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i Strategic Objectives

= Utilize solar energy In large scale
economic environmentally friendly
processes, such as:

= Part (1) Electricity production

= Part (1) Water purification by
degrading contaminants




‘L Part I: Light-to-electricity

s LIGHT-to-electricity CONVERSION TECHNIQUES

= p-n junctions

= PEC junctions: Two types
Regenerative

Non-regenerative




P-Nn junctions PV devices:
P I'I CI p I e y advantages and disadvantages
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Photoelectrochemical (PEC)
DeVICeS : Principles, advantages and disadvantages
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Dark-Current Formation
i (Band-edge Flattening Is needed here)
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Photocurrent Formation:
i (Band-edge bending is needed here)

light
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space charge
layer

Photoelectrochemical Principles:
Photo current resulting from light
excitation of electrons)



‘L Total current vs. Potential
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i Band-Edge Position Shifting
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i Earlier Modification Activities

= Literature: Attachment of conjugated
polymers, such as polythiophenes

-stability became higher

-current became smaller, and efficiency became
lower

-polymer peeling out difficulties

= Our earlier Technigue: Attachment of positive
charges



Earlier modifications: Metalloporphyrine treatment of
semiconductor surface (submonolayer coverage) using chemical

bond|ng (H.S.Hilal, J.A.Turner, and A.J.Frank, 185th Meeting of the Electrochemical Soc., San Francisco, Ca., May 22-27,
(1994); S.Kocha, M.Peterson, H.S.Hilal, D.Arent and J.Turner, Proceedings of the (1994) USA Department of Energy/NREL Hydrogen
Program Review, April 18-21)

. Electrochim. Acta 2006.
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Photoluminescence enhancement
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Fig. 2. PL intensity enhancement of n-Gads by surface modificatdon. (a)

UInmadified surface: by Goass-SilyliCl; (o) GaAs-MnP*, Excitation wave-
length was 500 nm.



Mott-Schottky Plots after modification
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Fig. 5. n-Gass Aat-band potential shifting by surfoce modification. O—% (dark )
plots measurad for n-Gass: (o) unmodified surface (hy GasAs-Sily0CLH; (o)
Gass-MnP . Measurements conducted using LiCIOyags (001 M), no added
redox couples, pH 6.22 vs, SCE reference.
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Fig. 4. n-GaAs flat-band potential shifting by surface modification; in the dark

(A and under illumination (B Measurements conducted using LiCCO4aq)
(0.1 M. no added redox couples. (a) Unmodified n-Gads and (b Gass-MnP™.
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Fig. & n-Gass photocurrent onset potential  shifting by modification: (i)
Metalloporphynn-modified: (o) unmodifed n-Gass; (b GoaAs-MaP*: (c)
GaAs-MnP™. (i) Porphine-modified: (a) unmoedified n-Gass: (b Gafs-
H-P~t: (¢ GaAs-H.PY . (iii) Bipyridine-modified: (a) unmodified n-Gass; (b)
GaAs-bpyt: (o) Gass-bpy 2. All measurements wene conducted in aqueous
Sel— f8e g_,-' EAOH system.
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i Results of our earlier treatment

1) Shifts In Flat band potential
2y Shifts in open-circuit photovoltage V.
3y Enhanced photo-current

But Stability was not enhanced.
Monolayers pealed out.



Another Method:
i Treatment by Annealing

= N-GaAs and n-Si wafers were annealed
petween 400-900°C. Annealing enhanced
ohotocurrent efficiency & surface topology.

= Rate of cooling also affected efficiency and
surface topology as follows:

-- From 600°C or below, slow cooling was
better.

-- From 700°C and above, guenching was better




Effect of Annealing:

Photo J-V plots for n-GaAs untreated (a); and

guenched (b) from 400°C (c) 500°C, (d) 600°C, (e) 700°C, and (f) 800°C
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Effect of cooling rate: From 600°C or below ; and from
700°C and above. (a) slow cooling, (b) quenching
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Effect on n-Si Crystal Surface: (1) untreated, (2)
guenched from 400°C, (3) slowly cooled from 400°C

FIGURE 7 SEM mmage for untreated sample of ®-51 with scale of 5 ym.,



i Explanation:

= Annealing may exclude crystal
Imperfections (dislocations, ... etc)

= Slow cooling (from low temperatures)
gives chance for defects to be repaired.

= Slow cooling (from high temperatures)
may cause more defects.



‘L Our New Strategy was:

1) Enhancing Photocurrent
2y Enhancing Stability
3y Controlling the band edges

All these objectives to be achieved in one
simple technique



New techniques

1) Metalloporphyrin /polysiloxane matrix (4 micron)
2) Preheating SC wafer

3) Method of cooling (quenching vs. slow cooling)

\

' T— Mn'land lli(PyP) inside Polysiloxane
n-GaAs or n-Si

Ga-In eutectic contact

Copper Wiring



Effect of MNP Treatment on Dark Current

i vs. Potential Plots

Vnset (NAKked)

T Vnset(Modified)

Stae 1



i Combined treatment

= Preheating and MnP/Polysiloxane



Effect of combined treatment on photocurrent density:
MnP/Polysiloxane and preheating (600°C or lower)

Photo currant density (% mn':]

Potential (V' vs 5CE)

Fig. 3. Photo J-V plots for n-Gads electrodes (3) mnireated; and heated samplas at s00°C: "11-1 slowly cooled, (¢) MnP-modified =lowly cooled, (d) quenched
() NnP-modified quenched. All measuwements were conducted m agqueous Ky5e=™ Ey ey " EOHat 5°C.



Effect of combined treatment on photocurrent density:
MnP/Polysiloxane and preheating (800°C)
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Fiz 3. Photo I-V plots for n-Cads electodes (3) wnmeated: and heated samples at 800°C: {bjﬁsl-:nwf}' cooled, (o) MnP-modified slowly cooled. (d) quenched.
(2} MnP-modihied quenched. All measirements were conducted m aqueos m Ky G KaSer*"KOHat 23°C.



Combined preheating and MnP/Polysiloxane
i modification

s Gave better short circuit current
= Higher stability



Mott Schottky Plots (C-2 vs. Applied potential) for n-GaAs

electrodes.

®) untreated, ) Polymer treated, A) MnP/polymer treated.

(Conditions as earlier). The Figure shows positive shifting in value

of flat band potential
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In Mott Schottky plots:

From the figure we knew about Vfb and DD



¢ Effect of Treatment on Electrode Stability and efficiency.
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Mode of action of MnP in enhancing

photocurrent and surface stability. Note the charge
transfer catalytic behavior of the Mn'"P/Mn!''P couple.
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Values of cell conversion efficiency for different n-GaAs

electrodes. = Al measurements were conducted at 35°C, earlier conditions. Cell

maximum out put power was roughly calculated by multiplying the measured short circuit
current (I, at 0.0 V) by the corresponding V value for the same electrode. Efficiency calculated
by dividing the output power density by illumination intensity

Electrode @ Cell Efficiency % at different exposure times (min)
40 80 120 160 200 240
Naked n-GaAs 0.31 0.5 0.61 0.72 0.86 0.87
n-GaAs/Polymer 1.24 2.35 2.12 2.08 2.10 2.08
n-GaAs/MnP/Polymer 1.74 3.15 2.97 2.81 2.72 2.26




i Conclusions for Part |

= MnP/Polysiloxane matrix increased
Short-circuit current (up to 8 times) and
enhanced stability

= Open-circuit potential was lowered (by
up to 10%)

= Total cell output efficiency was
enhanced.



Part 1l: Phtotelectrochemical
i Purification of Water

= Here radiation Is used to degrade
organic contaminants in water



i Strategic Objectives

= Purify water from organic
contaminants including
Phenol, Benzoic acid and
Tamaron

= Employ light for such purpose

= Tamaron (insecticide) is - o

P
H3CO/ | \NH2
H.CS



i Technical Objectives

Modify TiO, with dyes (TPPHS or
metalloporphyrinato manganese(lll) to give
TIO,/TPPHS or TiO,/MnP systems.

- Support TiO,/dye onto activated carbon and use
the AC/TIO,/dye as catalyst

. TPPHS is: >
|

X

=
O
+



i Wanted degradation processes

s Contaminant g + Oy 2 CO,y) +
H,O
s Contaminants here include =

Phenol , benzoic acid and
Tamaron

P
H3CO/ | \NH2
H.CS



i Why Nano-crystals

= Much higher relative surface areas than
mono-crystals

= Higher surface activity than in large
crystals



i Theory of dye-sensitized TiO,

_ Visible Light
“ Reduction
1-0.25V
1 /" Oxidation
3.2eV
Oxidation UV Light

+2.76 V o

“+ TiO, Dye




i Water purification with solar Light

= Light creates electron/hole pairs onto
semiconductor

= Electron and holes separate
= Electrons reduce species: O, + e 2 20*

= Holes oxidize species: Organic + h*=>
CO,



i Thermodynamic Considerations

To oxidize a contaminant, the holes must

have a potential more
oxidation potential of t

The valence band for t

positive (lower) the
nat contaminant.

ne Semiconductor

must be lower than E_, for contaminant.

Some contaminants are stable, having Highly
positive E_,. (such as phenols, benzoic acid,
chlorinated hydrocarbons).

Some contaminants are not stable, having
moderate E_,. (such as heterocycles)



i Energetics

= Stable contaminants: demand highly
positive potential holes: they demand
TiO, with UV light.

= Unstable contaminants: demand
moderate potentials
Visible light is enough. Sensitized TiO,
IS enough.



i SENSITIZATION

= Sensitization means creation of charge
onto TiO, Conduction Band by visible
light.

= Sensitization means allowing TiO, to
function in the visible light

= The dye (sensitizer) Is itself excited not
the TiO..

= Sensitization involves the Visible region



Sensitization Mechanism
Good for low energy demanding processes

Visible Light

T~ +2.76V

VISCE

TiO, SENSITIZATION PROCESS:

*visible light is needed
*Low oxidizing power holes



Sensitization Mechanism
Good for low energy demanding processes

Visible Light

T~ +2.76V

VISCE

TiO, SENSITIZATION PROCESS:

*visible light is needed
*Low oxidizing power holes



Charge Transfer Catalysis
Good for high energy demanding
Processes

Reduction

T -0.25V
T~ 4276V

V E ; Charge-Transfer
ISC TIOZ Catalyst

Charge Transfer Catalytic Effect:

* The dye is not excited itself

*The TiO, is itself oexcited with UV

*The holes are highly oxidizing, They oxidize contaminants
*The dye is a charge transfer catalyst only



i Experimental Scheme

= Three round-bottomed flask (aqueous
solution of contaminants)

= TIO, , dye (tripheny pyrilium ion), carbon,
added

= UV, Hg(Xe), or visible lamp, W, complete with
housing and power sources

= Sampling unit
= Stirring



i Phenol Degradation Results

= Phenol did not degrade in the visible

= Phenol degraded only in the UV region
= TI0, only = not effective

= Dye only - not effective

= TI0,/dye - effective in the UV This
Indicates no sensitization process but
charge transfer catalytic process for
phenol. See Tables and results



Table 1: Turnover Number values for different catalytic
systems in Phenol degradation

Catalyst TiO, amount TPPHS amount Turnover number after 120 min.
g g ( mol) (reacted PhOH moles /dye moles
Naked TiO, ?77? 0.00 33*
Dye only 0.00 0.006 (1.476X10) 27
TiO,/TPPHS 05 0.01 (2.46X10%) 163
0.5 0.005 (1.23X10°) 129
1.0 0.006 (1.476X107°) 149
0.5?7? 0.006 (1.467X107°) 270
0.5 0.003 g (0.738X10°mol) | 176
AC/TIO,/TPPHS | 0.5 0.006 (1.476X10) 372
0.5 0.003 (0.738X10)
0.5 0.012 (2.952X107°) 169777
0.5 0.01 677
0.5 0.003 (0.738X10) 580




i Benzoic Acid Degradation Results

= Degraded in UV not In Visible
= TIO, low effect
= Dye low effect

= T10,/Dye high effect in the UV,
Indicating no sensitization, but Charge
transfer catalysis



i Tamaron Degradation Results

= Tamaron degraded Iin the visible
= TIO, alone did not work effictively
= Dye alone not effective

= TI0,/Dye effective for Tamaron (in the
visible) and in the UV as well.

= This indicates sensitization (Visible) &
charge transfer catalysis (UV)



Semiconductor band energetics and degradation
demands

-2 -2.24
-1 -1.24
0 — -0.24
— E, Tamaron
+1 —+ +0.76 -+
TPPHS — E,, Benzoic acid
— E,PhOH
+2 —- +1.76
+3 — +2.76
Tio,
+4 —— +3.76
NHE | SCE




i Activated Carbon Results

= AC enhanced the degradation process
In phenol, benzoic acid and Tamaron.

= AC possibly adsorbs the contaminant
molecules.

= It brings them into close proximity with
the catalytic sites.



i Conclusions for Part 11

Phenol (a stable contaminant) demands UV in case of
T|02/Dye with or without AC

= Benzoic acid demands UV, in case of TiO.,/Dye (with
or without AC)

= Tamaron demands only Visible, in case of TiO,/Dye
(with or without AC)

= AC enhances the catalytic efficiency in each time

= Phenol and benzoic acid degradation goes through a
charge transfer mechanism

= Tamaron degradation goes through a sensitization
process.



i Future Perspectives

= Use thin films of Support/TiO,/Dye to
maximize exposure to light.

s Use continuous flow rate reactors.
= Use safe dyes (natural and plant dyes)
s Use other SC materials.
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