
Discrete-Time Fourier Transform (DTFT)

1 Preliminaries

• Definition: The Discrete-Time Fourier Transform (DTFT) of a signal
x[n] is defined to be

X(ejω) =
∞∑

n=−∞

x[n]e−jωn. (1)

In other words, the DTFT of x[n] is the z-transform X(z) evaluated at
z = ejω. Noting that |ejω| = 1, the DTFT of x[n] is X(z) evaluated on
the unit circle (the circle with center at the origin and radius 1).

• Motivation from redundancy in z-transform: We have seen ear-
lier that the inverse z-transform can be computed using a contour in-
tegral using any contour Γ around the origin lying in the ROC. This
means that there is a lot of redundancy in the z-transform, i.e., given
the values of X(z) on the contour Γ, we can find x[n] and hence the
values of X(z) everywhere in the complex plane. So, we only need to
consider the values of X(z) evaluated on the contour Γ to adequately
represent the signal x[n]. Γ can be any contour enclosing the origin
and lying in the ROC. A particularly convenient contour is the unit
circle since it forms the boundary between stability and instability (re-
call that a system is BIBO stable if and only if the poles of the system
lie within the unit circle; equivalently, a system with impulse response
h[n] is BIBO stable if and only if the poles of H(z) lie within the unit
circle). Taking Γ to be the unit circle, the evaluation of X(z) on the
unit circle gives the DTFT of x[n].

• Motivation from response of LTI systems to sinusoidal input
signals: Consider any given FIR system. Recall that any FIR system
is of the form

y[n] =
M2∑

k=−M1

h[k]x[n − k] (2)

with h[n] being the impulse response. Consider the case where the
input signal x[n] is sinusoidal. The general complex-valued sinusoidal
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signal is of the form x[n] = Aejφejωn. A is called the magnitude, φ is
called the phase, and ω is called the frequency of the sinusoidal signal
x[n]. From (2), the output signal y[n] is obtained to be

y[n] =
M2∑

k=−M1

h[k]Aejφejω(n−k)

= Aejφejωn
M2∑

k=−M1

h[k]e−jωk

= AejφejωnH(ejω) (3)

where the last step in (3) is obtained by noting that
∑M2

k=−M1
h[k]e−jωk =

H(ejω). Hence,

y[n] = A|H(ejω)|ejφ+j 6 H(ejω)ejωn, (4)

i.e., the output signal y[n] is the same as the input signal x[n] except
for a magnitude gain of |H(ejω)| and a phase shift of 6 H(ejω). Note
that the frequency of the output signal is the same as the frequency of
the input signal. Thus, H(ejω) represents, in a sense, the response of
the system to a sinusoidal input signal of frequency ω. Hence, H(ejω)
is called the frequency response of the system, |H(ejω)| is referred to
as the magnitude response of the system, and 6 H(ejω) is referred to as
the phase response of the system.

We have shown above that the output signal of any FIR LTI system
given a sinusoidal input signal is a scaled and shifted sinusoidal signal
of the same frequency as the input signal. We will see later that this is
true, in the sense of steady-state response, for any BIBO stable (both
FIR and IIR) LTI system. Thus, H(ejω) appears naturally when we
seek to compute the output signal corresponding to a sinusoidal input
signal.

2 Basic properties of the DTFT

• 2π Periodicity: X(ej(ω+2π)) = X(ejω) valid for any signal x[n].
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Proof: By definition, X(ejω) =
∑∞

n=−∞ x[n]e−jωn. Since ejθ = cos(θ) +
j sin(θ), we have

e−j(ω+2π)n = cos((ω + 2π)n) − j sin((ω + 2π)n)

= cos(ωn) − j sin(ωn)

= e−jωn. (5)

Hence,

X(ej(ω+2π)) =
∞∑

n=−∞

x[n]e−j(ω+2π)n

=
∞∑

n=−∞

x[n]e−jωn

= X(ejω). (6)

• Conjugate Symmetry, i.e., X(e−jω) = X∗(ejω) valid for any real
signal x[n].

Proof: By definition, X(e−jω) =
∑∞

n=−∞ x[n]ejωn. Also, if x[n] is real,

X∗(ejω) =
∞∑

n=−∞

x∗[n](e−jωn)∗

=
∞∑

n=−∞

x[n]ejωn. (7)

Hence, X(e−jω) = X∗(ejω) for any real signal x[n].

• Convolution in time domain is equivalent to multiplication in
frequency domain: If the DTFT of x1[n] is X1(e

jω) and the DTFT
of x2[n] is X2(e

jω), then the DTFT of x1[n] ∗ x2[n] is X1(e
jω)X2(e

jω).

Proof: We know that if the z-transform of x1[n] is X1(z) and the z-
transform of x2[n] is X2(z), then the z-transform of x1[n] ∗ x2[n] is
X1(z)X2(z). Evaluating at z = ejω, it follows that the DTFT of x1[n]∗
x2[n] is X1(e

jω)X2(e
jω).
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3 Response of LTI systems to sinusoidal in-

put signals

We saw earlier that if the input signal to an FIR LTI system is a sinusoidal
signal, then the output signal is a scaled and shifted copy of the input signal.
This can be generalized, in the sense of steady-state response, for any BIBO
stable LTI system. The general form of an IIR LTI system is known to be

y[n] =
N∑

l=1

aly[n − l] +
M∑

k=0

bkx[n − k]. (8)

Let the given initial conditions be some y[−1], . . . , y[−N ] and let the input
signal be a sinusoid x[n] = Aejφejωn for n ≥ 0 and 0 for n < 0, i.e., x[n] =
Aejφejωnu[n]. Then one method to compute the output signal is by using
the one-sided z-transform. This method gives, as seen in the lecture notes
on difference equations,

Y (z) =

∑M
k=0 bkz

−k

1 − ∑N
l=1 alz−l

X(z)

︸ ︷︷ ︸

Forced response

+

∑N
l=1 alz

−l ∑−1
n1=−l y[n1]z

−n1

1 − ∑N
l=1 alz−l

︸ ︷︷ ︸

Homogeneous response

. (9)

If the IIR system is BIBO stable, then the roots of the N th order equation
1−∑N

l=1 alz
−l = 0 are all within the unit circle so that the inverse z-transform

of the homogeneous response will consist of components that go to 0 as n →
∞ (this can be easily seen by using the method of guessing exponentials).
Hence, in steady-state (i.e., as n → ∞), the output signal is simply the
forced response. This is intuitively obvious since we expect the transients

caused due to initial conditions to die out if the system is stable. To find
the inverse z-transform of the homogeneous response, we can use a partial
fraction expansion which will contain terms corresponding to the poles of the
system and terms corresponding to poles introduced by the input signal. Note
that if the input signal is x[n] = Aejφejωnu[n], then X(z) = Aejφ 1

1−ejωz−1 so

that X(z) has a pole at ejω. If H(z) does not have a pole at ejω, then Y (z)
has a pole of multiplicity 1 at ejω. In this case, it can be shown that the
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partial fraction expansion of Y (z) includes the term 1
1−ejωz−1 with coefficient

AejφH(ejω), i.e.,

Y (z) =
[

Partial fraction components arising from poles of H(z)
]

+
AejφH(ejω)

1 − ejωz−1
.

As discussed above, since the system is stable, the poles of H(z) are within
the unit circle so that the partial fraction components arising from poles of
H(z) yield terms that go to 0 as n → ∞. Hence, the steady-state response

of the system is simply the inverse z-transform of AejφH(ejω)
1−ejωz−1 , i.e., in steady

state,

y[n] = A|H(ejω)|ejφ+j 6 H(ejω)ejωn. (10)

This result matches what we saw earlier in the case of FIR LTI systems.

Above, we assumed that ejω is not a pole of H(z). This is definitely true
since |ejω| = 1. Remember that we are considering stable IIR LTI systems
so that the poles of H(z) are all within the unit circle.

The above analysis yields the general result:

For any BIBO stable LTI system, if the input signal is sinusoidal, then,
at steady-state, the output signal is a scaled (with magnitude gain
|H(ejω)|) and shifted (with phase shift 6 H(ejω)) copy of the input sig-
nal.

Now that we know how to compute the output of an LTI system given
a sinusoidal input signal, we can easily generalize the technique to a sum of
sinusoidal signals by appealing to superposition, i.e., if the input signal is
formed as the sum of a set of sinusoidal signals

x[n] =
L∑

i=1

Aie
jφiejωin, (11)

then the output signal is the sum of the corresponding output signals to each
of the constituent sinusoidal signals:

y[n] =
L∑

i=1

Ai|H(ejωi)|ejφi+j 6 H(ejωi )ejωin. (12)

5



Zeros and poles: If ejω0 is a zero of the system, i.e., if H(ejω0) = 0,
then the steady-state response of the system given a sinusoidal input signal
of frequency ω0 is zero. This is the motivation for the usage of the name zero

for values of z for which H(z) is zero.

Example 3.1 Consider the system y[n] = x[n] − x[n − 1]. Given the input
signal ejωn, find the output signal: For the given system, we have H(z) =
1 − z−1 and H(ejω) = 1 − e−jω = 1 − cos(ω) + j sin(ω). Hence,

|H(ejω)| =
√

(1 − cos(ω))2 + sin2(ω)

6 H(ejω) = tan−1
(

sin(ω)

1 − cos(ω)

)

(13)

and the output signal is |H(ejω)|ej 6 H(ejω)ejωn. If ω = 0, then |H(ejω)| is zero
so that the output signal is zero. This can also be seen from the facts that
the zero of the system is z = 1 and that ej0 = 1. In time domain, what this
means is that if the input signal is a sinusoid with frequency zero (i.e., is a
constant), then the output signal is zero.

Example 3.2 Consider the system y[n] = x[n] + x[n − 1]. Find the output
signal if the input signal is x[n] = ejπn + ej π

2
n: For this system, we have

H(z) = 1 + z−1 and H(ejω) = 1 + e−jω = 1 + cos(ω) − j sin(ω). The system
has a zero at z = −1, i.e., at ω = π. Hence, we expect that the output
due to the input component ejπn is zero. This can also be verified in time
domain by noting that ejπn = (−1)n so that x[n] + x[n − 1] = 0 for all n.
Therefore, the output signal given the input signal x[n] = ejπn + ej π

2
n is

|H(ej π
2 )|ej 6 H(ej π

2 )ej π
2
n. In this case, H(ej π

2 ) = 1 − j so that |H(ej π
2 )| =

√
2

and 6 H(ej π
2 ) = −π

4
. Hence, the output signal is y[n] =

√
2e−j π

4 ej π
2
n.

Example 3.3 Consider the system y[n] = −0.5y[n− 1] + x[n]. The transfer
function of this system is H(z) = 1

1+0.5z−1 and the frequency response of the

system is H(ejω) = 1
1+0.5e−jω . Note that this system is BIBO stable. Given

a sinusoidal input signal Aejφejωnu[n], the output signal at steady-state is

given by A|H(ejω)|ejφ+j 6 H(ejω)ejωn.

Example 3.4 Consider the system y[n] = −0.1y[n − 1] + x[n]. Find the
output signal at steady-state if the input signal is x[n] = cos(πn)u[n]: Using
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the fact that

cos(πn) =
ejπn + e−jπn

2
, (14)

the output signal can be written as the sum of the responses to the input
signals 0.5ejπn and 0.5e−jπn.

Example 3.5 The system y[n] = x[n − n0] with n0 being a constant repre-
sents a delay by n0 samples. If the input signal is a sinusoid, then we expect
that the output signal is also a sinusoid with the same magnitude as the input
signal but with a phase shift relative to the input signal. This can be verified
by noting that H(ejω) = e−jωn0 so that |H(ejω)| = 1 and 6 H(ejω) = −ωn0.
In this example, the phase shift 6 H(ejω) is a linear function of ω. Such a
system is called a linear phase system.

4 Inverse DTFT

The inverse DTFT problem is to find x[n] given its DTFT X(ejω). As with
the inverse z-transform, there are many ways to find the inverse DTFT. Two
methods are explained below. Of these, the first method which uses the
inverse z-transform to evaluate the inverse DTFT is easier to apply.

4.1 Inverse DTFT: Using z = ejω

This method simply involves substituting z whereever we see ejω and then
taking the inverse z-transform with a ROC including the unit circle.

Example 4.1 Given H(ejω) = 1−e−jω

1+0.5e−jω , find h[n]: Substituting z for ejω,
we find that

H(z) =
1 − z−1

1 + 0.5z−1
= −2 +

3

1 + 0.5z−1
. (15)

Hence, h[n] = −2δ[n] + 3(−0.5)nu[n].
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Example 4.2 Given H(ejω) = cos(jω), find h[n]: Using the fact that

cos(jω) =
ejω + e−jω

2
, (16)

we find that H(z) = z+z−1

2
so that

h[n] =
δ[n + 1] + δ[n − 1]

2
. (17)

4.2 Inverse DTFT: Using integration

By definition, X(ejω) =
∑∞

n=−∞ x[n]e−jωn. Multiplying both sides by ejωk

with some constant k and integrating over a 2π interval yields:
∫ 2π

0
X(ejω)ejωkdω =

∫ 2π

0

∞∑

n=−∞

x[n]e−jωnejωkdω

=
∞∑

n=−∞

x[n]
∫ 2π

0
ejω(k−n)dω (18)

The following result is easy to prove:
∫ 2π

0
ejωmdω =

{

2π if m = 0
0 if m 6= 0.

(19)

Hence, in the right hand side of (18), only one term in the summation is
non-zero. The non-zero term is the one for which (k − n) = 0, i.e., n = k.
Hence,

∫ 2π

0
X(ejω)ejωkdω = 2πx[k] (20)

so that

x[k] =
1

2π

∫ 2π

0
X(ejω)ejωkdω. (21)

5 Plotting the DTFT: The Bode Plot

A convenient pictorial representation of the DTFT H(ejω) is obtained by
plotting |H(ejω)| and 6 H(ejω). Such a pair of plots is called the Bode plot
and it consists of the magnitude plot (plot of |H(ejω)| vs. ω) and the phase
plot (plot of 6 H(ejω) vs. ω).
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6 More Properties of the DTFT

• If the DTFT of x[n] is X(ejω), then the DTFT of x∗[n] is X∗(e−jω).

Proof: Let the DTFT of x∗[n] be denoted by Xa(e
jω). Then, by defini-

tion,

Xa(e
jω) =

∞∑

n=−∞

x∗[n]e−jωn

=
∞∑

n=−∞

x∗[n](ejωn)∗

=
∞∑

n=−∞

(x[n]ejωn)∗

= (
∞∑

n=−∞

x[n]e−j(−ω)n)∗

= X∗(e−jω). (22)

Hence, the DTFT of x∗[n] is X∗(e−jω).

• If the DTFT of x[n] is X(ejω), then the DTFT of x∗[−n] is X∗(ejω).

Proof: Let the DTFT of x∗[−n] be denoted by Xa(e
jω). Then, by

definition,

Xa(e
jω) =

∞∑

n=−∞

x∗[−n]e−jωn

=
∞∑

n=−∞

(x[−n]ejωn)∗

= (
∞∑

n=−∞

x[−n]ejωn)∗

= (
∞∑

n=−∞

x[−n]e−jω(−n))∗

= (
∞∑

n1=−∞

x[n1]e
−jωn1)∗ (23)

where n1 = −n. Hence, Xa(e
jω) = X∗(ejω), i.e., the DTFT of x∗[−n]

is X∗(ejω).
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• Multiplication in time domain is equivalent to convolution in
frequency domain. If the DTFT of x1[n] is X1(e

jω) and the DTFT of
x2[n] is X2(e

jω), then the DTFT of x1[n]x2[n] is 1
2π

∫ 2π
0 X1(e

jω̃)X2(e
j(ω−ω̃))dω̃.

Remark: The signal x1[n]x2[n] is a pointwise multiplication of the sig-
nals x1[n] and x2[n].

Remark: Convolution of two functions X1(e
jω) and X2(e

jω) in the fre-
quency domain is defined to be 1

2π

∫ 2π
0 X1(e

jω̃)X2(e
j(ω−ω̃))dω̃. Note the

similarity of this definition of convolution in frequency domain with
the definition of convolution in time domain (essentially, summation is
replaced by integration, and there is an additional 1

2π
factor).

Proof: By definition,

X1(e
jω̃) =

∞∑

n1=−∞

x1[n1]e
−jω̃n1

X2(e
j(ω−ω̃)) =

∞∑

n2=−∞

x2[n2]e
−j(ω−ω̃)n2 . (24)

Hence,

X1(e
jω̃)X2(e

j(ω−ω̃))=
∞∑

n1=−∞

∞∑

n2=−∞

x1[n1]x2[n2]e
−jω̃n1e−j(ω−ω̃)n2

=
∞∑

n1=−∞

∞∑

n2=−∞

x1[n1]x2[n2]e
−jωn2e−jω̃(n1−n2).(25)

Therefore,

1

2π

∫ 2π

0
X1(e

jω̃)X2(e
j(ω−ω̃))dω̃ =

∞∑

n1=−∞

∞∑

n2=−∞

x1[n1]x2[n2]e
−jωn2

1

2π

∫ 2π

0
e−jω̃(n1−n2)dω̃.

Using (19), only the term for which n1 = n2 is nonzero. Hence,

1

2π

∫ 2π

0
X1(e

jω̃)X2(e
j(ω−ω̃))dω̃ =

∞∑

n1=−∞

x1[n1]x2[n1]e
−jωn1 . (26)

By definition, the DTFT of x1[n]x2[n] is
∑∞

n1=−∞ x1[n1]x2[n1]e
−jωn1 .

Hence, the DTFT of x1[n]x2[n] is equal to 1
2π

∫ 2π
0 X1(e

jω̃)X2(e
j(ω−ω̃))dω̃.
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• Parseval’s Theorem: If the DTFT of x[n] is X(ejω), then
∑∞

n=−∞ x[n]x∗[n] =
1
2π

∫ 2π
0 X(ejω)X∗(ejω)dω.

Proof: Consider (26) in the special case ω = 0. We get

1

2π

∫ 2π

0
X1(e

jω̃)X2(e
−jω̃)dω̃ =

∞∑

n1=−∞

x1[n1]x2[n1] (27)

which yields the statement of the Parseval’s theorem by taking the
signal x2[n] to be x∗

1[n].

Remark: Recall that, for instance, the power dissipation in a resistor
is dependent on the square of the current or the voltage. In general,
the square of a signal is associated with power and the summation
(or integration) of the square of a signal is associated with energy of
the signal. Parseval’s theorem essentially states that the energy in
the time-domain signal is equal to the energy in the frequency-domain
DTFT.

General Note: Since the DTFT is periodic with period 2π, we can use any
interval of length 2π to characterize the DTFT. Throughout this lecture, we
have used [0, 2π] as the interval (in all integrations, etc.). Equivalently, we
could have used [−π, π] or any other interval of length 2π.
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