
Convolution, FIR Systems, and IIR Systems

1 Some Definitions

• A signal which is 1 for n = 0 and 0 everywhere else is defined to be a
discrete-time unit impulse and is denoted by δ[n], i.e.,

δ[n] =

{

1 for n = 0
0 for n 6= 0.

(1)

The discrete-time unit impulse is also referred to as a Kronecker delta

function.

• The response of a discrete-time system to a discrete-time unit impulse
is said to be the impulse response of the system. The impulse response
is usually denoted as h[n].

• A signal which is 1 for n ≥ 0 and 0 for n < 0 is said to be a discrete-time
unit step function and is denoted by u[n], i.e.,

u[n] =

{

1 for n ≥ 0
0 for n < 0.

(2)

• The support of a signal is defined to be the set of time instants at which
the value of the signal is non-zero.
Example: The support of δ[n] is the set {0}. The support of u[n] is the
set {0, 1, 2, 3, . . .}.

• If the impulse response of a system is of finite length (i.e., if the support
of the impulse response is a set with only a finite number of values),
then the system is said to be a Finite Impulse Response (FIR) system
(or FIR filter). Equivalently, an FIR system is a system in which the
value of the output signal at any time depends only on the values of
the input signal at a finite number of time instants.

• Any LTI FIR filter is of the general form

y[n] =
M2
∑

k=−M1

bkx[n − k] (3)
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with b−M1
, . . . , bM2

being the coefficients of the filter. M1 and M2 are

positive constants. L
4
= M1 + M2 + 1 is called the length of the filter.

Example: The moving average system given by

y[n] =
x[n − 1] + x[n] + x[n + 1]

3
(4)

is an LTI FIR filter with M1 = 1, M2 = 1, b0 = b−1 = b1 = 1

3
, and

L = 3.

• Any causal LTI FIR filter is of the general form

y[n] =
M
∑

k=0

bkx[n − k] (5)

with b0, . . . , bM being the coefficients of the filter. M is a positive

constant and is called the order of the filter. L
4
= M + 1 is called the

length of the filter.

• The impulse response of the LTI FIR filter shown in (3) is given by

h[n] =
M2
∑

k=−M1

bkδ[n − k] = bn. (6)

Hence, the coefficients of an LTI FIR filter are the values of the impulse
response signal.

• A signal which is 0 for n < 0 is said to be a causal signal.
Exercise: Show that if the impulse response of an LTI system is a causal
signal, then the system is causal.

2 Convolution

• If x[n] is applied as the input to the LTI FIR filter shown in (3), then
the output is

y[n] =
M2
∑

k=−M1

bkx[n − k]

=
M2
∑

k=−M1

h[k]x[n − k]
4
= h[n] ∗ x[n]. (7)
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• The convolution of signals x and h is defined to be the signal

y[n] =
∞
∑

k=−∞

h[k]x[n − k] (8)

and is denoted by h[n] ∗x[n]. If the signal h[n] has finite support, then
the limits for k in the summation (8) can be replaced with the maximum
and minimum values for which h[k] is non-zero, thus obtaining (7).

• Proof that
∑

∞

k=−∞
h[k]x[n− k] =

∑

∞

k=−∞
x[k]h[n− k]: Any signal x[n]

can be decomposed into a sum of shifted impulses as

x[n] =
∞
∑

k=−∞

x[k]δ[n − k]. (9)

Using time invariance, the output of a system in response to a shifted
impulse is an appropriately shifted impulse response, i.e., if the input
signal is δ[n − k], then the output signal is h[n − k]. Using linearity,
the output of the system in response to a sum of signals is the sum of
the corresponding outputs. Hence, using (9), the output of the system
is

y[n] =
∞
∑

k=−∞

x[k]h[n − k]. (10)

However, by (8), we know that y[n] =
∑

∞

k=−∞
h[k]x[n − k]. Hence,

∑

∞

k=−∞
h[k]x[n − k] =

∑

∞

k=−∞
x[k]h[n − k].

• Given the impulse response h[n] of a system, the output signal corre-
sponding to any given input signal x[n] can be computed as y[n] =
h[n] ∗ x[n]. Hence, the impulse response completely characterizes the
system.

If the impulse response of a system is h[n] and the input signal is x[n],
then the output signal is y[n] = x[n] ∗ h[n] = h[n] ∗ x[n].
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3 Properties of Convolution

• Commutative: x1[n] ∗ x2[n] = x2[n] ∗ x1[n]

• Associative: x1[n] ∗ (x2[n] ∗ x3[n]) = (x1[n] ∗ x2[n]) ∗ x3[n]

• Distributive: x1[n] ∗ (x2[n] + x3[n]) = x1[n] ∗ x2[n] + x1[n] ∗ x3[n]

• The commutative, associative, and distributive properties of convolu-
tion can be used to do block diagram manipulation of systems. For
instance, if two systems with impulse responses h1[n] and h2[n], re-
spectively, are connected in cascade, then from an input-output per-
spective, the cascade is equivalent to an overall system with impulse
response h1[n] ∗ h2[n]. Since h1[n] ∗ h2[n] = h2[n] ∗ h1[n], the order of
systems in the cascade combination can be changed without affecting
the overall system. Similarly, a parallel combination of two systems
with impulse responses h1[n] and h2[n], respectively, is equivalent from
an input-output perspective to an overall system with impulse response
h1[n] + h2[n].

• Convolution is mathematically equivalent to polynomial multiplication
in the following sense: Define X1(z) =

∑

∞

n=−∞
x1[n]z−n and X2(z) =

∑

∞

n=−∞
x2[n]z−n. Then, the value of the convolution x1[n]∗x2[n] at any

time n0 is the coefficient of the term z−n0 in the product X1(z)X2(z).

4 The Unit Step

• Recall that the unit step u[n] is defined to be the signal which is 1 for
n ≥ 0 and 0 for n < 0, i.e.,

u[n] =

{

1 for n ≥ 0
0 for n < 0.

(11)

• From the definitions of the unit impulse and the unit step, we have
u[n] =

∑

∞

k=0
δ[n − k]. Hence, the step response (i.e., the response to a

unit step) of an LTI system is given by
∑

∞

k=0
h[n − k]. If the system

is causal, then h[n] = 0 for n < 0. Hence, the step response can
be simplified to

∑n
k=0

h[n − k]. In other words, the value of the step
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response of an LTI causal system at time n is the sum of the impulse
response values over the time interval [0, n].

• The above discussion gives a recipe to compute the step response of an
LTI system if we are given the impulse response of the system. On the
other hand, if we are given the step response of an LTI system, we can
find the impulse response by using the identities:

δ[n] = u[n] − u[n − 1] (12)

=⇒ h[n] = T{u[n]} − T{u[n − 1]}. (13)

5 IIR Systems

• The system which outputs a unit step in response to a δ function is
given by

y[n] = y[n − 1] + x[n] (14)

with the initial condition y[−1] = 0, i.e., if x[n] = δ[n] is applied as
the input signal to the system (14) initialized with y[−1] = 0, then the
output signal is y[n] = u[n]. The system (14) is not an FIR system
since the impulse response (which is the unit step in this case) is not
of finite length. Such a system is called an Infinite Impulse Response
(IIR) system.

• A general LTI IIR system is of the form

y[n] =
N

∑

l=1

aly[n − l] +
M
∑

k=0

bkx[n − k] (15)

with M and N being positive integers and a1, a2, . . . , aN , b0, b1, . . . , bM

being constant coefficients. An equation of the form (15) is called a
difference equation.

5.1 Examples of Difference Equations

1. y[n] = 0.5y[n − 1] + x[n]: The impulse response of this system is

h[n] =
1

2n
u[n]. (16)

5



Note that the impulse response goes to zero as n → ∞.

2. y[n] = 2y[n − 1] + x[n]: The impulse response of this system is

h[n] = 2nu[n]. (17)

Note that the impulse response goes to ∞ as n → ∞.

3. y[n] = y[n − 1] + x[n]: The impulse response of this system is

h[n] = u[n]. (18)

Note that the impulse response stays constant as n → ∞.

• BIBO Stability: A system is said to be Bounded Input Bounded
Output (BIBO) stable if any bounded input signal produces a bounded
output signal, i.e., a system is said to be BIBO stable if the following
is true:
If a positive constant Mx exists such that

|x[n]| ≤ Mx for all n, (19)

then a positive constant My exists such that

|y[n]| ≤ My for all n. (20)

The condition for BIBO stability can be derived as follows. If x[n]
satisfies the bound (19), then

|y[n]| = |
∞
∑

k=−∞

h[k]x[n − k]|

≤
∞
∑

k=−∞

|h[k]x[n − k]|

≤
∞
∑

k=−∞

|h[k]|Mx

= Mx

∞
∑

k=−∞

|h[k]|. (21)

Hence, if
∑

∞

k=−∞
|h[k]| < ∞, then the bound (20) is satisfied with

My = Mx

∞
∑

k=−∞

|h[k]|. (22)
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An LTI system with impulse response h[n] is BIBO stable
if and only if

∑

∞

k=−∞
|h[k]| < ∞.

The condition that
∑

∞

k=−∞
|h[k]| < ∞ is equivalent to saying that h[n]

must be absolutely summable.

• All FIR systems are BIBO stable because only a finite number of h[n]
values are non-zero so that

∑

∞

k=−∞
|h[k]| < ∞ is definitely satisfied.

• An IIR system may or may not be BIBO stable. For instance, the
second and third examples of difference equations considered above are
not BIBO stable. For the second example, we found that the impulse
response goes to infinity as n → ∞, i.e., a bounded input (in this case,
a unit impulse) results in an unbounded output. In the third example,
if the input signal is the unit step, then the output signal (with the
initial condition y[−1] = 0) can be computed as follows:

y[0] = y[−1] + x[0] = 0 + 1 = 1

y[1] = y[0] + x[1] = 1 + 1 = 2

y[2] = y[1] + x[2] = 2 + 1 = 3
... (23)

In general, y[n] = n + 1. Hence, a bounded input (in this case, a unit
step) results in an unbounded output. Thus, both the second and third
examples considered above are not BIBO stable.

• Necessary and sufficient condition for the system

y[n] = ay[n − 1] + x[n] (24)

to be BIBO stable is |a| < 1.
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