complex in acidic medium was studied spectrophotometrically at 36 C temperature. The molar ratios of DPKTH to iron(III) and iron(II) individually, were found to be [2:1] [DPKTH : iron(III)/(II)]. The reaction was stroked to be first-order with respect to iron(III) and L-cysteine, second-order with respected to DPKTH ligand and reversed second-order with respected to hydrogen ion concentration. Added salts did not affect the rate and no free radical was detected when radical detector was placed in the reaction mixture. Ethanol solvent ratio was found to effect both the initial rate and the maximum absorbance (ʎmax) of [Fe(DPKTH) 2]2+ complex. The initial rate rose when the temperature was increased which empowered to calculate the activation parameters. A suitable reaction mechanism was proposed.

Syndicate content