
Inverse z-Transforms and Difference
Equations

1 Preliminaries

• We have seen that given any signal x[n], the two-sided z-transform is
given by X(z) =

∑
∞

n=−∞
x[n]z−n and X(z) converges in a region of the

complex plane called the region of convergence (ROC). The inverse
z-transform addresses the reverse problem, i.e., to find x[n] given X(z)
and the ROC.

• The inverse z-transform for the one-sided z-transform is also defined
analogous to above, i.e., given a function X(z) and a ROC, find the
signal x[n] whose one-sided z-transform is X(z) and has the specified
ROC. Since the one-sided z-transform involves, by definition, only the
values of x[n] for n ≥ 0, the inverse one-sided z-transform is always
a causal signal so that the ROC is always the exterior of the circle
through the largest pole.

• There are four common ways of finding the inverse z-transform:

– Using long division

– Using partial fractions

– Using contour integrals

– Using the associated difference equation.

The first three methods are explained below in Sections 2-4. The
method of finding the inverse z-transform using the associated differ-
ence equation is explained in Section 6. Of these methods, the two
which are easiest to apply are the method of partial fractions and the
method of using the associated difference equation. Among these two
methods, the method of partial fractions is easier to use if X(z) does
not have repeated poles and the method of using the associated dif-
ference equation is easier if X(z) has repeated poles. Recall that the
poles of X(z) are the values of z for which X(z) is ∞. For example, if
X(z) is given to be 1

1−αz−1 , then X(z) has one pole at α. As another

example, consider X(z) = 1
(1−z−1)(1−2z−1)

. This X(z) has the two poles
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1 and 2 and neither pole is repeated. On the other hand, the function
X(z) = 1

(1−z−1)2
has one pole at 1 which is repeated twice (in other

words, the pole has multiplicity two).

2 Finding inverse z-transform using long di-

vision

To apply this method, we try to express X(z) as a Laurent series X(z) =
∑

∞

n=−∞
xnz

−n. Then, by comparing with the definition of the z-transform,
we find that x[n] = xn.

Example 2.1 Consider X(z) = 1
1−z−1 with ROC 1 < |z| < ∞. To expand

X(z) as a Laurent series, we note that |z−1| < 1 in the ROC. Hence,

1

1 − z−1
= 1 + z−1 + z−2 + z−3 + . . . (1)

which implies that x[n] = 1 for n ≥ 0 and x[n] = 0 for n < 0, i.e., x[n] = u[n].
Note that the property |z−1| < 1 is essential for the equation (1) to be valid.

Example 2.2 Consider X(z) = 1
1−z−1 with ROC 0 < |z| < 1. We cannot

use the expansion (1) since |z−1| is bigger than 1 in the ROC. To obtain a
Laurent series expansion of X(z), rewrite X(z) as

X(z) =
z

z − 1
=

−z

1 − z
. (2)

Since |z| < 1 in the ROC, we have the identity

1

1 − z
= 1 + z + z2 + z3 + . . . (3)

which is valid in the ROC. Hence,

X(z) = −z(1 + z + z2 + z3 + . . .)

= −(z + z2 + z3 + z4 + . . .)

= −
∞∑

n=1

zn. (4)

By comparing with the definition X(z) =
∑

∞

n=−∞
x[n]z−n, we conclude that

x[n] = −1 for n ≤ −1 and x[n] = 0 for n > 0, i.e., x[n] = −u[−n − 1].
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In general, we have the following results (which we had derived earlier in
the treatment of z-transforms) which are valid for all α:

If X(z) = 1
1−αz−1 and the ROC is |α| < |z| < ∞, then x[n] = αnu[n].

If X(z) = 1
1−αz−1 and the ROC is 0 < |z| < |α|, then

x[n] = −αnu[−n − 1].

3 Finding inverse z-transform using partial

fractions

We have seen above how to find the inverse z-transform of a function X(z)
of the form 1

1−αz−1 . Given any function X(z), the method of partial fractions

attempts to write X(z) as a combination of terms of the form 1
(1−αiz

−1)k , i =

1, . . . , N, k = 1, . . . , Ni where the poles of X(z) are α1, . . . , αN with the
multiplicity of pole αi being Ni.

The simplest case is when the poles of X(z) are all simple, i.e., no pole is
repeated. In this case, all poles have multiplicity 1 and X(z) is of the form

X(z) =
P (z)

(1 − α1z−1)(1 − α2z−1) . . . (1 − αNz−1)
(5)

with P (z) being some function (which does not vanish at any αi). The
function X(z) can be decomposed into partial fractions as

X(z) =
N∑

i=1

Ai

1 − αiz−1
(6)

with Ai being constants.

If any pole is repeated more than once in X(z), then the partial fraction
expansion contains more terms. For instance, if the pole αi is repeated Ni

3



times, then the partial fraction expansion of X(z) will contain the terms
Ai1

(1−αiz
−1)

, Ai2

(1−αiz
−1)2

, . . .,
AiNi

(1−αiz
−1)Ni

. Hence, in general, if the poles of X(z)

are α1, . . . , αN with the multiplicity of pole αi being Ni, then the partial
fraction expansion of X(z) is

X(z) =
N∑

i=1

Ni∑

k=1

Aik

(1 − αiz−1)k
. (7)

The examples below illustrate the procedure to find the partial fraction
expansion of a given function X(z) and to use the partial fraction expansion
to find the inverse z-transform of X(z) given a ROC.

Example 3.1 Consider X(z) = 1
(1−z−1)(1−2z−1)

given the ROC 1 < |z| < 2.

This X(z) has two poles at 1 and 2. The multiplicity of each pole is 1. Hence,
the partial fraction expansion of X(z) is of the form

1

(1 − z−1)(1 − 2z−1)
=

A1

1 − z−1
+

A2

1 − 2z−1
. (8)

To find A1 and A2, multiply both sides of (8) by (1 − z−1)(1 − 2z−1). We
obtain

1 = A1(1 − 2z−1) + A2(1 − z−1). (9)

Equating the constant terms and the coefficients of z−1, we get the two
equations

A1 + A2 = 1

−2A1 − A2 = 0. (10)

This is a set of two equations in the two unknowns A1 and A2. Solving, we
get

A1 = −1

A2 = 2. (11)

Hence, the partial fraction expansion of X(z) is

1

(1 − z−1)(1 − 2z−1)
=

−1

1 − z−1
+

2

1 − 2z−1
. (12)
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The ROC is given to be 1 < |z| < 2. This ROC is in the exterior of the circle
with center at the origin and radius 1 and is in the interior of the circle with
center at the origin and radius 2. Hence, the term in the inverse z-transform
resulting from the first term in the right hand side of (12) will be a causal
term while the term resulting from the second term in the right hand side of
(12) will be an anti-causal term. Therefore, we obtain the inverse z-transform

x[n] = (−1)(1)nu[n] + (2)(−(2)nu[−n − 1])

= −u[n] − 2n+1u[−n − 1]. (13)

Example 3.2 Find the inverse z-transform of X(z) = 1
(1−z−1)(1−2z−1)

given

the ROC 0 < |z| < 1. The function X(z) is the same as in the example 3.1.
Hence, the partial fraction expansion (12) is valid. Since, in this example, the
ROC is given to be 0 < |z| < 1, the ROC is in the interior of the circle with
center at the origin and radius 1 and also in the interior of the circle with
center at the origin and radius 2. Hence, both terms in (12) give anti-causal
terms in the inverse z-transform. Therefore, the inverse z-transform is

x[n] = (−1)(−(1)nu[−n − 1]) + (2)(−(2)nu[−n − 1])

= (1 − 2n+1)u[−n − 1]. (14)

Example 3.3 Find the inverse z-transform of X(z) = 1
(1−z−1)(1−2z−1)

given

the ROC 2 < |z| < ∞. The function X(z) is the same as in the examples 3.1
and 3.2. The difference is that the ROC is given to be 2 < |z| < ∞ which is
in the exterior of the circle with center at the origin and radius 1 and also
in the exterior of the circle with center at the origin and radius 2. Hence,
both terms in (12) give causal terms in the inverse z-transform. Therefore,
the inverse z-transform is

x[n] = (−1)(1)nu[n] + (2)(2)nu[n] = (−1 + 2n+1)u[n]. (15)

Example 3.4 Consider X(z) = 1+z−1

(1−z−1)(1−2z−1)(1−3z−1)
given the ROC 2 <

|z| < 3. The poles of X(z) are at 1, 2, and 3 and the multiplicity of each
pole is 1. Hence, the partial fraction expansion of X(z) is of the form

X(z) =
A1

1 − z−1
+

A2

1 − 2z−1
+

A3

1 − 3z−1
. (16)
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To find A1, A2, and A3, we multiply both sides by (1−z−1)(1−2z−1)(1−3z−1)
and equate the constant terms, the coefficients of z−1, and the coefficients
of z−2 on the two sides of the resulting equation. This procedure yields the
equations

A1 + A2 + A3 = 1

−5A1 − 4A2 − 3A3 = 1

6A1 + 3A2 + 2A3 = 0. (17)

Solving, A1 = 1, A2 = −6, and A3 = 6. Hence, the partial fraction expansion
of X(z) is

X(z) =
1

1 − z−1
−

6

1 − 2z−1
+

6

1 − 3z−1
. (18)

Since the given ROC is 2 < |z| < 3, we infer that the first and second terms
in (18) provide causal terms in the inverse z-transform while the third term
provides an anti-causal term, i.e., the inverse z-transform of X(z) given the
ROC 2 < |z| < 3 is

x[n] = (1)nu[n] − 6(2)nu[n] + 6(−(3)nu[−n − 1]). (19)

Example 3.5 Consider X(z) = 1−4z−1

(1−z−1)2(1−2z−1)
given the ROC 2 < |z| < ∞.

The poles of X(z) are 1 and 2. The pole at 2 is a simple pole while the pole
at 1 has multiplicity two. Hence, using the general expression (7), the partial
fraction expansion of X(z) is of the form

X(z) =
A11

1 − z−1
+

A12

(1 − z−1)2
+

A21

1 − 2z−1
. (20)

The constants A11, A12, and A21 can be found using essentially the same
technique as above. Multiplying both sides of (20) by (1 − z−1)2(1 − 2z−1),
we obtain

1 − 4z−1 = A11(1 − z−1)(1 − 2z−1) + A12(1 − 2z−1) + A21(1 − z−1)2

= A11(1 − 3z−1 + 2z−2) + A12(1 − 2z−1)

+A21(1 − 2z−1 + z−2). (21)
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Equating the constant term, the coefficients of z−1, and the coefficients of
z−2, we obtain

A11 + A12 + A21 = 1

−3A11 − 2A12 − 2A21 = −4

2A11 + A21 = 0. (22)

Solving the above set of equations, we find A11 = 2, A12 = 3, and A21 = −4.
Hence, the partial fraction expansion of X(z) is

X(z) =
2

1 − z−1
+

3

(1 − z−1)2
−

4

1 − 2z−1
. (23)

From the given ROC 2 < |z| < ∞, we infer that all the terms (23) yield causal
terms in the inverse z-transform. We know the causal inverse z-transform
of 1

1−αz−1 is αnu[n]. To find the inverse z-transform of 1
(1−z−1)2

, we can use

the property of z-transforms that if the z-transform of x[n] is X(z), then the

z-transform of nx[n] is −z
dX(z)

dz
. This implies that the z-transform of nu[n]

is z−1

(1−z−1)2
. Noting that

1

(1 − z−1)2
=

1 − z−1 + z−1

(1 − z−1)2

=
1

1 − z−1
+

z−1

(1 − z−1)2
, (24)

the (causal) inverse z-transform of 1
(1−z−1)2

is u[n] + nu[n].

Hence, from (23), the inverse z-transform of X(z) given the ROC 2 <

|z| < ∞ is

x[n] = 2u[n] + 3(n + 1)u[n] − 4(2)nu[n]. (25)

4 Finding inverse z-transform using contour

integrals

The Cauchy integral theorem says that

1

2πj

∮

Γ
zk−1dz =

{

1 if k = 0
0 if k 6= 0

(26)
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where Γ is any contour (path) around the origin. This result can be used to
find the inverse z-transform given X(z) and a ROC. Let Γ be any contour
around the origin and lying in the ROC.

By the definition of the z-transform, we have X(z) =
∑

∞

n=−∞
x[n]z−n.

Multiplying both sides by zk−1 and taking the contour integral of both sides,
we obtain

∮

Γ
X(z)zk−1dz =

∮

Γ

∞∑

n=−∞

x[n]z−n+k−1dz

=
∞∑

n=−∞

x[n]
∮

Γ
z−n+k−1dz. (27)

By the Cauchy integral theorem
∮

Γ z−n+k−1dz is 2πj if n = k and 0 for all
other values of n. Hence,

∮

Γ
X(z)zk−1dz = 2πjx[k] (28)

so that

x[k] =
1

2πj

∮

Γ
X(z)zk−1dz. (29)

The equation (29) gives the inverse z-transform of X(z). The contour Γ
should be chosen such that Γ lies in the ROC.

The direct application of (29) is usually not straightforward since it in-
volves the evaluation of a contour integral. In this course, we will not use
the method of contour integrals to actually compute inverse z-transforms.
However, the relation (29) is of conceptual interest since it implies that to
find the inverse z-transform, we only need to know X(z) on the contour Γ,
i.e., we do not need to know X(z) for other values of z. This means that
X(z) at all points in the complex plane can be inferred by simply knowing
its values on the contour Γ. Hence, there is a great deal of redundancy in
the definition of X(z). This is one of the mathematical motivations for the
introduction of the discrete-time Fourier transform.
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5 Difference Equations

A difference equation is any equation of the form

y[n] =
N∑

l=1

aly[n − l] +
M∑

k=0

bkx[n − k] (30)

with M and N being positive integers and a1, . . . , aN , b0, . . . , bM being con-
stant coefficients. The general problem of solving difference equations can
be stated as follows:

Given the difference equation (30), an input signal x[n], and initial con-
ditions y[−1], . . . , y[−N ], find the output signal y[n] for all n ≥ 0.

The most basic way of solving this problem is by manually iterating the
equation (30) as

y[0] =
N∑

l=1

aly[−l] +
M∑

k=0

bkx[−k]

y[1] =
N∑

l=1

aly[1 − l] +
M∑

k=0

bkx[1 − k]

y[2] =
N∑

l=1

aly[2 − l] +
M∑

k=0

bkx[2 − k]

... (31)

Of course, this approach is useful only for small values of n. If we wanted to
find y[1000], it would require 1000 iterations ... a lot of work!

There are two general and efficient methods of solving difference equa-
tions:

• Using one-sided z-transforms,

• By guessing exponential solutions.

5.1 Solving difference equations using one-sided z-transforms

Recall that the one-sided z-transform of x[n] is defined as X(z) =
∑

∞

n=0 x[n]z−n.
If the one-sided z-transform of x[n] is X(z), then the one-sided z-transform
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of x[n−n0] can be found as follows: Let the one-sided z-transform of x[n−n0]
be denoted by Xn0

(z). Then,

Xn0
(z) =

∞∑

n=0

x[n − n0]z
−n

=
∞∑

n=0

x[n − n0]z
−(n−n0)z−n0

= z−n0

∞∑

n1=−n0

x[n1]z
−n1 (32)

where n1 = n − n0. Hence,

Xn0
(z) = z−n0

[ ∞∑

n1=0

x[n1]z
−n1 +

−1∑

n1=−n0

x[n1]z
−n1

]

= z−n0

[

X(z) +
−1∑

n1=−n0

x[n1]z
−n1

]

. (33)

Note that unlike the case of two-sided z-transforms, we get an extra term
z−n0

∑
−1
n1=−n0

x[n1]z
−n1 in the one-sided z-transform of x[n − n0].

Taking the one-sided z-transform of both sides of (30),

Y (z) =
N∑

l=1

alz
−l(Y (z) +

−1∑

n1=−l

y[n1]z
−n1)

+
M∑

k=0

bkz
−k(X(z) +

−1∑

n1=−k

x[n1]z
−n1) (34)

where X(z) and Y (z) are the one-sided z-transforms of x[n] and y[n], respec-
tively. Simplifying,

[1 −
N∑

l=1

alz
−l]Y (z) =

M∑

k=0

bkz
−kX(z) +

M∑

k=0

bkz
−k

−1∑

n1=−k

x[n1]z
−n1

+
N∑

l=1

alz
−l

−1∑

n1=−l

y[n1]z
−n1 . (35)

Hence,

Y (z) =

∑
M

k=0 bkz
−k

1 −
∑

N

l=1 alz−l
X(z) +

∑
M

k=0 bkz
−k

∑
−1
n1=−k

x[n1]z
−n1

1 −
∑

N

l=1 alz−l

︸ ︷︷ ︸

Forced response
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+

∑
N

l=1 alz
−l

∑
−1
n1=−l

y[n1]z
−n1

1 −
∑

N

l=1 alz−l

︸ ︷︷ ︸

Homogeneous response

. (36)

The expression for Y (z) in (36) consists of two parts. The first part depends
only on the input signal and is called the forced response. The second part
depends only on the initial conditions y[−1], . . . , y[−N ] and is called the
homogeneous response. This highlights one property of the linearity of the
system. The total response is equal to the sum of the response due to the
input signal and the response due to the initial conditions.

If the initial conditions are zero and if x[n] = 0 for n < 0, then we obtain

H(z) =
Y (z)

X(z)
=

∑
M

k=0 bkz
−k

1 −
∑

N

l=1 alz−l
. (37)

H(z) is the z-transform of the impulse response and is known as the transfer
function of the system. The values of z for which H(z) = 0 are known as the
zeros of the system and the values of z for which H(z) = ∞ are known as
the poles of the system. Note that each pole of H(z) is also a pole of Y (z).
However, in general, Y (z) also has poles introduced by X(z).

Example 5.1 Solve the difference equation

y[n] = 2y[n − 1] + x[n] (38)

given the initial condition y[−1] = 2 and the input signal x[n] = δ[n] + u[n]:
Taking the one-sided z-transform of both sides of (38), we obtain

Y (z) = 2z−1(Y (z) + y[−1]z) + X(z). (39)

Hence,

Y (z) =
2y[−1] + X(z)

1 − 2z−1
=

4 + X(z)

1 − 2z−1
. (40)

For the given input signal, we have X(z) = 1 + 1
1−z−1 = 2−z−1

1−z−1 . Hence,

Y (z) =
4

1 − 2z−1
+

2 − z−1

(1 − z−1)(1 − 2z−1)
. (41)
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Using partial fractions,

2 − z−1

(1 − z−1)(1 − 2z−1)
=

−1

1 − z−1
+

3

1 − 2z−1
. (42)

Noting that the original difference equation (38) is causal, we need to take
the causal inverse z-transform of (41) to find y[n]. Hence,

y[n] = 4(2)nu[n] + (−1)(1)nu[n] + (3)(2)nu[n]. (43)

5.2 Solving difference equations by guessing exponen-
tial solutions

We know that the causal inverse z-transform of 1
1−αz−1 is αnu[n], i.e., an

exponential. Hence, we can find the inverse z-transform of the function Y (z)
shown in (36) by finding out which exponentials will be contained in the
inverse z-transform and guessing the solution to be a linear combination of
the exponentials. We have also seen that if the partial fraction expansion
of Y (z) has a term of the form 1

(1−αz−1)2
, then y[n] has terms of the forms

αnu[n] and nαnu[n]. In general, if αi is a pole of Y (z) with multiplicity Ni,
then y[n] will contain terms of the forms αnu[n], nαnu[n], nNi−1αnu[n]. Once
we guess the solution y[n] to be a linear combination of known terms, then
we only need to find the coefficients. This can be done by generating enough
equations through numerically iterating the original difference equation (30).
This procedure is illustrated by the example below.

Example 5.2 Solve the difference equation

y[n] = −y[n − 1] + 2y[n − 2] + x[n] (44)

given the initial conditions y[−1] = 1 and y[−2] = 2 and the input signal
x[n] = u[n]:

The transfer function of the system (44) is

H(z) =
1

1 + z−1 − 2z−2
. (45)

The poles of H(z) are the roots of the quadratic equation 1+z−1−2z−2 = 0.
Hence, the poles of H(z) are 1 and −2.
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The z-transform of the input signal is 1
1−z−1 which has one pole at 1.

Hence, the poles of Y (z) are 1 and −2 with the multiplicity of the pole 1
being two and the multiplicity of the pole −2 being one. Therefore, we expect
y[n] to include terms of the forms (1)nu[n], n(1)nu[n], and (−2)nu[n], i.e.,

y[n] = c1u[n] + c2nu[n] + c3(−2)nu[n]. (46)

To find the three unknown coefficients c1, c2, and c3, we need to generate
three equations by numerically iterating (44) for n = 0, 1, and 2.

y[0] = −y[−1] + 2y[−2] + x[0] = −1 + 2(2) + 1 = 4

y[1] = −y[0] + 2y[−1] + x[1] = −4 + 2(1) + 1 = −1

y[2] = −y[1] + 2y[0] + x[2] = −(−1) + 2(4) + 1 = 10. (47)

This yields the three equations

c1 + c2(0) + c3(−2)0 = 4

c1 + c2(1) + c3(−2)1 = −1

c1 + c2(2) + c3(−2)2 = 10 (48)

i.e.,

c1 + c3 = 4

c1 + c2 − 2c3 = −1

c1 + 2c2 + 4c3 = 10. (49)

Solving, c1 = 20
9
, c2 = 1

3
, and c3 = 16

9
. Hence,

y[n] =
20

9
u[n] +

1

3
nu[n] +

16

9
(−2)nu[n]. (50)

6 Finding inverse z-transform using the asso-

ciated difference equation

Given a function H(z), finding the causal inverse z-transform h[n] is equiva-
lent to solving an associated difference equation with initial conditions zero.
To see this, consider H(z) to be of the form

H(z) =

∑
M

k=0 vkz
−k

∑
N

l=0 qlz−l
. (51)
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Then, a difference equation whose transfer function is H(z) can be found as
follows:

Y (z) = X(z)H(z) = X(z)

∑
M

k=0 vkz
−k

∑
N

l=0 qlz−l
. (52)

Hence

Y (z)
N∑

l=0

qlz
−l = X(z)

M∑

k=0

vkz
−k (53)

so that with zero initial conditions y[−1], . . . , y[−N ] and zero x[−1], . . . , x[−M ],
we have

N∑

l=0

qly[n − l] =
M∑

k=0

vkx[n − k], (54)

i.e.,

y[n] = −
N∑

l=1

qly[n − l] +
M∑

k=0

vkx[n − k]. (55)

The output signal y[n] of (55) when the input signal is x[n] = δ[n] is, by
definition, h[n]. Hence, the original problem of finding the causal inverse
z-transform of H(z) is equivalent to finding the impulse response of (55).
This can be done using the method of guessing exponentials as explained in
Section 5.2.
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