
Laplace Transform and Continuous-Time
Frequency Response

1 Definition of Laplace Transform

• Given a continuous-time signal x(t), the Laplace transform of x(t) is
defined as

X(s) =
∫ ∞

−∞
x(t)e−stdt. (1)

Note that X(s) is a function which takes a complex number s and
returns a complex number X(s), i.e., X(s) is a function which maps the
complex plane into the complex plane. The set of values of s for which
the integral in (1) is well-defined is called the Region of Convergence
(ROC) of X(s).

• We will see in Section 2 that the ROC is a region in the complex plane
which is bounded by lines parallel to the imaginary axis (i.e., the line
Re(s) = 0).

• Examples:

1. The Laplace transform of δ(t) is
∫ ∞
−∞ δ(t)e−stdt = 1. The Laplace

transform integral is well defined for all values of s. Hence, the
ROC is the entire complex plane.

2. The Laplace transform of u(t) is
∫ ∞
−∞ u(t)e−stdt =

∫ ∞
0 e−stdt =

−e−st

s

∣

∣

∣

∞

0
= 1−e−s∞

s
where by e−s∞, we mean the limit limt→∞ e−st.

If the real part of s is positive, then e−s∞ = 0. If the real part
of s is not positive, then e−s∞ is not well defined. Therefore, the
Laplace transform of u(t) is 1

s
with the ROC Re(s) > 0.

3. Consider the signal x(t) = eatu(t). The Laplace transform of x(t)
is

X(s) =
∫ ∞

−∞
eatu(t)e−stdt =

∫ ∞

0
eate−stdt

=
∫ ∞

0
e−(s−a)tdt =

1 − e−(s−a)∞

s − a
. (2)
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As in the previous example, we note that the real part of (s − a)
should be greater than zero for e−(s−a)∞ to be well defined. The
requirement that the real part of (s−a) should be greater than zero
is equivalent to the requirement that the real part of s should be
greater than the real part of a, i.e., that Re(s) > Re(a). Hence, the
Laplace transform of eatu(t) is 1

s−a
with the ROC Re(s) > Re(a).

4. Consider the signal x(t) = e−atu(−t). The Laplace transform of
x(t) is

X(s) =
∫ ∞

−∞
e−atu(−t)e−stdt =

∫ 0

−∞
e−ate−stdt

=
∫ 0

−∞
e−(s+a)tdt =

−1 + e(s+a)∞

s + a
. (3)

Similar to the previous examples, we conclude that, since e(s+a)∞

is 0 if Re(s + a) < 0 and not well defined otherwise, the Laplace
transform of e−atu(−t) is −1

s+a
with the ROC Re(s) < −Re(a).

2 ROC of the Laplace Transform

• The observations on the ROC in the preceding examples can be gener-
alized as follows. If the signal is right sided (in other words, if there is
a time t0 before which the signal is zero, i.e., x(t) = 0 for all t < t0),
then the ROC of the Laplace transform of the signal is to the right
hand side of a line parallel to the imaginary axis. If the signal is left
sided (in other words, if there is a time t0 after which the signal is zero,
i.e., x(t) = 0 for all t > t0), then the ROC of the Laplace transform
of the signal is to the left hand side of a line parallel to the imaginary
axis. If the signal is two sided, then the ROC is the region between two
lines parallel to the imaginary axis. In particular, if the signal is causal
(which definitely means that the signal is right sided since a causal
signal takes the value zero for all t < 0), then the ROC of the Laplace
transform of the signal is to the right hand side of a line parallel to
the imaginary axis. Similarly, if the signal is anticausal, then the ROC
of the Laplace transform of the signal is to the left hand side of a line
parallel to the imaginary axis.
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• Given any signal x(t), the ROC of its Laplace transform is bounded by
a pole of X(s) in the sense that the boundary of the ROC has a pole
on it. If x(t) is causal, then the ROC of its Laplace transform lies to
the right hand side of all its poles and the boundary of the ROC is at
its rightmost pole.

• A system is BIBO stable if and only if its impulse response satisfies
the property

∫ ∞
−∞ |h(t)|dt < ∞. This is equivalent to requiring that the

ROC of the Laplace transform of h(t) should include the imaginary axis.
For a causal signal, we know that the ROC of its Laplace transform
lies to the right hand side of all its poles with its boundary being at its
rightmost pole. Hence, for a causal signal, BIBO stability is equivalent
to requiring that all the poles should lie in the left half plane (i.e., the
half of the complex s plane containing complex numbers with negative
real parts).

A causal continuous-time LTI system with transfer function H(s)
is BIBO stable if and only if

all the poles of H(s) lie in the left half plane.

3 Properties of the Laplace Transform

1. Linearity of the Laplace transform: If the Laplace transform of a
signal x(t) is X(s), then the Laplace transform of αx(t) is αX(s) for
any constant α. Also, if the Laplace transforms of two signals x1(t) and
x2(t) are X1(s) and X2(s), then the Laplace transform of αx1(t)+βx2(t)
is αX1(s) + βX2(s) for any constants α and β.

2. Convolution in time domain is equivalent to multiplication in

Laplace domain: If the Laplace transforms of two signals x1(t) and
x2(t) are X1(s) and X2(s), respectively, then the Laplace transform of
the signal x1(t) ∗ x2(t) is X1(s)X2(s).

Proof: By definition, the Laplace transform of x1(t) ∗ x2(t) is
∫ ∞

−∞
[x1(t) ∗ x2(t)]e

−stdt =
∫ ∞

−∞

[
∫ ∞

−∞
x1(τ)x2(t − τ)dτ

]

e−stdt

3



=
∫ ∞

−∞

∫ ∞

−∞
x1(τ)x2(t − τ)e−s(t−τ+τ)dτdt

=
∫ ∞

−∞

∫ ∞

−∞
x1(τ)e−sτx2(t − τ)e−s(t−τ)dτdt

=
∫ ∞

−∞
x1(τ)e−sτdτ

∫ ∞

−∞
x2(τ1)e

−sτ1dτ1

= X1(s)X2(s) (4)

where the dummy variable τ1 = t − τ was used.

3. Time shift in time domain is equivalent to modulation in

Laplace domain: If the Laplace transform of x(t) is X(s), then the
Laplace transform of x(t − t0) is e−st0X(s).

Proof: By definition, the Laplace transform of x(t − t0) is
∫ ∞

−∞
x(t − t0)e

−stdt =
∫ ∞

−∞
x(t − t0)e

−s(t−t0)e−st0dt

= e−st0

∫ ∞

−∞
x(t1)e

−st1dt1 = e−st0X(s) (5)

where t1 is the dummy variable t1 = t − t0.

Example: Since the Laplace transform of δ(t) is 1, the Laplace trans-
form of δ(t − t0) is e−st0 .

4. Modulation in time domain is equivalent to shift in Laplace

domain: If the Laplace transform of x(t) is X(s), then the Laplace
transform of es0tx(t) is X(s − s0).

Proof: By definition, the Laplace transform of es0tx(t) is
∫ ∞

−∞
es0tx(t)e−stdt =

∫ ∞

−∞
x(t)e−(s−s0)tdt = X(s − s0). (6)

Example: Since the Laplace transform of u(t) is 1
s
, the Laplace trans-

form of eatu(t) is 1
s−a

.

5. If the Laplace transform of x(t) is X(s), then the Laplace transform of
x∗(t) is X∗(s∗).

Proof: By definition, the Laplace transform of x∗(t) is
∫ ∞

−∞
x∗(t)e−stdt =

∫ ∞

−∞
[x(t)e−s∗t]∗dt

= [
∫ ∞

−∞
x(t)e−s∗tdt]∗ = X∗(s∗). (7)
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Example: The Laplace transform of the signal x(t) = ejωtu(t) can
be found to be X(s) = 1

s−jω
. Therefore, the Laplace transform of

x∗(t) = e−jωtu(t) is X∗(s∗) = 1
(s∗−jω)∗

= 1
s+jω

.

6. If the Laplace transform of x(t) is X(s), then the Laplace transform of
x(at) is 1

|a|
X( s

a
). In particular, if the Laplace transform of x(t) is X(s),

then the Laplace transform of x(−t) is X(−s).

Proof: By definition, the Laplace transform of x(at) is
∫ ∞

−∞
x(at)e−stdt =

∫ ∞

−∞
x(at)e−s at

a dt. (8)

If a > 0, we have
∫ ∞
−∞ x(at)e−s at

a dt = 1
a

∫ ∞
−∞ x(t1)e

−s
t1

a dt1 and if a <

0, we have
∫ ∞
−∞ x(at)e−s at

a dt = − 1
a

∫ ∞
−∞ x(t1)e

−s
t1

a dt1 where t1 is the
dummy variable t1 = at. Therefore,

∫ ∞

−∞
x(at)e−s at

a dt =
1

|a|

∫ ∞

−∞
x(t1)e

− s

a
t1dt1 =

1

|a|
X(

s

a
). (9)

In particular, if a is taken to be −1, we get the result that the Laplace
transform of x(−t) is X(−s).

Example: Since the Laplace transform of etu(t) is 1
s−1

, the Laplace

transform of eatu(at) is 1
|a|

1
s

a
−1

= sgn(a)

s−a
where sgn(a) is the sign (±1)

of a.

7. Differentiation in time domain is equivalent to multiplication

by s in Laplace domain: If the Laplace transform of x(t) is X(s),

then the Laplace transform of dx(t)
dt

is sX(s).

Proof: Let the Laplace transform of dx(t)
dt

be denoted by Xd(s). Then,

Xd(s) =
∫ ∞

−∞

dx(t)

dt
e−stdt. (10)

Using integration by parts, we have

Xd(s) = x(t)e−st|∞−∞ −
∫ ∞

−∞
x(t)[−se−st]dt. (11)

Within the ROC, x(t)e−st is zero at both the limit as t → ∞ and the
limit as t → −∞ since, by definition, the integral

∫ ∞
−∞ x(t)e−stdt is well

defined in the ROC. Hence, (11) simplifies to Xd(s) = sX(s).
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Example: In previous examples, we found the Laplace transforms of
ejωtu(t) and e−jωtu(t) to be 1

s−jω
and 1

s+jω
, respectively. Therefore, the

Laplace transform of the signal x1(t) = sin(ωt)u(t) is

X1(s) =
1

2j

[

1

s − jω
−

1

s + jω

]

=
ω

s2 + ω2
. (12)

Noting that d sin(ωt)u(t)
dt

= ω cos(ωt)u(t) + sin(ωt)δ(t) = ω cos(ωt)u(t),
we find that the Laplace transform of the signal x2(t) = cos(ωt)u(t) is

X2(s) =
1

ω
s

ω

s2 + ω2
=

s

s2 + ω2
. (13)

Note that

dx2(t)

dt
= −ω sin(ωt)u(t) + cos(ωt)δ(t)

= −ω sin(ωt)u(t) + δ(t) = −ωx1(t) + δ(t). (14)

Hence, it should be true that

sX2(s) = −ωX1(s) + 1. (15)

This can indeed be easily verified to be true.

Example: The current-voltage relation of a capacitor is iC = C dvC

dt
.

Hence, VC(s)
IC(s)

= 1
sC

. In analogy with the relation v = iR for a resistor,

we say that the impedance of a capacitor is 1
sC

. Similarly, the current-

voltage relation of an inductor is vL = Ldi
dt

implying that VL(s)
IL(s)

= sL.

Hence, the impedance of an inductor is sL.

8. Integration in time domain is equivalent to multiplication by
1
s

in Laplace domain: If the Laplace transform of x(t) is X(s), then

the Laplace transform of
∫ t
−∞ x(τ)dτ is 1

s
X(s).

Proof: From the previous property, we know that if the Laplace trans-
form of a signal x1(t) is X1(s), then the Laplace transform of dx1(t)

dt
is

sX1(s). Defining x1(t) =
∫ t
−∞ x(τ)dτ , we have x(t) = dx1(t)

dt
. Therefore,

X(s) = sX1(s) which means that X1(s) = 1
s
X(s).
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Alternative proof: Consider a system with the impulse response h(t) =
u(t), i.e, with the transfer function H(s) = 1

s
. If x(t) is the input to

this system, the output is y(t) = u(t) ∗ x(t) =
∫ t
−∞ x(τ)dτ . Hence, the

transfer function of
∫ t
−∞ x(τ)dτ is H(s)X(s) = 1

s
X(s).

Example: The Laplace transform of u(t) is 1
s
. Hence, the Laplace

transform of tu(t) =
∫ t
−∞ u(τ)dτ is 1

s2 . In general, by applying the
same procedure (n − 1) times, we find that the Laplace transform of

the signal tn−1

(n−1)!
u(t) is 1

sn .

9. Multiplication by −t in time domain is equivalent to differen-

tiation in Laplace domain: If the Laplace transform of x(t) is X(s),

then the Laplace transform of −tx(t) is dX(s)
ds

.

Proof: By definition, the Laplace transform of −tx(t) is
∫ ∞

−∞
[−tx(t)]e−stdt =

∫ ∞

−∞
x(t)

de−st

ds
dt

=
d

ds

∫ ∞

−∞
x(t)e−stdt =

dX(s)

ds
. (16)

Example: The Laplace transform of e−αtu(t) is 1
s+α

. Hence, the

Laplace transform of −te−αtu(t) is d
ds

1
s+α

= − 1
(s+α)2

, i.e, the Laplace

transform of te−αtu(t) is 1
(s+α)2

. In general for any positive integer n,

the Laplace transform of tn−1

(n−1)!
e−αtu(t) is 1

(s+α)n .

4 Inverse Laplace Transform

Given a function H(s) and the ROC, the inverse Laplace transform involves
the problem of finding the signal h(t) such that the Laplace transform of
h(t) is H(s) with the given ROC. We will see three methods for finding the
inverse Laplace transform:

1. Using partial fractions

2. Guessing an exponential solution

3. Using integration

These methods are explained below.
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4.1 Inverse Laplace Transform Using Partial Fractions

In this method, we decompose the given function H(s) into partial fractions
and take the inverse Laplace transform of each term in the partial fraction.
Remember that the ROC of a causal signal is the right hand side of a line
parallel to the imaginary axis while the ROC of an anticausal signal is the left
hand side of a line parallel to the imaginary axis. Hence, the inverse Laplace
transform of 1

s−a
given the ROC Re(s) > Re(a) is eatu(t) while the inverse

Laplace transform of 1
s−a

given the ROC Re(s) < Re(a) is −eatu(−t). The
following examples will further illustrate the method of finding the inverse
Laplace transform by using partial fractions.

Example: Find the inverse Laplace transform of H(s) = 1
(s+1)(s+2)

with the

ROC Re(s) > −1: Taking partial fractions, we have

1

(s + 1)(s + 2)
=

1

s + 1
−

1

s + 2
. (17)

The poles of the two terms in the above equation are −1 and −2, respectively.
The given ROC is to the right hand side of both the lines Re(s) = −1 and
Re(s) = −2. Therefore, both terms in (17) yield causal terms. Hence,

h(t) = e−tu(t) − e−2tu(t). (18)

Example: Find the inverse Laplace transform of H(s) = 1
(s+1)(s+2)

with the

ROC −2 < Re(s) < −1: Taking partial fractions, we have

1

(s + 1)(s + 2)
=

1

s + 1
−

1

s + 2
. (19)

The poles of the two terms in the above equation are −1 and −2, respectively.
The given ROC is to the right hand side of the line Re(s) = −2 and to the
left hand side of the line Re(s) = −1. Therefore, the first term in (19) yields
an anticausal term while the second term in (19) yields a causal term. Hence,

h(t) = −e−tu(−t) − e−2tu(t). (20)

Example: Find the inverse Laplace transform of H(s) = 1
(s+1)(s+2)2

with the

ROC Re(s) > −1: Taking partial fractions, we obtain

1

(s + 1)(s + 2)2
=

1

s + 1
+

−1

s + 2
+

−1

(s + 2)2
. (21)
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As in the previous example, the given ROC implies that all the terms in (21)
yield causal terms. Hence,

h(t) = e−tu(t) − e−2tu(t) − te−2tu(t). (22)

4.2 Inverse Laplace Transform by Guessing an Expo-

nential Solution

From the above examples, we see that when we take partial fractions, we
get terms involving each of the poles p1, . . . , pn of H(s) so that the inverse
Laplace transform involves terms of the form epitu(t). If any of the poles are
repeated, then the partial fraction expansion includes additional terms. In
general, if a pole pi is repeated k times, then the partial fraction expansion
contains the terms 1

(s−pi)
, . . . , 1

(s−pi)k . Hence, the inverse Laplace transform

includes the terms epitu(t), . . . , tk−1epitu(t). This means that we can guess
the form of the inverse Laplace transform easily by just finding the poles of
H(s). However, the guessed form of the inverse Laplace transform involves
unknown coefficients which need to be determined using the differential equa-
tion associated with the given H(s).

Example: Find the inverse Laplace transform of H(s) = 1
(s+1)(s+2)

with the

ROC Re(s) > −1: The poles of H(s) are −1 and −2. Because the ROC is
to the right hand side of the lines parallel to the imaginary axis and passing
through the poles, the signal h(t) must be causal. Hence, we can guess the
form of h(t) to be

h(t) = c1e
−tu(t) + c2e

−2tu(t) (23)

with c1 and c2 being coefficients to be determined. Considering a system
with transfer function H(s), we have Y (s) = X(s)H(s) if x is the input to
the system and y the output. Hence, Y (s)[s2 + 3s + 2] = X(s) and the
differential equation associated with H(s) is

ÿ(t) + 3ẏ(t) + 2y(t) = x(t). (24)

By definition, h(t) is the response of the system when δ(t) is applied as the
input signal. Hence, h(t) satisfies the equation

ḧ(t) + 3ḣ(t) + 2h(t) = δ(t). (25)
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We have guessed the form of h(t) to be as in (23). Hence, ḣ(t) and ḧ(t) are
of the form

ḣ(t) = −c1e
−tu(t) − 2c2e

−2tu(t) + (c1 + c2)δ(t)

ḧ(t) = c1e
−tu(t) + 4c2e

−2tu(t) − (c1 + 2c2)δ(t) + (c1 + c2)δ̇(t). (26)

Substituting the guessed forms of h(t), ḣ(t), and ḧ(t) into (25) and equating
the coefficients of δ(t), δ̇(t), e−tu(t), and e−2tu(t) on the two sides of the
equation, we get the following relations between c1 and c2:

2c1 + c2 = 1

c1 + c2 = 0. (27)

Hence, c1 = 1 and c2 = −1. Therefore, from (23), h(t) = e−tu(t) − e−2tu(t).

4.3 Inverse Laplace Transform by Using Integration

The inverse Laplace transform can be evaluated as

x(t) =
1

2πj

∫ σ+j∞

σ−j∞
X(s)estds (28)

where σ is any real constant such that the line (σ − j∞, σ + j∞) lies in the
ROC. Note that the line (σ − j∞, σ + j∞) is parallel to the imaginary axis.
(28) implies that if X(s) is known on the line (σ − j∞, σ + j∞), then x(t)
can be found which means that the values of X(s) for all values of s can be
found. In other words, all the information content in X(s) is encapsulated
within the values of X(s) on the line (σ − j∞, σ + j∞) in the sense that
knowing X(s) on the line (σ − j∞, σ + j∞) is equivalent to knowing X(s)
throughout the complex plane.

5 Frequency Response

If the input signal is the sinusoidal signal x(t) = Aejφejωtu(t), then

Y (s) = H(s)X(s) = H(s)Aejφ 1

s − jω
. (29)
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y(t) can be found by taking the (causal) inverse Laplace transform of Y (s).
This can be done, for instance, by partial fractions. If the system is BIBO
stable, then the terms in the partial fraction expansion corresponding to poles
of the system yield terms that exponentially go to zero as t → ∞. Hence,
for a BIBO stable system, it can be shown that the output signal resulting
due to the input signal x(t) = Aejφejωtu(t) converges at steady state to the
scaled and shifted sinusoidal signal

ys(t) = Aejφ|H(jω)|ej 6 H(jω)ejωtu(t). (30)

The same conclusion can also be reached using convolution. Assuming that
the system is BIBO stable, we can neglect the homogeneous response (i.e.,
the effect of initial conditions). Hence,

y(t) =
∫ ∞

−∞
h(τ)Aejφejω(t−τ)u(t − τ)dτ.

= Aejφejωt

∫ t

−∞
h(τ)e−jωτdτ. (31)

At steady state, i.e., as t → ∞, we get

y(t) = Aejφejωt

∫ ∞

−∞
h(τ)e−jωτdτ

= AejφejωtH(jω) = Aejφ|H(jω)|ej 6 H(jω)ejωtu(t). (32)

Similarly, for a BIBO stable system, the output signal resulting due to
the input signal x(t) = A sin(ωt + φ)u(t) converges at steady state to the
scaled and shifted sinusoidal signal

ys(t) = A|H(jω)| sin(ωt + φ + 6 H(jω))u(t). (33)
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