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Strategic Objectives

 Utilize solar energy in large scale
economic environmentally friendly
processes, such as:

 Part (I) Electricity production
 Part (II) Water purification by

degrading contaminants
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Part I: Light-to-electricity
 LIGHT-to-electricity  CONVERSION TECHNIQUES

 p-n junctions
 PEC junctions: Two types

Regenerative
Non-regenerative
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p-n junctions PV devices:
Priciple, advantages and disadvantages
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Photoelectrochemical (PEC)
Devices: Principles, advantages and disadvantages

redox couple/electrolyte/liquid

SC electrode Counter electrode
(platinum)
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Dark-Current Formation
(Band-edge Flattening is needed here)
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Photocurrent Formation:
(Band-edge bending is needed here)
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Total current vs. Potential

Typical plots of current vs. applied potential
in PEC operations

V

+

-

J

- +

Photo Current

Dark Current

Typical plots of current vs. applied potential
in PEC operations

V

+

-

J

- +

Photo Current

Dark Current



Band-Edge Position Shifting
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Earlier Modification Activities
 Literature: Attachment of conjugated

polymers, such as  polythiophenes
-stability became higher
-current became smaller, and efficiency became

lower
-polymer peeling out difficulties

 Our earlier Technique: Attachment of positive
charges
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Earlier modifications: Metalloporphyrine treatment of
semiconductor surface (submonolayer coverage) using chemical
bonding (H.S.Hilal, J.A.Turner, and A.J.Frank, 185th Meeting of the Electrochemical Soc., San Francisco, Ca., May 22-27,
(1994); S.Kocha, M.Peterson, H.S.Hilal, D.Arent and J.Turner, Proceedings of the (1994) USA Department of Energy/NREL Hydrogen
Program Review, April 18-21)

. Electrochim. Acta 2006.



Photoluminescence enhancement



Mott-Schottky Plots after modification







Results of our earlier treatment

1) Shifts in Flat band potential
2) Shifts in open-circuit photovoltage Voc

3) Enhanced photo-current

But Stability was not enhanced.
Monolayers pealed out.
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Another Method:
Treatment by Annealing

 n-GaAs and n-Si wafers were annealed
between 400-900oC. Annealing enhanced
photocurrent efficiency & surface topology.

 Rate of cooling also affected efficiency and
surface topology as follows:
-- From 600oC or below, slow cooling was
better.

-- From 700oC and above, quenching was better
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Effect of Annealing:
Photo J-V plots for n-GaAs untreated (a); and

quenched (b) from 400oC (c) 500oC, (d) 600oC, (e) 700oC, and (f) 800oC



Effect of cooling rate: From 600oC or below ; and from
700oC and above. (a) slow cooling, (b) quenching



Effect on n-Si Crystal Surface: (1) untreated, (2)
quenched from 400oC, (3) slowly cooled from 400oC



Explanation:

 Annealing may exclude crystal
imperfections (dislocations, … etc)

 Slow cooling (from low temperatures)
gives chance for defects to be repaired.

 Slow cooling (from high temperatures)
may cause more defects.
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Our New Strategy was:

1) Enhancing Photocurrent
2) Enhancing Stability
3) Controlling the band edges

All these objectives to be achieved in one
simple technique
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New techniques
1) Metalloporphyrin /polysiloxane matrix (4 micron)
2) Preheating SC wafer
3) Method of cooling (quenching vs. slow cooling)

MnII and III(PyP) inside Polysiloxane

n-GaAs or n-Si

Ga-In eutectic contact

Copper Wiring
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Effect of MnP Treatment on Dark Current
vs. Potential Plots
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Combined treatment

 Preheating and MnP/Polysiloxane



Effect of combined treatment on photocurrent density:
MnP/Polysiloxane and preheating (600oC or lower)



Effect of combined treatment on photocurrent density:
MnP/Polysiloxane and preheating (800oC)



Combined preheating and MnP/Polysiloxane
modification

 Gave better short circuit current
 Higher stability



Mott Schottky Plots (C-2 vs. Applied potential) for n-GaAs
electrodes.
) untreated, ) Polymer treated, ) MnP/polymer treated.
(Conditions as earlier). The Figure shows positive shifting in value
of flat band potential
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In Mott Schottky plots:
1/C2 is plotted vs. Applied potential
At 1/C2 = 0, Then Vfb can be obtained by extrapolation
The slope tells about doping density (DD) of SC

From the figure we knew about Vfb and DD
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Effect of Treatment on Electrode Stability and efficiency.



Mode of action of MnP in enhancing
photocurrent and surface stability. Note the charge
transfer catalytic behavior of the MnIIP/MnIIIP couple.
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Values of cell conversion efficiency for different n-GaAs
electrodes. a All measurements were conducted at 35oC, earlier conditions. Cell
maximum out put power was roughly calculated by multiplying the measured short circuit
current (Isc, at 0.0 V) by the corresponding V value for the same electrode. Efficiency calculated
by dividing the output power density by illumination intensity

Electrode a Cell Efficiency % at different exposure times (min)

40 80 120 160 200 240

Naked n-GaAs 0.31 0.5 0.61 0.72 0.86 0.87

n-GaAs/Polymer 1.24 2.35 2.12 2.08 2.10 2.08

n-GaAs/MnP/Polymer 1.74 3.15 2.97 2.81 2.72 2.26



Conclusions for Part I

 MnP/Polysiloxane matrix increased
Short-circuit current (up to 8 times) and
enhanced stability

 Open-circuit potential was lowered (by
up to 10%)

 Total cell output efficiency was
enhanced.
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Part II: Phtotelectrochemical
Purification of Water

 Here radiation is used to degrade
organic contaminants in water
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Strategic Objectives

 Purify water from organic
contaminants including
Phenol, Benzoic acid and
Tamaron

 Employ light for such purpose
 Tamaron (insecticide) is 
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Technical Objectives
• Modify TiO2 with dyes (TPPHS or

metalloporphyrinato manganese(III) to give
TiO2/TPPHS or TiO2/MnP systems.

• Support TiO2/dye onto activated carbon and use
the AC/TiO2/dye as catalyst

• TPPHS is: 
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Wanted degradation processes

 Contaminant(aq) + O2(g)  CO2(g) +
H2O

 Contaminants here include 
Phenol , benzoic acid and

Tamaron
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Why Nano-crystals

 Nano-crystals 1-100 nm in diameter
 Much higher relative surface areas than

mono-crystals
 Surface different, atoms not

coordinatively saturated
 Higher surface activity than in large

crystals
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Theory of dye-sensitized TiO2
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Water purification with solar Light

 Light creates electron/hole pairs onto
semiconductor

 Electron and holes separate
 Electrons reduce species: O2 + e  2O2-

 Holes oxidize species: Organic + h+
CO2
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Thermodynamic Considerations

 To oxidize a contaminant, the holes must
have a potential more positive (lower) the
oxidation potential of that contaminant.

 The valence band for the Semiconductor
must be lower than Eox for contaminant.

 Some contaminants are stable, having Highly
positive Eox. (such as phenols, benzoic acid,
chlorinated hydrocarbons).

 Some contaminants are not stable, having
moderate Eox. (such as heterocycles)
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Energetics

 Stable contaminants: demand highly
positive potential holes: they demand
TiO2 with UV light.

 Unstable contaminants: demand
moderate potentials
Visible light is enough. Sensitized TiO2
is enough.
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SENSITIZATION

 Sensitization means creation of charge
onto TiO2 Conduction Band by visible
light.

 Sensitization means allowing TiO2 to
function in the visible light

 The dye (sensitizer) is itself excited not
the TiO2.

 Sensitization involves the Visible region
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Sensitization Mechanism
Good for low energy demanding processes

V.B.

C.B.

-

+ TiO2 Dye

h+

e-

Visible Light

e-

1.3 eV

Reduction

Oxidation

+2.76 V

-0.25 V

V/SCE

TiO2 SENSITIZATION PROCESS:
*visible light is needed
*Low oxidizing power holes

V.B.

C.B.

-

+ TiO2 Dye

h+

e-

Visible Light

e-

1.3 eV

Reduction

Oxidation

+2.76 V

-0.25 V

V/SCE

TiO2 SENSITIZATION PROCESS:
*visible light is needed
*Low oxidizing power holes



Sensitization Mechanism
Good for low energy demanding processes

V.B.

C.B.

-

+ TiO2 Dye

h+

e-

Visible Light

e-

1.3 eV

Reduction

Oxidation

+2.76 V

-0.25 V

V/SCE

TiO2 SENSITIZATION PROCESS:
*visible light is needed
*Low oxidizing power holes

V.B.

C.B.

-

+ TiO2 Dye

h+

e-

Visible Light

e-

1.3 eV

Reduction

Oxidation

+2.76 V

-0.25 V

V/SCE

TiO2 SENSITIZATION PROCESS:
*visible light is needed
*Low oxidizing power holes



Charge Transfer Catalysis
Good for high energy demanding
processes
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* The dye is not excited itself
*The TiO2 is itself oexcited with UV
*The holes are highly oxidizing, They oxidize contaminants
*The dye is a charge transfer catalyst only
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Experimental Scheme

 Three round-bottomed flask (aqueous
solution of contaminants)

 TiO2 , dye (tripheny pyrilium  ion), carbon,
added

 UV, Hg(Xe), or visible lamp, W, complete with
housing and power sources

 Sampling unit
 Stirring
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Phenol Degradation Results

 Phenol did not degrade in the visible
 Phenol degraded only in the UV region
 TiO2 only  not effective
 Dye only  not effective
 TiO2/dye  effective in the UV This

Indicates no sensitization process but
charge transfer catalytic process for
phenol. See Tables and results
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Table 1: Turnover Number values for different catalytic
systems in Phenol degradation

Catalyst TiO2 amount
g

TPPHS amount
g ( mol)

Turnover number after 120 min.
(reacted PhOH moles /dye moles

Naked TiO2 ??? 0.00 33*

Dye only 0.00 0.006 (1.476X10-5) 27

TiO2/TPPHS 0.5 0.01 (2.46X10-5 ) 163

0.5 0.005 (1.23X10-5 ) 1290.5 0.005 (1.23X10-5 ) 129

1.0 0.006 (1.476X10-5 ) 149

0.5?? 0.006 (1.467X10-5 ) 270

0.5 0.003 g (0.738X10-5 mol) 176

AC/TiO2/TPPHS 0.5 0.006 (1.476X10-5) 372

0.5 0.003 (0.738X10-5)

0.5 0.012 (2.952X10-5 ) 169???

0.5 0.01 677

0.5 0.003 (0.738X10-5) 580



Benzoic Acid Degradation Results

 Degraded in UV not in Visible
 TiO2 low effect
 Dye low effect
 TiO2/Dye high effect in the UV,

indicating no sensitization, but Charge
transfer catalysis

 Degraded in UV not in Visible
 TiO2 low effect
 Dye low effect
 TiO2/Dye high effect in the UV,

indicating no sensitization, but Charge
transfer catalysis



Tamaron Degradation Results

 Tamaron degraded in the visible
 TiO2 alone did not work effictively
 Dye alone not effective
 TiO2/Dye effective for Tamaron (in the

visible) and in the UV as well.
 This indicates sensitization (Visible) &

charge transfer catalysis (UV)
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Semiconductor band energetics and degradation
demands
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Activated Carbon Results

 AC enhanced the degradation process
in phenol, benzoic acid and Tamaron.

 AC possibly adsorbs the contaminant
molecules.

 It brings them into close proximity with
the catalytic sites.

 AC enhanced the degradation process
in phenol, benzoic acid and Tamaron.

 AC possibly adsorbs the contaminant
molecules.

 It brings them into close proximity with
the catalytic sites.



Conclusions for Part II
 Phenol (a stable contaminant) demands UV in case of

TiO2/Dye with or without AC
 Benzoic acid demands UV, in case of TiO2/Dye (with

or without AC)
 Tamaron demands only Visible, in case of TiO2/Dye

(with or without AC)
 AC enhances the catalytic efficiency in each time
 Phenol and benzoic acid degradation goes through a

charge transfer mechanism
 Tamaron degradation goes through a sensitization

process.
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Future Perspectives

 Use thin films of Support/TiO2/Dye to
maximize exposure to light.

 Use continuous flow rate reactors.
 Use safe dyes (natural and plant dyes)
 Use other SC materials.
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