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Abstract

The singular value decomposition of matrices stands as one of the most
Important concepts in mathematics, because of its variety of applications in
mathematics, statistics, biology and many other areas of science.

In this thesis, we present the singular value decomposition and its relation
to the spectral decomposition . We also investigate the singular value
decomposition of a matrix together with some of its applications. Some of
these applications include the Moore-Penrose psuedoinverse, the effective

rank of matrices and image compression.
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I ntroduction

The singular value decomposition (SVD) plays an important role in matrix
theory. While some decompositions are restricted to real square matrices,
the (SVD) can be applied to any rectangular matrix A. Through this
decomposition, we study some of the properties of A such as: the rank, the
norm and the basis of the four fundamental subspaces related to A. It also
has many applications. In numerical analysis, the SVD provides a measure
of the effective rank of a given matrix. In statistics, the SVD is a
particularly useful tool for finding least-squares solutions and
approximations. It has many applications in: signal processing, biology,
statistical analysis and mathematical modeling.

In this thesis, two types of the (SVD) of A are defined and computed:
the full and reduced; this decomposition is compared with the well known
spectral decomposition of A (whenever exists); some properties of the
matrix via its (SVD) are studied. The (SVD) is used to compute the
Moore-Penrose pseudo inverse that can be used in solving a system of
linear equations and can give the optimal solution of the least squares
problem when solving an overdetermined system; we also use the (SVD) to
compute the best low rank approximation according to either the Euclidean
or the spectral norm.

In the first chapter, some preliminary definitions are presented, as well as
basic results and properties of matrices, some special matrices (unitary,
normal and Hermitian) are reviewd. Eigenvalues, norms and computations

of the condition number are also studied.
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In the second chapter, the diagonalization of matrices is studied and that

includes Schur's theorem and the spectral decomposition.

In the third chapter, the singular value decomposition (SVD) is defined
and its relation to the spectral decomposition is studied. Some properties of
the original matrix are studied via its SVD and the geometric interpretation

of SVD is aso introduced.

In the fourth chapter, the SVD is used to compute the Moore-Penrose

pseudoinverse which is used for solving linear systems of equations.

In the fifth chapter, the SVD is used in other applications such as, low

rank approximation with respect to a given norm, image compression and

finding the affective rank of a matrix.
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History

The singular value decomposition has a long history. It was originally
developed in the nineteenth century by differential geometers and
algebraists who wanted to determine, for given
matricesA =[a;]andB =[b;]1T M (R), whether the two bilinear forms:

F.(xy)=aaxy adF (xy)=abxy,,

ij=1 i,j=1
could be made equal for every x=[x] & y=[y. ]1 R", under independent
real orthogonal transformation of the two spaces it acts on; i.e, does there
exist Q,Q, 1 M, (Rysuchthat F ,@xQ,y)=F ,(x.y)

forall x,yl R"?

This problem could be approached by finding a canonical form to
which any such bilinear form can be reduced by orthogonal substitution, or
by finding a complete set of invariants for a bilinear form under orthogonal

substitutions.

The Italian differential geometer Eugenio Beltrami discovered in 1873
that for each real matrix AT M_(R), there are aways Q.Q,T M, (R) such

that
&,(A)

() qag=s=¢

MD: (D> D> D> D>
(e e} eny eny eny end

(7))

>

n
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4
where s (A)3 s 2(A)3 .3 s?(A)2 0 are the eigenvalues of AA" as well as
A" A; he also found that the columns of Q, are eigenvectors of AA™ and the
columns of Q, are eigenvectors of ATA.
Independently, in 1874, the French algebraist Camille Jordan came to
the same canonical form but from a different point of view. He found that

the eigenvalues of the 2n-by-2n real symmetric matrix é:T 'ggare paired
s a

by sign and that its n largest eigenvalues are the desired coefficients

In 1889/90 unaware of Beltrami and Jordan, James Joseph Sylvester
gave a third proof to (*) for real square matrices and he called the s's the

canonical multipliers of the matrix A.

In 1902 L-Autone proved that every non singular complex

matrix Al M, can be written asA=UP, where U1 M, is unitary and
P1 M, is positive definite. In 1913/15 he returned to these ideas and used
the similarity of AA"and A" Ato show that any square complex matrix Al M
can be written asA=UsSVvV" where U,vi M, are unitary and ST M_ is a
nonnegative diagonal matrix. He also discovered that if A is nonsingular

Hermitian then A can be written as USU'for some unitary U, and a

nonnegative diagonal matrixs . In 1910 Emile Picard call the numberss , 's

singular values.
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In 1939 Eckart and Young gave the first complete proof of the
singular value decomposition for rectangular complex matrix and they
didn't give any name to the numberss , 's.

The existence proof of the singular value decomposition opens many
ways for the mathematician to search for inequalities, properties and

applications to this decomposition.

During 1949-50, a remarkable series of papers in the Proceeding of
the National Academy of Science (U.S.) established all of the basic
inequalities involving singular values and eigenvalues. One of these papers
is "Inequalities Between the Two Kinds of Eigenvalues of a Linear

Transformation”, established by Weyl.

In 1950 Poyla gave an dternative proof of a key lemma in Weyl's
1949 paper( aso, established by U.S.).

In 1954, A. Horn proved that Weyl's 1949 inequalites were sufficient
for the existence of a matrix with prescribed singular values and
eigenvalues, and in this paper he used the expression "singular values' in

the context of matrices.

In 1954/55 practical methods for computing the SVD date back to

Kogbetliantz .

Hestenes in 1958 resembling closely the Jacobi eigenvalue algorithm,

used plane rotations or Givens rotations, i.e, gc_osq ) qug However, these
énq  cosqg
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were replaced by the method of Gene Golub and William Kahan (the
reduction to bidiagonal form) published in 1965, which uses Householder
transformations or reflections; they introduce the SVD into numerical

analysis.

It is a fact that the QR algorithm for the singular values of bidiagonal
matrices was first derived by Golub in 1968 without reference to the QR

algorithm, which has been the workhorse for two decade.

Recently in 1990, Demmel and Kahan have proposed an interesting

aternative for 1968's Golub algorithm.

In the last 30 vyears, the singular value decomposition has
become a popular numerical tool in statistical data analysis, signal
processing, system identification and control system analysis and

design. [12 &23]
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Chapter One
Basic Conceptsin Matrix Analysis
In this chapter we review some preliminary concepts and definitions in
matrix analysis and present some basic properties related to these
definitions.

Remark: In our thesis, we denote by R the set of real numbers and by C

the set of all complex numbersC ={x+iy, x,y1 R}.

1.1 Vector SpacesOver C
Definition 1.1

A complex vector space V is a nonempty set of elements (called
vectors) together with two operations. vector addition A and scalar
multiplication Q satisfying the following properties:

For all u,vandwl V, canddi C , then:
(1) a- uAviv (i.e. Visclosed under vector addition A)

b- uAv=vAu.

C- uANVAw=@uAWAw.

d- thereisanelement 0f v suchthat u+0=0+u=u (Ois

called the additive identity).

e $-ul Vsuchthat uA-u=0. ( - u iscalled the additive inverse).
(2) & cQui vV (i.e. Visclosed under scalar multiplication Q)

b- cQuAV)=cQuA cQv .

C- (c+d)Qu=cQuAdQu.

d- cQ(d Qu) =(cd) Qu=d Q(cQu) .

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

€ 1Qu=u.

Note: areal vector space has the same definition as a complex vector space

except that the constants are real numbers.

Example 1
C" with the usual addition and scalar multiplication is a complex
VECtor space:
For any u={u,u,,...,u},v={v,Vv,,...,v}and w={w,w,,...,w }1 C"
u,v.andw 1 C,i=12,..,nand for any canddi C then:
(1) a u+v={u, +v,u, +V,,...,u, +v,}1 C" , so C"isclosed under addition.
b- u+v={u, +v,u, +v,,...,u +v } ={v, +u,Vv, +U,,...,v. +U } =v+uU
C- u+(v+w) ={u, +(v, +W,),u, +(V, +W,),...,u. +(v, +w )}
={(u, +v)+w,(u, +v,)+W,,...,(u, +v.)+w}=(U+V)+w
d- (0,0,...,0)T C" isthe additive identity.
e- The additive inverse for uis - u={-u,,-u,,...,-u }1 C"
(2) a cu={cy,,cu,,...,cu}i C", so C"isclosed under scalar multiplication.
b- c(u+v)=du, +v,,u, +v,,...,u. +v } ={c(u, +Vv,),c(u, +Vv,),...,c(u. +v,)}
={cu, +cv,,cu, +cv,,...,cu, +cv.} ={cu,,cu,,...,cu } +{cv,,cu,,...,cv,}
=cu+cv
c- (c+d)u =cu+du
d- c(du)=(cd)u
e- lu=u

Definition 1.2
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A subspace U of a vector space V over C is a nonempty subset of V

which is by itself avector space over C with respect to the operations on V.

Example 2

U={(a,b,0)" :a,b] R} isasubspace of R® which is areal vector space.

Theorem 1.1

A nonempty subset U of V is a subspace of V if U is closed under the

same operations A andQon V.

Definition 1.3

A set of vectors {x,,x,,...,x, }in a vector space V is said to be linearly
dependent over C if there exists coefficients a,,a,,...,a 1 C not al zero, such
that a x, +ax, +>«+a x,=0.

A set which is not linearly dependent is said to be linearly

independent.

Theorem 1.2

vectorsin C".

Definition 1.4
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Let Al M...(C). The rank of A denoted by r(A), is the number of

linearly independent columns or rows of A, where M, ,(C) denotes all m by

n matrices with entries from C.

Note: rank A=rank A" A (where A" is the conjugate transpose of A i.e.,

if A=[a,],a,T C,then A" =[a,]), where" ~— " denotes the conjugate.
Definition 1.5
A subset S={x,,x,,...,x,} of avector space V is said to span V if every

element vi V can be represented as a linear combination of the elements of

S(i.e if vi V,$a,a,,.a,1 Csuchthatv=ax, +ax,+xxax ). Wethenwrite

V=8pan S

Definition 1.6
A nonempty subset S of a vector space V is said to be a basis of V, if
it's both linearly independent and if it spans V. The number of elements of

elements of S(abasis) is called the dimension of V, denoted by dim V.

Remark
Most of our work in the thesis will be over finite dimensional vector

spaces, unless otherwise stated.

Note: If the vectors v,,v,,...,v, form a basis for a vector space V, then they

must be distinct and nonzero, so we write them asaset{v,,v,....v,}.

Definition 1.7
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éx,u éyll‘J

&%, 4 . .
Letx:gMﬂy g{;ul Cc". The dot product of x and y is defined as

é u a

e eynu

(;:‘yl
X-y:X*y: X X LoX ]gMZB X1y1+Xzyz+ X, nYn-
é u
eYnl
The length of x is denoted by || x ||z vxx .
Definition 1.8
Two vectors xandyl C" are said to be orthogonal if x.y = 0. Two

subspaces U and V of a vector space are said to be orthogonal if

{uv=0,"ul Uandvl V} .

Definition 1.9
Two vectors x and y are said to be orthonormal if x and y are

orthogonal and of unit length each.
Definition 1.10

A set of vectors {x,,x,,...x,} I C"is said to be orthogonal if they are

pairwise orthogonal. If in addition each x has a unit length, (i.e

% [FLi=12,..,k) then{x,,X,,..x,} IS an orthonormal set.

Definition 1.11
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Let V be a subspace ofC". A subspace Ui C"is said to be the
orthogonal complement of V in C"if every vector ul U is orthogonal to
every vi Vv and every if vectorvi Vv is orthogonal to everyul U. Visaso

called the orthogonal complement of U.

Example 3
Ielu e6uu 1é 14uu
W= Spani 223 20 = span{ ug,up} and Wo= Spanlg 13uy span {ti}
e erd, 18 1 ¢

are orthogonal complements of each other in R", since u;. t;=0 , u,.t;=0.
Then, every element in W, is orthogonal to every element in W, .

Definition 1.12
Let Al M,,(C) and suppose r(A)=rank(A)=r. Then there are four

fundamental subspaces related to A:

1-  TheRangeof A={yl c":$x1 C",Ax=y}. Itisalso called the column
space of A, and dim (range A)=r .

2-  The Null space of A ={yl c":A'y=0} and its dimension = mr. It is
the orthogonal complement of range A.

3-  Range A ={y7 C":$x] C",Ax=y} with dimension r . It is aso called
rowspace of A.

4-  TheNull Spaceof A={yl c": Ay =0} with dimension=n-r. Itisthe

orthogonal complement of range A

Example 4

Let
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€ 5 3 70
A=2 0 -4 -6,
@ 7 -1 2§

Compuite the four fundamental subspaces associated with A.
Solution:

By elementary row operations, the reduced row echelon form of A (written

RREF(A)) is
(::-1 0O -2 -3@
RREF(A)=B=0 1 1 2
@0 0 O0f

Then

1- rank(A)=2
1éla et
2-The basis of the column space of Ais S=1{¢§ 0 gow
184 &7d,

3- Now to find the basis of the null space of A', find A,

g 2 4y
S G
N:g 0 7y
& -4 -1
& -6 20

Again, by elementary row operations on A", we obtain
7u
50
134
—Uu
10
0q
oy

0

RREF(A')=C=

W BOG R
o

o

Solving the linear system C x = 0, we get
1é& 1400
St= & 1.37yis the basis of the null space of A’.

g1 4
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Sand S are orthogona complements of each other in R®,

=L 0 -2 -3, [0 1 1 2]}isabasisfor the row space of A.

5- To find the basis of the null space of A, solve the linear system Bx = 0

w

isabasis for the null space of A.

_|

L2

1

D> (D
[ )

i
D: D> D ('D)I D D
= O )

SRESE

Theorem 1.3

An orthonormal set of vectorsis linearly independent.

1.2 Gram-Schmidt Orthonor malization Process

In our work we require linearly independent sets to be orthonormal.
We can convert a linearly independent set into orthonormal set in many
ways. One simple way to obtain an orthogonal set from linearly
independent set is the Gram-Schmidt process.

Let S={u,u,,.,u }be a set of linearly independent vectors in a
complex vector space V then the following are the steps of the Gram-
Schmidt Orthonormalization Process.

1- Let Vi= Uq

2- Compute the vectors v; = u; - a (IIIJ x\;lk) . 1=2,3,...,n.The
k=1 k

vectors {Vvy,Va,. . . vy} form an orthogonal set.

3- Let w; =ﬁ ,  1£i £n. Then T ={w,,w,,..,w,} is an orthonormal
Vi

set of vectors.
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Example 5
I elu €20 €100
?U G‘OU'
Obtain an orthonormal set from s = % 9 U
é é é
elﬁ elﬁ eouqo

First, these vectors are linearly independent.
1- Let v;=(1,0,2,1)"

2- Compute v; = u; - a " "k) . 1=2,3
k=1 Kk

Va= Uz~ (42Y1yy = (22,31)7-2(1,0,2) 7= (£,2,0, - 1) or (1,4,0,-1)
INA 6 2 2
u,.v
V3 = U3~ (=5 ( i SV
N T A T
va=(1,0,1,0) - 2(1,020)7- Lwaon™ =(2,2-2,0, 2% or (4,-2,0,-4)
] ] ] 2 ] ] ] 18 1™ 9, 9 ] ] 9 ] ] ]
you can see that v4,v, and vz are pairwise orthogonal.
. . 1 2 1.7
3- Compute Wi =L, we obtain Wi=(—=,0,—,—=) ,
g T =676 Ve
Wo=( 1 ) and ws= (g '—10£)T respectively.
32’ 3f sf 3773
Note

This process may be applied to any finite or countable set of vectors
(not necessary linearly independent). In this case at least one of the v;'s will

equal zero, and the set {vy,V»,. . . ,vn} will not be orthonormal.

Example 6

Ie3ue~3ue~3uu
_Le Ué Uué,u
a2qe0ga?w

.@-19623@3@10

Obtain an orthogonal set from T =

Solution:
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¢ 3 €30 &3
Note that §2 j=152 3+280 ¢ , so T is linearly dependent; thus we can't
€38 &1y é2¢
convert them to an orthonormal set, but orthogonal only:

1- Letvi = (3,2, -1)"
i-1 U, XV,

2- Compute vi = U; - g (——%)v, i=2,3
R AV |
9 22 17, .
=\- S R R d = 01010
V2(141414)anv3( )

These vectors are orthogonal but v; is not a unit vector .

1.3 Some Special Matrices
1.3.1 Unitary Matrices
Definition 1.13
A matrix UT M_(C) is said to be unitary if U'U=I .If U is real then U
is called orthogonal.
We have some important theorems:
Theorem 1.4
Let UT M_(C). The following are equivalent;
1- Uisunitary.
2- Uisnonsingular and U =uU"! (where U *denotes the inverse of U).

3- UU =1.

+

U’ is unitary.

the columns of U form an orthonormal setin C".

ok

the rows of U form an orthonormal set in C".

@

7- U preserveslength, i.e., if y=Ux, with xT C", then||y|I=||x]|.

It is easy to prove this theorem and we prove only the last statement.
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Suppose U is unitary then|ly |?=y’y = (Ux)" (Ux) =x'U Ux =x' x 5| x|}

Example 7
é 1034 125y

. , : é u
~ 21053 661 -

Consider the unitary matrix U=g-52 3zu ad the
e—— u

& 661 105310
40530

vectorx = & G- Then, || [l 1545730

é -909 |
We h U] s d ith ||Ux ||= 1545730
e nave Ux=a Wi X||=

€ so0ag W IUXI
@ 59 0

Theorem 1.5

If U isunitary then det(U) = 1.

Theorem 1.6
If UandVI1 M,(C) are unitary so is the product UV.

Special cases of unitary matrices are the permutation matrices. Define
asfollows:

Definition 1.14

A sguare matrix P is a permutation matrix if its columns are a
permutation of the columns of .

Example 8
€l 0 Ou
_¢€ a
A=0 0 1(J
0 1 0
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IS a permutation matrix.
1.3.2 Normal M atrices
Definition 1.15

A matrix Al M_(O) is said to be normal if AA" = A"A

It is obvious that unitary and diagonal matrices are normal.

Example 9
Let
é2 3
AZe o &l
e - U
Then A isnormal since
. 43 - 9y
AN = A AZ S i
i 34

1.3.3 Hermitian M atrices

Definition 1.16
A matrix Al M_(C) is said to be Hermitian if A" = A. If Aisreal then A

is said to be symmetric. It is skew Hermitian if A" =- A.

It is obvious that Hermitian and skew Hermitian matrices are normal.

Theorem 1.7
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Let Al M_(C) be Hermitian. Then:
1- A", A A" are al Hermitian and if in addition, A is non singular then Al
Is also Hermitian.

2-x'Ax isredl foral xi c".

Theorem 1.8
Let Al M,,,(C) then AA'and A" A are Hermitian matrices.
Remark

The main diagonal entries of a Hermitian matrix are all real.

Definition 1.17
A Hermitian matrix Al M, (C) is said to be positive definite if x Ax>0
for al nonzero xI C= " It's positive semi definite if x Ax3 0"(note that

since A is Hermitian then x Ax isread ).

Remark

If Al M,,,(C) then AA'and A'A are positive semi definite. If A has
linearly independent columns then A"A is positive definite.
Pr oof
X (A'A)x=(AX)" Ax=|| AX|f2 0," x1 0. SO A is positive semi definite. If in
addition A has independent columns then || Ax||> 0, for all xt 0

X (AA)x = (A'X) A'x=||AX|*>0,"xt 0
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Example 10
el 1lu
& . _é 1 0j
Let A=8 20 then A" =& u
e & 2 o
& 0Og
o
Therefor A'x =0 will give x = 07
el
@ 3 0y
Now, AA' =53 5 0
€ 0 Of
@ 3 ouedy o
[o o 1]%’5 5 oggogz[o 0 o]gogzo,ajthoughxlo
€0 0 Ogely gly

. Z 3\ 7. 3\/ A 2
ButAA:(?2 Eand[a b](?2 L"9613:2a2+6ab+5b2:2(a+§b)2+b—1O
sy & 50 2 2

except if both aand b =0.

1.4 Eigenvalues and Eigenvectors

Definition 1.18
Let Al M_(C). The numberi i C is called an eigenvalue of A, if there

exists a non zero vector xi C" such that Ax=1x. In this case, x is called

eigenvector of A associated with the eigenvalue | . The set of al

eigenvalues of Al M (C) is called the spectrum of A and is denoted by

L(A) .

Theorem 1.9
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If x and y are eigenvectors of Al M_(C) associated with the eigenvalue
| then:
1) If a x+b yisnot the zero vector, then a x+b y isalso an eigenvector of
A associated with the eigenvalue | .
2) If Aisalso Hermitian then al its eigenvalues are real.

3) If Aisalso positive definite then its eigenvalues are positive.

Example 11
Let A= %1_ 1;'3 . Then A is Hermitian and note that
& - i 4

& A+)u_@u_ 6 L+
e - - ve
E 1 4 &0 €14
@+nu .

SO X, :g , aisan eigenvector of A associated with the eigenvalue | =0
e u

asox, = 21;'3 Is an eigenvector of A associated with the eigenvalue | =3.
e<cu

Thus L(A) ={0,3

Definition 1.19
é— S S T U
- g' 8y t-ay x X 3
Let Al M (O). Then f,(A) =det(tl, - A) =deté x x xx x 0
g X X X X X H
B-au -, X X t-agf

is called the characteristic polynomial of A .
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Theorem 1.10

The eigenvalues of A are the roots of the characterstic polynomial of A.

Thus to find the eigenvalues of a given matrix A we must find the
roots of the characteristic polynomial. Then the corresponding eigenvectors

are obtained by substituting the values of | in the system of equations

(I, - Ax=0 and solving the resulting system. So, the eigenvectors of A
corresponding tol span the null spaceof (11, - A).

The characteristic polynomial can be written as the product of n
factors each of the form(l - I, )wherel, is a root of the characteristic
polynomial so we write f(I)=( -1)%( -1,)%...(0 -1.), where
|.,i=12,..,r are the distinct eigenvalues of A , and k; are integers whose

sum is n and which is called the algebraic multiplicity of 1, ,i=12,...,r.

Each eigenvalue has also a geometric multiplicity which is defined as the
dimension of the subspace spanned by its eigenvectors. An eigenvalue is
simple if its algebraic multiplicity is one in this case the algebraic and
geometric multiplicities are equal.

It is easy to show that the algebraic multiplicity of each eigenvector is

greater than or equal to the geometric multiplicity.

Example 12
é in
Let A:g a

iy

Its characteristic polynomial is
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-1 -iu_

-0 -1

Hence the eigenvalues are |, =1+i and |1, =1-1i ,

D @D

f(l)= (I -D2-i2=( -1- i) - 1+i).

D

Using the first eigenvalue |, =1+i and substituting in (1 1,- A)x=0gives
- ikéxu_éu

i Bl &b

the second row gives x;=x,. So, (1, 1)" is an eigenvector corresponding to

('q:('D) [N

|, =1+i. The same argument with |,=1-i gives the corresponding

eigenvector (1,-1)".

Definition 1.20
The set of eigenvectors corresponding to an eigenvalue | togother

with the zero vector form a subspace of C" known as the eigenspace of | .

Definition 1.21
Let A=l6\,- JT M, (C). Then the trace of A is defined asA= é a,

i=1

Theorem 1.11

Let Al M_(C). Then the eigenvalues of A" are the complex conjugate
of the eigenvalues of A.i.e.,if I T L(Athen I T L(A)

It follows from this theorem that for any matrix Al M,..(C), A'A and

AA" have the same non zero eigenvalues.

Theorem 1.12
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Let Al M (O be Hermitian. Then it has asset of n orthogonal

eigenvectors.
Example 13
. " . él 1+iu . .
Consider the Hermitian matrix AZSL L, in example 11, which
& - i u
_ o (D)0 qain
has eigenvectorsx, :g (1+')E and x, = 212'3 , to show that these vectors are
e u e<u

linearly independent , we arrange them as columns in a matrix then
transform it into row echelon form:
Since each column has a leading one , so these two vectors are linearly

independent.

1.5 Norm of Vectorsand Matrices
One way to measure the size of vectors and matrices is to study the

norm, so what is the norm?

Definition 1.22
Let V be avector space over the field of complex numbers, afunction
|.ll: V= R isa vector normif foralx,y 1 V
- [xII=0
2-  |x||=0iff x=0
3- llc x|l = |c| ||| for all scalars cl C

4 Ix+yll< I+ liyll
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Note: A function that satisfies axioms 1, 3 and 4 of definition 1.22 is

called semi norm.

Example 14

1- The Euclidean norm (or €2 norm) on C"is

2- The sum norm (‘or £1 norm) on C7is

X =l % [+ [%, |+ | x, | where X = (%, X,,.... %,)" .

Definition 1.23

A norm is said to be unitarily invariant if ||Ux|=| x| for allxl C» and all
unitary matrices UT M_(C)

Example 15

The £, norm is unitarily invariant.

Definition 1.24
A function || . Il : Mu(©) — R isa matrix norm if for al ABI M,,,(C)

1- lIAfI=0
2- || A0 iff A=0

3- lllc Alll = [c] A, for al complex scalars c

4- Il A+ Bl < Al B triangle inequality

5- ABIIF < (1A BT (if n=m) sub multiplicative
Remark
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By 5 of definition 1.24, for any nonzero matrix A for which A2 = A, we
have that [[|JAll > 1; this is because ||| AllI=lIl A Il A ALE NI AT AT AT

In particular ||| I, ||| > 1 for any matrix norm, so if A is invertible then
(I LA AT IE IEATIIEA™ (I 1A (I

for any matrix norm.
Al

Example 16

The Euclidean norm (£ or Frobenius norm) on M, . (C) is defined as

1

Il Alll- = éa ala, I I

=1 j=1

Note that in the vector norms the Euclidean norm is denoted by |IX||>

while in the matrix norms the £, norm is denoted by |||A]||r.

Example 17
The spectral norm |||.]|l. is defined on M,,(C) by

lIAlllz = max { V1 :1 is an eigenvalue of AA'}
llAlll is defined since AA" is positive semi definite and so all its

eigenvalues are non negetive.

Note
Il AXILE NI Alll, I1x Il , where AT M., (C)and xT C".

Definition 1.25
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The inner product of AandBi M,,(C) is defined as

AxB:tr(A*B):én‘gaijij. We then write the Frobenius norm as

j=1 i=1

IFAlll-=vAXA,

Theorem 1.13

Let|.|l, be a given norm on C"and let ||.]|, be the matrix norm on

i|| Ax 1]
M (C) . Then [l All, = mex| "" : ""a x oy

Definition 1.26
A matrix norm is said to be unitarily invariant if ||JUAV ||I=|| A]|| for

all Al M,,,(O) and all unitary matrices U and V.

For instance both the Spectral and Frobenius norms are unitary

invariant i.e., ||| Alll,=IlUAV ||, and ||| A]ll. JIJUAV |||, for al unitary matrices

U and V.

1.6 Condition number
It's a measure for singularity defined as follow:
Definition 1.27

The condition number of a square matrix A with respect to a given

matrix norm is defined as;
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TIFATIIEA ]I, Ais nonsinular

cond(A) =
(A } ¥ , Ais singular

The following theorem gives us some important properties of the condition

number:

Theorem 1.14
1. For any matrix A, cond(A)3 1 .

2. For the identity matrix, cond(l) =1.
4.5. For any matrix A and nonzero scalara,cond(aA) = cond(A)

Most of the material of this chapter can be found in [11] and [15].

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

29

Chapter Two
Similarity and Unitarily Diagonalization

We start this chapter with the definition of matrix diagonalization.
2.1 Diagonalization

Definition 2.1
A matrix Bl M_(C) is said to be similar to a matrix Al M_(C) if there
exists a non singular matrix P such that A=P*BP. We say B is similar to A

viaP. Wealso call P the matrix of similarity between A and B.

If B issimilar to A then A is similar to B. So we can simply say A and B

are similar. If P isunitary then A and B are said to be unitarily similar.

Example 1

: -8 30, . . 41 00
The matrix Bzg E issimilar to A= & Esmce:
€18 7g @ - 24

00

u 2 106-8 3l 1u
- od
u

3 -1%&18 7% 2l
pt B P

>

I
T @
D:D> P~
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Definition 2.2
A matrix BT M_(O) is said to be diagonalizable (or can be diagonalized)
if it is similar to an n by n diagonal matrix. We then write B =P 'DP, where

D isdiagonal.

Example 2

, 5- 8 30
The matrix B:S 0
& 18

S0 in Example 1 is diagonalizable since it is
u

similar to the diagonal matrix A:%‘g; 023.
6 ol

Theorem 2.1
If a matrix Al M (C) is diagonalizable then it has n linearly
Independent eigenvectors.

Pr oof
Let Al M, (C) be diagonalizable. Then there exists a non singular matrix

Pl M, (C) and adiagonal matrix LT M, (C) suchthat A=PLP* or AP=PL

Let P=[x, x, . . x,] with xT C"andL =diag(d,) where d,1 C, then
ey, u
e u
Alx, . .ox]=[x .. xn]g 3
dud

Comparing the left hand side with the right hand side column by column we

haveAx =d.x . Since P is non singular then its columns are linearly

independent and none of them is zero. Then, by definition of the
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eigenvectors, the columns of P are linearly independent eigenvectors of A
corresponding to the eigenvalues d;;. n
Definition 2.3
A matrix Al M, (C) is unitarily diagonalizable if it is diagonalizable via

aunitary matrix.

Example 3
é 1 5 é 1 i 0
€ 5 5 U é 75 U . .
Let A=6 2 2 { andlet P=é\/§ */Eu.ThenPlsunltaryand
e 5 1y e | 1y
& 2 248 e V2 24
el 1 ue-1 spgel 1w
e Ué ™5 S0e€ u @ Oy
PLP =g V2 \EuéZ. zaé‘/_? V2 5-& 0u
a | 1ge 5 -1dz | 15 &0 -3
¢ = -=Ue— —ue — - =U u
é V2 J2pe2 20@ V2 J2¢

So, Ais unitarily diagonalizable.

Definition 2.4
An eigenvalue | of Al M_(C) is caled defective if its geometric

multiplicity is less than its algebraic multiplicity. A matrix A is defective if it

has a defective eigenvalue. Otherwise A is non defective.

Note

If an eigenvalue is simple then it is non defective.
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Example 4
d-1-lu
The matrix A:gt 1 03 is non defective since its eigenvalues are —1, |
g0-H4

and —i and they are all simple.

Theorem 2.2

Similar matrices share the same eigenvalues with the same algebraic
and geometric multiplicities.
Pr oof
Suppose A and B are similar, so there exists a non singular matrix P such
thatB=P*AP. Then
P (B)det(l | - B) =det(l | - P"*AP) =det(P"Y P- P AP) =det(P"*( 1 - A)P)
=det(P*)det(l | - A)det(P) =det(l | - A) =P (A
This means that both A and B have the same characteristic polynomial and
so they have the same eigenvalues (roots) with the same algebraic
multiplicity. If x is an eigenvector of A associated tol , thenAx=1x and
PBP *x =1 x which gives B(P"’x)=P 1 x=I (P"x), i.e.,, P 'x is an eigenvector
of B associated to | ; hence, by theorem 1.2, A and B have the same

geometric multiplicity. n

Note

The zero matrix Ol M (C) is non defective since it has only one

eigenvalue (zero) with agebraic multiplicity n and e,e,,..,e, are its

n
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eigenvectors. So the geometric multiplicity of the zero eigenvalue is n; so

it's non defective.

Remark

Any diagonal matrix is non defective.

Example 5
Let

&8 0 0 0 Oy

u

0 20 0 0

A=& 0 2 0 0.

0 00 3 0f

@ 0 0 0 2

Then L (A) ={2,3 with algebraic multiplicities 3 and 2, respectively. To find

the geometric multiplicity for 2, we solve (21, - A)x =0 which gives

&1 00 O Ouxu é&u
e ueuu
€0 0 0 0 0gx &y
éo oooow;xueOu
e u e.u
g0 0 0 -1 OgX 4uéou
€0 0 0 O OfexH

The solution of this equations are x, =x,=0 and x,,x, and x,are free

variables so we can choose the eigenvectors associated to 2 to be e,, e; and
es. S0, the geometric multiplicity for 2 is 3.
In the same way we show that the geometric multiplicity for 3is2. SO A is

non defective.
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Theorem 2.3

Let Al M (C). Then A is non defective if and only if it is
diagonalizable.
Pr oof

Suppose A is non defective then it has n linearly independent eigenvectors,

Xy, Xy yees X« SINCEAX; =1 X, then AX,, X,,.... X, ] =[l X, X,,...,] x,] and hence
é . u
: i
[xl,xz,...,xn]g gz[xl,xz,...,xn]D. So, we have AP=PD and hence
e u
e InU
é, u
: i
P*AP =D, whereD = diag{l ;,...,| ,} :g 3
¢ i
é InU
Conversely,
éd, u
: i
Suppose P 'AP =D, whereP =[x,,X,,....x,] and D :g 3 ThenAis
é a
é dni

similar to D and by Theorem 2.2 A have the same eigenvalues as D, namely
d,,....d,,, with the same algebraic and geometric multiplicities. But D is

diagonal and thus by the remark above it is non defectiveand so iSA. =

Not all matrices are diagonalizable, see the following example:
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Example 6
The matrix A

7

é1
é
g0

11§is not diagonalizable. To see this, note that - 1

Is an eigenvalue of A with algebraic multiplicity =2, but the eigenvectors
associated to - 1 are (r,0)". Hence, the geometric multiplicity of - 1 is 1 and

so it is defective and so A is not diagonalizable.

2.2 Schur's Theorem
In the previous section we showed that not all square matrices are
diagonalizable. In this section we prove that all square matrices are unitarily

similar to an upper triangular matrix.

Theorem 2.4( Schur's Theorem):

GivenAl M, (O) with eigenvaluesl I ,....,| ., there is a unitary matrix
UT M,(© such that U"AU =T =[t,], where T is upper triangular, with
t.=1,,i=12...,n. [22]
Pr oof
Let x; be a unit eigenvector associated to |,, SO Ax, =1x,. Since X; is not
zero we may use Gram Schmidt orthonormalization process to extend

T1 ={X4} to an orthonormal basis{ xi, z,, z3,..., z, } of C".

Then for the unitary matrix U, =[x, z, . . z,]
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(o]

éx; U
é.u
* & 20
B=U1AU1=§. l,JA[Xl ZZ Zn]
e u
e-u
& Y
_8, *u
&0 Al

The matrix AT M, ,(O), has eigenvalues | ,,1,,...,| .. We find a normalized
eigenvector x, T C™* of A; corresponding tol ,, and then extend T, ={xz} to

an orthonormal basis{ xz, ws,..., w, }of C™1.

Determine a unitary matrixU,1 M_,(C), where

U,AU,=a y
S (.Y

Let

V,=a
’ &0 UzH

where |, isthe 1by 1 identity matrix. Then V, and U,V, are unitary and

.

=

*

o

I 2

V,BV, =V, (U; AU,)V, =

MDD D D> D> D> D> D~
o

u
a
a
a
a
a
U
u

Countinue this reduction to produce unitary matrices

UlM_,(C),i=12.,n-1& V.1 M_(C),i=23,...,n- 1, then the matrix

., ¢ ¢
U=UV,V,..V,, is unitary and UAU=g o. ! Hyields the
é ' a
& I 0
desired form. n

Example 7
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Let
é¢l -1 Ou
_é a
A—é-l 2 1u
g0 -1 19

The eigenvalues of A are O 1 and 3 and the normalized eigenvector

corresponding to 0 is x;= ( T Expand T;={x;} to a basis of C*, we

3 f f
le1 G
|
;.;éfﬁ ay e
: —lelg &u ap
obtain {x,, e, e} EYET ;09, el
~e—u
tev3a |o
Applying Gramschmidt orthonormalization process to these vectors to get
1é10 é2u é0uw é1 2 ,u
(630 SR S 3-:- I
lel e Ly e el -1 1gigguch
.e@f &fel € &3 V6 V2!
le\/éu &6 @\/5[13 &3 V6 \/_0
that U; AU, =
¢ u
9\F\/§\/§0e1-10ué\/§200200 ?/_3
Aieoa i die o abes
P e u
&0 V3 \/§U§0 -1 14 e\/_ -1 \/§H é -3 54
£ 2 2
© 0 oy €3 -4au
=0 A gwhereA =é 3/5 é al M,(C) and its eigenvalues are 1 and
P > é- 2 [:|
& H g 2 2 d
3. The normalized eigenvector associated with 1 is X,= (£ 1) Let T, =
{x2} and repeat the same steps as aboveto find U, —12\/‘3’ 1 3
2e1 -\/50
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¢ u
Ou 0 = -
S0, UAU, =& dand v, =& ﬂ:go@ 1
30 60 Uy é 2 24
e 1 - /30
£ 2 24
¢ g €1 1 1u
&2 2 ol 9 i &3 V2 Ve
Letuzulvzzig\/ﬁ -1 \/§ué0 v3 1 l;l:éi 0 _2u
\/gé\/§ 1 \/éue 2 2_0 &3 J6u
&€ Th TVTe 1 o430 g1 -1 14
£ 2 20 &5 V2 oo
© 0 oy
Then T=U'AU =9 1 O isupper triangular matrix with t, =1, .
0 0 3
Note

Neither U nor T in the theorem is unique.

Schur’s Theorem says that every square matrix is similar to an upper
triangular matrix via a unitary matrix. In the next section, we consider
similarity of a matrix to a diagonal matrix via a unitary matrix in what is

known by the spectral decomposition theorem.

2.3 Spectral Decomposition

Lemmal

Any upper triangular normal matrix must be diagonal.

Pr oof

Let T=[t,]T M,(C) be upper triangular and normal. Then t; =0 for i>]

and T'T =TT . Comparing the diagonal entries of both sides, we obtain
(T'Tii =

Etki =(-I_r*)ii :étikﬂ ,i1=12,...,n

k=1

7 fe-
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By wusing the fact that T is wupper triangular we have:

. d — 3 J
Ty =atadu=a ltu |2 =ty |2 +a [t |2:|t11 |2 +0 =]t |2 (1)
k=1 k=1 k=2
. d. — 4 3
(MT )y =atyty =a |ty |2 =ty |2 +a |ty |2 (2)
k=1 k=1 k=2

The equality of (1) and (2) gives:

n
o]

alt,F=0pb t, =0,k>1 (3)
k=2
Since t,=0, k >2 (T is upper triangular) and from (3), |t,, '=0, we have:
(TN =a It F=te P+t 42 [t =t 4)
k=1 k=3
And by (3)
(M) = It F =ta P+t P+ 1o =1t P +a [ty P (5)
k=1 k=3 k=3

The equality of (4) and (5) gives:
a |t, 7 =0 and hence t,, =0 ,k>2.

k=3
Continuing in the same way, we obtain t; =Oforall j >i,i=12,...,n- 1.

So T isadiagonal matrix . n

Lemma 2

Let Al M (O) be similar to a matrix T via a unitary matrix U. Then A is
normal if and only if T is normal.
Pr oof:

Let A be norma and T=UAU, where U is unitary. Then
T'T=U"AUU AU =U"A"'AU =U"AA'U =U"AUU AU =TT so, Tisnormal.
Conversely,

If Tisnormal than A" A=AA WhereA=UTU". -
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Theorem 2.5 (Spectral Theorem for Normal Matrices)

LetAl M, (C). Then A is normal if and only if it's unitarily
diagonalizable. [11], [13]
Pr oof

Let Al M (C) with eigenvalues 11 ,.,..,1 .. Then by Schur's theorem
there exists upper triangular matrix T =U"AU ,where U is a unitary matrix.
Since A is normal then by Lemma 2, T is normal and by Lemma 1, T is
diagonal =D. So, Ais unitarily diagonalizable.
Conversely, let Al M, (C) be unitarily diagonalizable then A=UDU", for
some diagonal D and unitary U. Since D is diagonal then D is normal and
hence by Lemma 2, A is normal. n
By this theorem, only the normal matrices are unitarily diagonalizable.

Example 8

._el
LetA=§ 'u . Then A :g_ IEandAA na=g % Hence
8 14 &1 lug §3

Aisnormal.

We now show A is unitarily diagonalizable.

The eigenvalues of A are 1+i and 1- i, with corresponding eigenvectors
(1,)" and (1,- 1), respectively. [ see Example 12 in Chapter 1].

The eigenvectors (1,1)" and (1- 1)"are orthogonal and so we have the

él 14
: : €5 éa+i u : o
unitary matrix U =é\/1E \/_1 uand U” AU =a g+ S0 A is unitarily
e - U e 1-10
&/2 24

diagonalizable.
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Corollary 1

Let A=UDU" be the spectral decomposition of A. ThenA* =uD*U", where k
is any non negative integer (with A’=identity matrix) .

pr oof

A= WO MRS AR 3

k- times

=URB>>RU  =UD'U".

k- times

So, if Aisnormal then A%, A3,...,A are all normal. n
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Chapter Three
The Singular Value Decomposition

This chapter is the main topic of our thesis "The Singular Value
Decomposition (SVD)". We introduce its definition, investigate its proof of
existence and clarify its relation to the spectral decomposition. We also

Investigate some of its properties.

3.1 Definition and Computation of the SVD
The spectral decomposition of a matrix A as shown in Chapter 2 exists only
for normal matrices. We generalize this decomposition to any matrix using
the SVD.

In this section we restrict our attention to the definition of SVD, the

way of computing it and to the proof of its existence.

Definition 3.1
Let Al M_,.(C). A non negative real numbers is said to be a singular value
for A if there exists two unit length vectors ul Cc™and vi C"such that

Av=suandA'u=sv. see [11, 6]
Example 1
. . é3 1 1u.
J1zisasingular value of A=g gsince:
el 3 1
€1 €1
A& 20= [126V2 and A" 8Y2 1= Y126 2.0
&eu ely elaq — &/eY
1 8.2 8./2¢ 1
als &2 &2 Zlg
&/60 &/60
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Theorem 3.1 ( The Singular Value Decomposition)

Let Al M_, (O), with m3 n and rank A =r. Then A can be written as
A=USV", where UTM_(C) and VI M (O are unitary,S:g‘;ﬁ M,..(C),
evu

S=diag(s;,S,,-1S;+S1441+S), S13S,3 s >s5 =5 ,=xx=s5_ =0,

of M, (C) and s,'sarethe square roots of the eigenvalues of A'A. [21, 14]

m-n,n

Pr oof
Let Al M_, (O with m3 n. Then AA M (O is Hermitian so it is

normal. Let 1,1,,..1 be the eigenvalues of AA with associated

111 29eeny

orthonormal eigenvectors v,,v,,...,v, 1.e, A'Av, =l,v, i=12..n

n,

Then AA'Av, =Al,v, = Av, i=12...n. So, |, is aso an eigenvalue of A A
with associated eignvector Av; .

Now, O£ Av, [3=(Av)) (Av,) =viA'Av, =vil v, =1 vy, =1 |y =1

So, || Av, |l,=4/, , which we denote bys , .

Since rank A = r = rank A'/A =number of non zero eigenvalues of AA,
thens. 1 0," i £r. Define u, :%,i =12,...,r. Then u; is a unit vector since

Av. S, .. .
llu, ||2:%:—':1. In addition, uj,u,,.,u, are orthonormal since
Si Si
. Av . AV, VAAY, vilv. |.vv, o
uu, =(—) —=*= L= 1=t " 1=0,fori?j.
s, s, SS, SS;, S8,
. AV. . VAAY, vilv, |, §0 itj ..
Now, u;Av, =(—) Av, = L=—1 1=V, =j _ J L,J=1,2,....r
S S S S 1Si 1=

since v,,v,,..,v, are orthonormal.

Writing all these equations for i,j=1, 2, . . .,r in matrix form gives:
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éu; U és, v
e .u é u
oy & S2 G
€ UAlv, v, .. v |=28 a
é l;l [l 2 T] é [j
€-d e a
& g s H

The orthonormal vectors u,,u,,...u, form an m dimensional subspace of C",
and can expand to abasis u,,u,,...,.u.,u.,,u. ,,..,u_ of C™,

Since s, =0 for al j > r then, u;Av, =0 (because | Av, |,=s; =0and so,
Av,=0)fori>rand j£r then Av, =s u; andsou;Av, =u;s ;u; =0, i >r3 j

So, wehave U AV =

&, :
éu, U € u
6 LU e v
év20 € u &S0
~ - _é u_ _ l;l
g, EA[VI v, ..V, ]= a (J‘S_%)Ll’
PO A S u
e-u € nu
Su* ¥ ¢ u
mu ¢ 0 u
e ¢
where S=diag(s;,S,,+S;+S41,+Sn), S; =0i=r+1..,nand 0 M,, . .(C).
Defining U =[u, u, . . u,]T M,(C) and V =[v; v, .. v,]T M,(c), then

both U and V are unitary and U"AV=S , hence A=USV" asrequired. =

Notes on the proof of this theorem:
1. This decomposition can be applied to all rectangular complex
matrices, and if m£n we compute the SVD of A
2. Aand S are m" nmatrices.
3. The square roots of the eigenvalues of A'A are the singular values of A.

To see this, sinceA=USV", then we haveAv =US in which we get
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Av,=s u,,i=12..,n. Similarly, AU =vS'. Hence A'u, =s,v;,i=12,..,
andA'u=0,i>n.
4. Rank A =r = number of nonzero singular values of A.
5. The matrix S is uniquely determined.
6. The columns of U are orthonormal eigenvectors of AA™ and are called
left singular vectors and the columns of V are orthonormal

eigenvectors of A'A and are called right singular vectors.

Example 2
& -1
& | - ) .11
Leta=S 3. Thena =8% I Mg aa=gt M
g 14 €l 3 1 él 1lg

The eigenvalues of A'A are 10,12 and their associated eigenvectors are

1,-DTand (1,1)" , respectively. Since these eigenvectors are orthogonal,

él 1ua
&5 | | |
definev =é g. So V is a unitary matrix whose columns are
el -1y
ev2 ¢
orthonormal eigenvectors of A A.
§10 0 2@
Also , we find the eigenvalues of AA*:go 10 43 either by calculations or
g2 4 24

directly since they are the same as the eigenvalues of A A plus 3-2=1 zero
eigenvalues. So we have 12, 10 and O as simple eigenvalues of the
symmetric matrix AA" and hence their associated eigenvectors (1,2,1) T,
(2-10" and (1L2-5", respectively, are orthogona. Dividing each

eigenvector by its length and by ordering these unit eigenvectors in a matrix
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in decreasing order according to the associated eigenvalues we obtain the

unitary matrix U as

€1 2 141
6 5 30!
u=262 -1 24
&/6 V5 V30U’
€1, ~-54
T —0
&/6 J30q

Now, to find S we take the positive roots of the nonzero eigenvalues and

populate them on the diagonal of S in a decreasing order.

=12 and s, =+/10. So, we have

) . &/12 0 U
— N C )
S=é32 \/i)—ou,S:go J105and
& Q & /
§0 04
€1 2 10
LEE i T
* A - e g 2 2,
A=USV =2 = _Z Ui 10( .
ef6 V5 Jmk el -1
€1 -5 ugJy2 20
e~ 0 2
&/6 V300
Example 3
2 2
Let=S Q-
g 2 off
el lu
Since m:2<3:n,wethenconsiderA:B*:gz 23.
£ 24

Now, A'A= g :Eand its eigenvalues are 18 and 0 (so the singular values of
' u

the matrix A is sl—\/_—3\/§ and sz=o) with associated orthonormal
eigenvectors v, =(—= \/_ \/_) and v )T

2" f f
On the other hand, the matrix
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e 4 4

«_@ a
AA—§4 8 8,

& 8 8
has eigenvalues 18, 0 and 0 with associated eigenvectors (1,2,2) ', (2,0,- 1)7

and (2,- ,0)" , respectively. These eigenvectors are not orthonormal, so
by Gram Schmidt orthonormalization process we obtain u, = (%%%

)" as orthonormal eigenvectors of

)T
-5 4

2
(3535 345

u

2 -1
=(—=,0—)" and =
2 (\/g \/g) u3
AA".

LetV = [V1 V2] and U=[U1 U- U3] then

€ 2 2u
< IINCIENCE N oljjugi e
B=A= o “3€o k2 V24
€3 3\/§lilé0 OQéi 1y
& -1 4 U 8J2 2§

& —= —=u

83 V5 350

And hence

g’l 2 2 u
el 1u 3 3 3.
82 J2%2 0 0if 2 1
B—el 1Lk_:- Uz—F—= 0 —_— .
el -1 0 0 0§45 V5 U
85 3/5 3/50

In the following example we use Matlab to determine the SVD of A. Note

that in Matlab, D is used instead of S.
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Example 4 ( with M atlab)

A=
1 4 0 0
2 2 1 0
1 1 1 0
1 -2 -1 1
0 1 1 -2

>>[U,D,V]=svd(A)

U=

-1502/2109 -420/1811 933/1723 -571/1799 -385/1814
-735/1537 -587/1526 -2355/4586 175/2171 539/907
-735/2812 -125/881 -686/1667 905/1923 -1309/1814
193/548 -634/1027 -763/2991 -325/538 -231/907
-697/2602 2969/4712 -5867/12844 -507/916 -231/1814

D=
2635/477 0 0 0
0 1561/584 0 0
0 0 1679/880 0
0 0 0 914/1093
0 0 0 0
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V=
-423/1481 -928/1409 -468/775 -1301/3756
-353/387 17/1756 451/1102  91/4496
-461/1873  202/749 -512/867  457/635
741/4610 -727/1035 322/933  347/577

Theorem 3.2
LetAl M,.,.(©), m? n with singular values {s,.s,....s .} of A. Then A,

A and AT have the same singular values of A. [11, 12]

Pr oof

Consider the SVD of Azusv*wheres=§‘;’3 and S=diag(s,, s,, . ...s.).
eé’u

ThenA =vs'U", where S =[S 0] , Vand U™ are unitary. So A and A
have the same singular values{s,s ,,....s .} .
Similarly, (since U andUT are unitary for any unitary matrix U) we show

that A and A" have the same singular values of A. m

Theorem 3.3
If Aisreal then U and V can be chosen to be real. [4]

Pr oof

Since A is rea thenA"A andAA"Tare symmetric and both have real

eigenvalues. We then choose the eigenvectors of ATA andAA'to bereal. =
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The SVD decomposition that has been found in the examples above is the
full SVD. Some applications require a faster and more economical SVD.

We now consider reduced versions of the SVD: thin and compact SVD.

1- Thin SVD

With Al M_, (C), with ms n , the full SVD of A is. A=USV", where

éSu : R -
S:éoa. We canwrite U as[ U, U] Whereu T MU T M.
e’u

Noting that the elements of U,,, will multiply the zero elements of S, then
write A as A=U,SV . This version of SVD is called the thin SVD, where V is
unitary but U, is no more unitary, but it has the property that U, U,=14(i.€.,
only has orthogonal columns).

So, in the thin SVD we only need to calculate the first n columns of U, and
obvioudly it isfaster than the full SVD especially when m>> n.

It is easy to seethat if A is sguare, then the full and the thin SVD are the same.

Example 5
& -1
Consider A=gl 3 asinExample 1 itsfull SVD was given by

e 1§
1 2 14
/6 5 Jaoyeiz ouél 1u

_a2 -1 2 g8 uac/j2 J2u

A= ¢ —= U2 0 410; é u
&6 5 yaoug o pel “lg
€1 -5Ug 0eJ/2 28
6~ 0 —2q
&/6 V304
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Since 3-2=1 so we delete the last column of U, with S=¢

the thin SVD of A

51

61 20
8 -1 a6 By, \
B 1§ e T !
&6 G
Example 6( with M atlab):
A=
1 2 -4 8
5 0 3 6
3 7 4 8
11 -2 0 O
0O -1 0 O
>>[U,SV]=svd(A,0)
U=
-442/1061 -828/2591 -827/977 -365/4127
-327/656  625/4652 273/2518 405/491
-529/790 -27189/74770 893/1765 -216/577

-693/1928 621/719

-337/2939 -616/1865

135/6851 491/12201 -169/3312 434/1735
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S=
4239/271 0 0 0
0 5713/515 0 0
0 0 239/37 0
0 0 0 1041/337
V=

-2833/4995 1214/1537 -109/14718 -1399/5998
-618/2005 -879/1969 383/1162 -1302/1685
-374/2333  237/11593 1029/1159 3617/8395
-1259/1686 -499/1188 -765/2383 1231/3050

Note
&, 0 0t év,u
é Gé .u
éO SZ O aévzq
A=U =y, u, .. ulé. 0 . 0 .Ge.d
e ue u
&o 0 s, Hev4
Whereu; and v; ,i=1,2, .. .,n. are the columns of U and V respectively .

Then the outer product sum is defined as:

és,v; U
& .
Salet_ ; .
A=[ugUy, ... UJ€ . U=gs.uv, =gs,uv,,sinces, =0, k=r+1..,n [6]
(:Z‘ U i=a i=1
e - u
& Vol
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2- Compact SVD
If Al M, (C) with m2 n and rank r. Then the compact SVD of A

*

(7))
N
eniy ey enid

iSA=U SV, '

where S, = , U has only the first r columns of U

D D D D {9’\
[

OO\ C

S,
and V, has only the first r columns of V corresponding to the non zero
singular values of A.

This is the second type of the reduced SVD, which is the same as the thin
SVD if A has full rank, but if r <<n then this decomposition will be faster
than both the full and the thin SVD.

The compact SVD is sometimes called the economy version of the SVD.

And it can be calculated by matlab with the order [U,SV]=svds(A,(rank(A))).

Example 7
e -lu
Consider A=gl 3 in Example 5, which has full rank =2, then the
e 1§

compact SVD is the same as the thin SVD which means that it has the same

decomposition asin Example 5.

3.2 The Singular Value Decomposition Versus the Spectral

Decomposition
In this section. LetAl M_(C) be norma , and consider its spectral

decomposition A=UbuU” and its SVD A=vsw’™ with S=diag(s,,s,,....S,),

D =diag(l ,,! ,,....| ;) ard U,v and Wi M (C) are unitary .
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Note
We have shown that if A isrea then V and W can be chosen to be real.

But even if Aisreal then the spectral decomposition may not be real.

But what is the relation between the spectral decomposition and the SVD,

and when are they equal?

Theorem 3.4
If Al M, (C) isnormal . Then its SVD is givenby A=U |D [(UE)" where

DI = diag (i, Ii,l ..., II,]), E=diag € &z, ..., &) where
I, =1, 1€ j .1 (-p,p), aretheeigenvalues of A. [11]
Pr oof

Since A is normal then its spectra decomposition iISA=UDU". For each

eigenvalue | of A I, |1 |€"“j T (-p.,p)-

SoD =diag(|i, €' 4 |1,]€) 2, ..., 1,| €] ») and hence
D =diag(lt |, I}, ..., |1 D ciag (! 1, €V 2, ..., &l n).
Let D|=diag (i i} ....II,])and E=diag(€!z, &)z, ..., &l n).

Then A=U |D|EU" =U |D|(UE)" isthe SVD of Awith SHD|, V =UE and the
columns of U are orthonormal eigenvectors of A. n

Remark

If Al M, (C) isnormal then wehave s, =|1, i =12....,n.
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Example 8
Consider the matrix A= g '1§of Example 8 in Chapter 2.

We know that Azg 1§ is normal and its spectral decomposition is:
él 10 él 1 0
€5 HLua+i ou€p, H U
el . 060 limer . 1g
&2 V2§ &2 V28

Since(l .1 ,) = (A+i1- i) = (V2e 4 /26 4, then|D| = diag(v2,+/2) and

E —diag(e*,¢ *) = diag (%(1+i),%(1- i)) .

So,
é1 14 @l Ll ., o W
) _._€n (RU&2 ouEp K ¥R ;
A_UlDl(UE)_el 1l;|e U?l 1 5% 1 u.
el . lug0 2a%el . 1@ o s
2 26 @2 V208 V2© g
61 10 a+i 1+ig
e : ué 5 U .
= &2 \/gﬁﬁ Ogél. 12+.(J=USV isits SVD.
el Lo Vgt
&J2 20 €2 2 Q
Note
i 1ifl1,30

If we define sign(l,)=sgn(l,) =i and if in addition of

i-1 if 1, <0’
normal, A is Hermitian then al its eigenvalues are real so, E=E and hence
gl i=u1, Hence, E = diag( sgn(1,) , sgn(1,) , - .., sgn(l ) ) where sgn(0)=1

and A=U|D|EU" =U |D|(UE) is the singular value decomposition of the

Hermitian matrix A.
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If A is also positive definite then all the eigenvalues are rea and

positive and E=l and in this case the spectral decomposition and the SVD

are the same.
Example 9
Find the SVD of
é5 -1 3y
_é u
A=x 2 -2
83 -2 3§
Solution:

The eigenvalues of A are 287/4705, 687/329 and 3211/409 are all positive
real numbers then the matrix is positive definite so the spectral
decomposition and the SVD are the same.

The spectral decomposition of AisA=UDU" where

¢ 580/787  -539/912 -1247/3802 ¢ 3211/409 0 0 u
U= 21247/3802 - 580/787  539/912 gand D :g 0 687/329 0O 3

&- 539/912 1247/3802 580/787 { g 0 0  287/4705§
Remark

If A=usv’isthe SVD of A then;
AA =USV'VSU" =USS'U"”
A'A=VSU'USV =VS' sV’

are the spectral decomposition of AA” and A'A, respectively.
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3.3 Matrix Propertiesvia SVD
The power of SVD comes from all the information that can be gleaned

from it. In this section we show these information.

For the next theorems (see [1]), letAl M_, (O) with m2 n , rank A=r

with singular values s ;,s ,,...,s , .

Theorem 3.5

Given the SVD of Aas A=Usv’ then:

1. The singular vectors u,,u,,...,u, form an orthonormal basis for Range A .
2. The singular vectors v, ,,,v.,,,...,v, form an orthonormal basis for Null A
3. The singular vectors v,,v,,...,v, form an orthonormal basis for Range A
4. The singular vectorsu,,,,u.,,,...u_ form an orthonormal basis for Null A"

Pr oof

By Definition 3.1 write A=USV asAv, =s,u,,i =12,...,n.

(1) If s, 0, then %:ui and so u; isintherange of A. Sincerank A=,

then there exist r non zero singular values and associated orthonormal
eigenvectors u,,u,,...,u, that span Range(A). Since they are orthonormal then

they are linearly independent, so, they form an orthonormal basis of the

range of A.

(2) Fori=r+1..n,wehaves, =0,, then Avi=0, i =r +1...,nand v; isin the

null space of A. Since the vi's are orthonormal then they are linearly
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independent; since there exists n-r zero singular values, where r is the rank

of A,then v ,,v.,,,..,v, form the basis of the null space of A.

To prove 3and 4, weuse A'u, =s.v,and the same ideaasabove. =

Example 10
éL 5 3 Tu

Let A= 22 0 -4 - 63, compute the four fundamental subspaces associated
@ 7 -1 2§

with A.

Solution:

The SVD of Ais A=USV" where

¢ - 421/558 283/2942  -500/784
U :g 660/1523 - 1175/1754 - 548/909 3
& - 452/917 -120/163  454/979 §
¢ 3571/295 0 0 0
s:g 0 4772/599 0 0 3
g 0 0 0 0 §
¢ -443/2884 -287/481  -607/2097 -1153/1574
- -6 53V1010 -3110/5318 166/357  344/851

379/459 - 382/891 817/2237  273/8597
a 1009/7478 -528/1549  -825/1096  812/1485

@ D D> D
oo oc

since r(A)=2, we have:

1- The first two columns of U form an orthonormal basis for range A. so
i1 é -421/558 u é 283/2942 i

T oA

range A=span;§ e60/1523 . § 11751754 ).
18-452917 § @ 1201163

2- The last two columns of V form an orthonormal basis for null A. so
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ié379/459 0 é1009/7478 i
382801 Y € _5pgyysa0 U

Null A= u, e
S 'A 817/2237 U € -825/1096 3’
1e 273/8597 § & 812/1485 “Lb

3- The first two columns of V form an orthonormal basis for range A'. so

ié 4432884 I ¢ -53U/1010 i
) © 2871481 Y € -3119/5318 U

range A = u, ¢
9e A =Shan 'A- 607/2007 G’ & 1666357 O
1(;1153/1574 0 & sMesl

4- The last column of V forms an orthonormal basis for null A™. so
ie~509/784 Lu
null A'= span S 548/909 1.
@ 454/979 H,

Theorem 3.6
If Al M_(C) with non zero singular values and with SVD A=USV'then A™*

existsand A't=vs U’ a vu , where S* = diag(i,i,...,si). [8,12] m

| 1 1 n

So, the singular values of A Lare the reci procal of the singular values of A.

Theorem 3.7
Let A=USV" then
1- Il AlllL=s,

2- Il At =1 where A is square and non singular.
s

n

3 |Alle=ys2+s2+L +s?

Pr oof
1- By definition of spectral norm [JJAll. = max {1 ,1 is an eigenvalues of
AA}. SO Il A=,
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2- By theorem 3.6, write A =vS'U", then since the spectral norm is unitary

: , ) Ty ) 1
invariant we have ||| A [Il,=llIVS™U " [Il,=lIl S lll,= s

n

-l All- FUSV" [l I Sll- =y/s7 +s3 +L+s? . (Since the Frobenius norm

IS unitary invariant). 22] =
Theorem 3.8

The condition number of a non zero matrix A with respect to the spectral
normis A= z—l [9]

Pr oof

If Aissingular then s , =0and the condition number is¥ ,
S

So suppose A is invertible then condition number is ||| AlllLIIA™ ll,= S—l n
Theorem 3.9
If Al M_(C)then |det A|:€)si [ 12]
Pr oof
Let A=USV" beits SVD whereSI M, (C), then
* * ;Il
| det(A) [=| det(USV ") |- (det(U ))(det(S))(det(V ) [=| det(S) |- det(S) = C_)Si
Since the determinant of a unitary matrix is+1and S isdiagonal. n

Theorem 3.10
For any Al M,(©) and unitary matrix W, the matrices A, AW and WA have

the same singular values. [11, 12]

Pr oof
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Suppose WA=USV" is the SVD of WA. Then A=w'USV" =HSV", where
H=W U is unitary. So, A and WA have the same singular values,

Similarly, A and AW have the same singular values. n

Theorem 3.11
A matrix Al M, (C)is unitary if and only if all its singular values are equal to
one.
Pr oof

Suppose A is unitary then AA" =1. The singular values of A are the
positive sgquare roots of the eigenvalues of AA" =1 which are all equal to 1.
Conversely, suppose that the singular values of A are all equal to 1, then
A = UIV isthe SVD of A, where U and V are unitary. Hence A=UV and

Alisunitary L

3.4 Geometric Interpretation
The SVD provides us with a nice geometric interpretation of the action
of a matrix; the image of the unit sphere under any m-by-n matrix is a

hyperellipse (m-dimentional generalization of an ellipse).

One way to understand this is to consider the unit spherein R". So,

Suppose X lies on this unit sphere in R". Then x can be written as

with § x? =1 and where vi's are orthonormal
i=1

X=XV + XV, £33+ X V

n?

basisin R". Let A=USV  be the SVD of A. Then the image of x under A is
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AX = asuv,xv —asuvv,x as XU, —ay, ., where y. =s.x and

=1
r isthe rank of A.

So, the image of a unit sphereis y,u, +y2u2+>°oel-yru , Where

yl + 72 y2 + 00 2 yr

> —ax £1
s? s s?

r

If A has full column rank, then n=r and so the inequality is actually an
equality; otherwise, some of the x; are missing on the right, and the sum can
be anything from 0 to 1. This shows that A maps the unit sphere of R" to a k-

dimensional €llipsoid with semi-axes in the directions u; and with the

magnitudess . .

Example 11
Consider a matrix Al R® with rank 2, this matrix will affect the unit sphere

in R® as figure (1) illustrates.

Figure (1)
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Chapter Four
Applications of the Singular Value Decomposition

In mathematics, and particularly in linear algebra, the inverse of a matrix

takes a big area in solving a set of linear equations. But since the inverse is
not defined except for some square matrices, this fact pushed Moore (1912)
and Penrose (1955) to establish -independently- a generalization of the
Inverse to rectangular matrices.

In this chapter we describe the Moore-Penrose Pseudo inverse, how to
compute it, study some of its properties and more important how to use it in
solving a system of linear equations or gives a least sguare solution

( whether it is overdetermined or underdetermined system ).

4.1 M oore-Penrose Pseudoinver se
Thisisthefirst application of the SVD and it is defined as below.

Definition 4.1
Let Al M_, (C). The Moore-Penrose pseudoinverse of A is defined as the

matrix A'T M,,..(C) satisfying the following four criteria:
1. AA"A=A
2. A"AAT = A"
3. (AA)" = (AA)
4,

(A"A)" =(A"A)
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Remark

If A=[a] isa 1" 1 complex number then A" is defined by:

il
A :!5 if,at 0
f0 if,a=0
Example 1
él 1u
<INy €4 4l :
Let A=§1 Hand Bzé‘l1 ‘110. Then B is the Moore-Penrose
e4 4u

a 1
1- (AB)A=g g=A
g 1
&l 10
&1 U
2- B(AB):(E;.‘l" ‘1‘@:8
&
&4 40
el 1u
X €, HU
3- (AB) =AB=g7 Zgand
e —u
€2 2u
él 1u
X €, HU
4 (BA) =BA=gZ 2
e —u
€2 2u

Before proving the existence of A™ we prove aremark and alemma.
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Remark
If A=|a;| and B = |b, |are diagonal matrices and if C=AB, then C is

diagonal with ¢, =a,b, .

Pr oof

G, = (AB), =8 a,h,

In the summation, ifk* i, then a, =0and if k* j, then b, =0. Hence,
C, =a;b; +a,b;. Ifi=j,thenc,=ab,.Ifi? j,then a, =, =0and

hence C=AB is diagonal and we have c; =a,b, . |

Lemmal

If D is a diagonal matrix, then its pseudoinverse D* is given by
(), :EDO . 7
Pr oof
1. (DD'D), =D,(D*D), =D,D*;D, =D,D, D, =D, b DD*D =D
2. (D'DD*), =D*(DD"), =D,"D,D,"=D," b D*DD* =D"
(DD*); =(DD*), =D,(D*), =D,D; =D,D; =D,D; =(DD"),

3. 0

p (DD*)" =DD*
4. Similar to 3 ]
Theorem 4.1

If Al M_, (C), then the Moore-Penrose pseudoinverse of A exists and is
unigue. [3& 14]

Pr oof
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Let Al M_, (C) with m3 n.Use the thin SVD to write A =U,SV', where V is

unitary, U, U,=l,and S=diag(s,,s,...S ).

Define B=VS'U_. Then A" = B shown below:

1. ABA=U SV'VS'U U SV =U SS'SV' =U, SV =A

2. BAB=VS'U U, SV'VS'U =VS'SS'U, =VS'U, =B

3. (AB) =(U.SV'VS'U)) =(U.SS'U.) =U_(SS") U
=U_(SS")U, =U SV'VS'U| = AB

4.  (BA) =(VS'UU,SV') =(VS'SV') =V(S'S)'V'
=V(S'SV' =VS'U U SV’ =BA

So, A" =VS'U_ satisfies pseudoinverse conditions.

We now show the unigueness.

Suppose Ci M,,,..(C) be another pseudoinverse of A then:

1.  ABA=A 1- ACA=A
2.  BAB=B 2- CAC=C

3. (AB)=AB 3- (AC)'=AC
4. (BA) = BA 4- (CA)'=CA

As afirst step we show AB=AC
AB=(AB) =B'A'= B (ACA)'= B AC A=(AB) (AC) = ABAC=AC
In the same way we can show that BA=CA

Now, B=BAB=BAC=CAC=C. [

This theorem shows how to compute the Moore Penrose psuedoinvers of A,

i.e, A"=VS'U’,whereA=U SV .
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Note
The pseudoinverse is a generalization of the inverse, i.e., if the matrix is

invertible then A" = A™. [18]

Lemma 2
LetAl M_, (O).Then (A)* =(A"),(A)* =(A")" and (A)* = (A"). [3,21]

Pr oof

We want to show that (A*)’is the pseudoinverse of A". So, we examine the
four conditions:

1. A(A) A =(AA'A) = A

2. (A") A(A) =(A"AAT) = (A")

3. ((A") A') = AA" =(AA") = (A") A

4. (A(A)) = A'A=(A'A) = A (A .

In the same way we can prove that:

(A" =(A"" and (A" =(A") =

According to this lemma, we can state and prove the following theorem.

Theorem 4.2 (Identity Transfor mation)
1. A" =A"(A) A

2 A" =A(A) A

3. A=(A") A'A

4 A= AA (AT

A = A AA*

o

0. A = ATAA

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

68

1. AT(AY) A = A" (AAY) = ATAAT = A"

2 A (A A" =(A"A) A" = A"AA" = A"

3. (A" A'A=(AA") A= AA'A=A

4 AA(AT) = A(A"A)" = AA"A=A

5. This is the conjugate transpose of 3.

6. This is the conjugate transpose of 4. n
We now state:

Theorem 4.3
Let Al M,_,. (C) and ki Cbe nonzero. Then

1- (KA)' =S A"
k
2- (A")" =A. [4]
To prove (kA" =§A+, one can show that &A* satisfies the pseudoinverse
conditions of kA. To prove (A")" = A, one also shows that A satisfies the

pseudoinverse conditions of A”.

Lemma 2 and Theorem 4.3 give us some properties of A” which are true for

A, but it is not true that all properties of the inverse also hold for the

psuedoinverse. For example (AB)* * B*A* in general.

Example 2

— _elu €0u _él 1u
Let A=[0 1] andB_glu ThenA* _gluandB & o
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. + +a+ €1 1luédu_1

So, (AB)" =[1 =1,whereas B'A" =41~ —a,=—.

(AB)" =[1] & SHaE™;
But, when does(AB)* =B* A" hold?

There are more than one case in which(AB)* = B* A" holds.

Theorem 4.4:
If (A"A)*isthe psuedoinverse of A'A, then A" =(A'A"A".
Similarly, if (AA")*is the psuedoinverse of AA", then A" = A'(AA')". [3]

To prove this theorem we have to prove some lemma:

Lemma3
Let Al M_, (C) suchthat A’A=0. Then A=0.

Proof
Fix j =1..,n.Then, (A'A); =

- Qos

|
I

aja; =aaa =ala [=0andso,
i i=1 i=1

|a; =0, i =1,...,m. Hence, a; =0, i =1..,m. Sincej ischosen arbitrary, then

thisistrue for dl j, hence a; =0, i =1...,m, j =1,...,n. Thus A=0. |

Lemma 4
If BAA" =CAA" then BA=CA ,and if AAB=A'ACP AB=AC
Proof:
If B=C then BA=CA. So, suppose B! C. Then
BAA' =CAA b BAA - CAA =0b (BA- CA)A' =0b (BA- CA)A'(B-C) =0

(BA- CA)(BA- CA) =0b (bylemma 3) BA- CA=0b BA=CA. n
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Proof of Theorem 4.4

To prove this theorem we have to show that C=(A'A)*Ais the
pseudoinverse of A by showing the four criteria:

Since (A'A)*is the psuedoinverse of A™A, then:

1- (AAAA(AA=AA.Thusby Lemma4, A(A'A)"A)A=A.

S0, ACA=A

2- (A'A)(AA(AA =(AA". Multiplying the equation by A" from the right
side gives ((A'A)* A)A((A'A)*A) =(A'A)*A". So, CAC=C.

3- (AC) =(A(AA'A) = A(AA)YA =AAAA =AC

4- (CA) =(AAAA) =(AA(AA) =(AA(AA=CA

So, C satisfies the the psuedoinverse conditions. So, C=A" n

Theorem 4.5
Let Al M, (©) and Bl M,.,(©).
1- If A has orthonormal columns (A*Azlk), then (AB)" =B*A".

2- If B has orthonormal rows (BB =) then (AB)" =B*A".

Pr oof

We only prove thefirst case. By, Theorem 4.4 we have

(AB)" =((AB) AB)"(AB)" =(B"A"AB)"B"A" =(B'B)"B"A" = B* A’ (applying
Theorem 4.4 on B).

Now, since A A=y, then A" =(A'A)"A" = A". Hence (AB)* =B"A". n
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Note

If A has linearly independent columns, then (A A)‘'exists and then

A" =(A'A) A" . If Ahaslinearly independent rowsthenA® = A" (AA") " .

According to this theorem the pseudoinverse of any vector v can be written

l v .
aSV+ :(V*V)+V* :%W |f Vl O .
fo ifv=0

4.2 Computing the M oor e-Penr ose Pseudoinver se
In proving Theorem 4.1, we gave a method for finding the pseudoinverse of

any Al M_, (C), and in this section we give some numerical examples to

illustrate.

Note: the steps of finding the pseudoinverse is summarized in two steps:
1- if Ahasinverse then A" = A*

2- if Aisnot invertible write the thin SVD of A=uU_Sv’,then A" =VS'U’

Example 3
& 0 o

Let A=50 2i 0f which is a singular diagonal matrix, so by Lemma 1 of
@ 0 0

Section 4.1,
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L o o

¢ . u
A"=€é0 — 00
e 2 4

& 0 0g

& H

Example 4

Let A:%1 11§ It isobvious that A is singular and positive semi definite.

Since A is positive semi definite then its SVD and spectral decomposition
are the same.
. . 2 20
A =AAZS
& 24

The eigenvalues of A are 2 and O corresponding to eigenvectors (1,1)" and

(1,- 1)", respectively. We now have:

61 1y
&5 5 )
U=g2 Y2 g=vaud s=g,
el . Ly &t
2 28
é1 10 é1 1
&/ & e U
Henc:eél2 @LU?Z g'éﬁi */?LuistheSVDofA.
e— - e— -0
&2 20 &2 20

D
=

D
=

=
(o Y eny el e e
I
RREIE
=
c

Q. %,

> > > N
el

1
&Nl

(oY e ey e
BI®

[

>
ZRg
§||I;-\§|| -
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Example 5
€2 3 4u
é a
g1 0 2

LetA=€0 0 2.
é.. . Q
é3| -4 Il;l
g1 2 O0f

615 2+18 9 U
* _A . _lj

Then AA_§-18| 29 - 16|l:J
g 9 16i 25 g

The eigenvalues of A A are 10384/195, 2910/217 and 4600/1967.

The normalized eigenvectors corresponding to these eigenvalues are

- 1229/ 2672 1395/ 3376

c/

é é U é- 503/640 U
g- 1351/22308 + 1040i/14873,g 490/ 3853 - 1110i/31313& g 293/ 2864 - 1080i/18133
@ - 471/868 - 167i/486 [ @ - 551/680- 365i/2079 @& - 127/1171- 212i/ 2935(

These normalized eigenvectors will be the columns of the unitary matrix V.

To obtain the unitary matrix U, consider the normalized eigenvectors of
€29 6 -8 -2 2+6i0

é . . U
& 6 5 -4 i -1 i
AA :§:‘ 8i 4 4 2 0 u
é . . U
§22| -2 26 '8"'3'1:1
g2-60 -1 0 -8-3 5 f

The eigenvalues of AA" are 10384/195, 2910/217, 4600/1967 and zero of
multiplicity 2. The normalized eigenvectors corresponding to the nonzero

eigenvalues are
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& 3521/4952 - 2251/5149 (& 452/1225 - 52015937 U & 231/1616 + 491/4166 (i
g- 285/3326 - 108i/11489 Hg - 356/641 - 254i/2649 2[603/ 4308 - 531i/5621 3
€ 108/11489 - 743/4996 (& 254/2649 - 1009i/22800& €531/5621 - 2791/1967 U
S 374/9860 - 478730 (& - 410/4507 + 18561/3679 ; & 500/2269 - 557i/10204
€ 283/3554 + 355/1852 H @ 383/2101 - 1026i/5299 f| & 915/2407 - 17352227 Y

These normalized eigenvectors will be the columns of the matrix U,.

So, A=U,SV" isthethin SVD of A where

é3853/528 0 0 0 é528/3853 0 0 U
S=g 0 aryuze o gAAsS =% o 11394171 O i
g o 0 1072/701 { g o 0 701/1072 ¢!

Thus, the Moore Penrose psuedoinverse isA" =VS'U,

©64/835 +11i/835 - 83/334- 32i/835 - 32/835- 27i/835 84/835 - 21i/167 369/1670- 306i/835 U
g— 14/835+21i/835  43/835 - 15i/167 78/835- 18i/835 - 18/167 +66i/835  269/835+53i/835 H
6124/ 835+i/167 187/1670- 16i/835 - 107i/835 12/835+62i/835 63/1670 - 62i/835 g

The Moore Penrose pseudoinverse of a matrix Al M_, (C) also can be

computed using Matlab with the function pinv(A).

Example 6
A=
0 + 2.0000i 5.0000 0 + 4.0000i - 3.0000
2.0000 0 0 - 1.0000
0 - 2.0000i 3.0000 4.0000 0 +5.0000i
>> pinv(A)

- 0.0051 + .0162i 0.5000 + 0.0185i  0.0134 - 0.0467i
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0.1553 +.0887i 0.2440 - 0.0610i 0.0647 - 0.1479i
- 0.0841- 0.0564i - 0.1460+ 0.2957i  0.1081 + 0.0841i

- 0.0102 + 0.0323i 0.0000 + 0.0370i  0.0268 - 0.0933i

Theorem 4.6  [4]
Let Al M,,.,(C), then r(A)=r(A").

Pr oof
The proof follows directly from the fact that A" =VS*'U

r(A")=r(VS'U.)=r(S*)=r(S) =r(A)

Theorem 4.7
Let Al M, (C), with a zero last column. Then A" is the pseudoinverse of the

first n- 1 columns with a zero last row.

Pr oof

WriteA=[8 0] , where Bl M_,,(C) and 0 is an m-dimensiona zero

column.

+

We show that A" = e u, where B" is the pseudoinverse of B and 0" is an n-
(S

$\

C

dimensional ZEro row.

+\

Let C=¢a

& . We show that C satisfies the pseudoinverse conditions of A.
€

C)C\

1-  AcA=[B O]gg:S[B ol=[eB’|[6 0]=[BB'B 0O|]=[B 0]=A

eBu éB*'B OueBu éB*BB U éB*uU
2- CAC= & [B eo“ S0 ool8 078 o l:J:é{rgzc:
eV O ey u e uevY u e u ev u
(')' " éB U
3 (AC) —ng o] . 0 =(eB*) =BB* =[B 0OJ]s_. 4= AC
&0 (g €0 ¢
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#B'B 000 §B'B) 0

0
4  (CA) = B 0ol = = 7
()éﬂ ]éo ooﬂggo 0'0§
8B 0 U éB*
“€o o*o‘ij'z‘-sfoif[B 0]=cA
e u €
So, C=A".
Note

The same idea can be applied to Al M,...(C)with last zero row.

Example 7

Find the M oore Penrose pseudoinverse of

g -1 3 Ou
A= gl -2 -3 ou
& 4 -1 oH
¢ 0 g -1 3u
H _e u _ u
erteA-(§ B oqwhereB—gL -2 -33[:J
g Od & 4 -1y
Then
é 15 170 970 |
B+=B'1=g ~15 -835  3I35 H
g s -970 -170 §
o)
é 1/5 11/ 70 9/70 U
é u
A+=é-1/5 - 8/35 3/35 0
é ys -9/70 -17 U
€ 0 0 0 i
Example 8
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Find the Moore Penrose pseudo inverse of

& 3.0000 1.0000i 1.0000i N
Azg 20000 - 2.0000 10000 3
g 0 0 0 A

By Matlab the Moore Penrose pseudoinverse of A is

@ 02778 - 01111  0.0741+ 01667i 0

A~

A’ =g 02222 - 00556i - 03519+ 01111 O
g - 01111+ 01111 01481 - 01111 O

[co Y ey e el

Corollary 1
Let Al M...(O) , with a jth zero column, then the pseudoinverse is just the

pseudoinverse of the others n - 1columns with ajth zero row .

Pr oof

u

a, 0 a, .. a;whereeacha | C" andOisanm-
f

LetA=

@D ('Eﬁ)('D) D

dimensional zero column.
Post multiply A by the permutation matrix P that permutes cyclically the jth
through the nth columns, in which the zero column (the jth) is transformed

to the last column, i.e.,
e
_é
AP—éa1 v 8y, By - &, 0
e

Then by Theorem 4.7, we have:

[coxy ey ey and
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A" =PP*A* =P(AP)* =P

Note
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(AP)'=2a ... a, a, .. a 0

> D (D> (D~
[co Y ey e el

>

13158

@: CD&SI)))(SI))

[cox Y e Y ey e
(e} any ey ey ey ey

By Theorem 4.5 and since the permutation matrix has orthonormal rows ; we

have (AP)* =P*A* =P A"

cS;JcS? &
o
o

>

A
A

D: D>

The same idea can be applied to Al M,..(C)with a jth zero row.

Example 9
&7 50
_¢€ a
Let A= 0

A

& 3

Delete the second row, we then have

) A3
BhasmverseB'lzg g
e u
5

é
So, A" =g

Remark

+

(e} ey ey ey an | e

o
D: D D> D D D D D D

Ne)

o

U -

>
IRy

+ 7

(et} eny eny en} en e} e exy eng
|
D> D> D> (D> (D> (D> D> D> (D> (D~
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LetAl M_, (Cwith some zero rows or columns, then we can delete them
and find the psuedoinverse of the resulting matrix then replace the zero rows
with zero columns and vise versa and the consequential matrix will be the

pseudoinverse of A.

Example 10
é€3 0 2 0u
. . € 00 o
Find the pseudoinverse of Awhere A=¢€ U
€0 0 0 00
e u
&1 0 6 0f

Solution:
By corollary 1of Theorem 4.7, we can delete the second and forth columns

and the second and third rows.

, .. €3 A o , o :
The resulting matrix is g L 63 which isinvertible and its inverse is
5 u

e

e3 -1lu

©0 10U

€1 3U

—u

é20 200

Now

é3 - 10
=~ 0 0 —
€10 104
A+_§‘O oo o
-8 3u
é&— 0 0 —u
e20 20()
g0 0 0 049

one can examine the four criteria of the pseudoinverse.

Example 11
A=
3.0000 0 2.0000 0 6.0000
0 0 0 0 0
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- 1.0000 0 0 + 2.0000i 0 3.0000
0 +1.0000i 0 0 - 1.0000i 0 3.0000
>> pinv(A)

0.1902 + 0.0878i 0.0000 + 0.0000i -0.1854 + 0.0683i -0.1951 - 0.2439i

-0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i 0.0000 + 0.0000i

0.0927 - 0.0341i -0.0000 - 0.0000i -0.0390 - 0.2488i -0.1463 + 0.3171i
0 0 0 0

0.0407 - 0.0325i -0.0000 + 0.0000i 0.1057 + 0.0488i 0.1463 + 0.0163i

4.3 Linear Least Squares Problem
Let AT M, .(C). While solving the system Ax=b we have three cases :
1. Number of equations = the number of unknowns.
2. Overdetermined system: number of equations > than the number of
unknowns.
3. Underdetermined system: number of equations < than the number of
unknowns.
The solution of the above system exists only if b lies on the column space of
A. If not, we can find a vector x that makes Ax as close as possible to b.
This occurs sometimes if we have a matrix Al M,,.(C), with m2 n and the
solution of the system Ax=b doesn't exist. So we can find what is called the

least squares solution.

Definition 4.2
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The optimal solution X of the systemAx=b, whereAl M, (C) with
m3 n which satisfies ||b- AX|,is minimized overall vectors xI C", is
called the linear least squares solution. [16]

The least squares problem can be solved using the SVD.

Theorem 4.8

Let the matrix Al M ,(C), with m2 n has full column rank and its thin

SVD A=uU_Sv'. Then the least squares problem has the unique solution

X=VS'U, . [5, 6]

Pr oof:

By the SVD write A a A=USV =[U, Um]éOuL\/ where
ol

S=diag(s,,s,,.s,) ands,3s,3 e s _>0.

Using the fact that the norm is invariant under unitary transformations, we

have:
2_ &SU * 12 0 12 esy * 2_n o *n . 68U 2
10~ AXI=lD - U g s X IG=IU7 15D - U gy XI=1U"D - g v x5
é * l\J ; . Ak ) * l\J
& n ob_‘?s\/x‘Jz:gUnb N 020 b 210 b2
€.0 G- XA, UigEu b s U b
L oeo0qagc § b U
€ m- nu e m-n U

The vector x that minimize ||b- Ax|j;is X that sets the first sum to zero, i.e.,
U b- SV'X =0, hence which equal X=VS U b= A"b.
Since st :diag(i,i,...,i) then X can be written as X = é ui—bvi [9]

1 2 n i=1 Si
Note that if m=nthen X = A 'b.
Example 12

Find the least squares solution to the following system of linear equations:
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e Lo el
— u _e u
A—gi o@, =20 ¢
& 1g & 5¢

The least square solution is the vector x = A'b. Using SVD to find A" give
613 23  -U3 g

us A" =
€ys  -u3 23 X
e2u
34
e'

But what if the rank is deficient?

Theorem 4.9
LetAl M .(C), with m2 n and rank A =r <n then there is a set of (n-r)

vectors that minimize ||b - AXx|[5.

Pr oof

Since rank A= r then there are (n-r) vectors that spans the null space of A

and let z be one of them. Then Az=0, So if X minimizes ||b- Ax|5then so
does X+ z. m
The above theorem shows that if A is rank deficient, then the least

squares solution is not even unique, and the theorem below explains what

kind of solution isit.

Definition 4.3
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Let Al M_ (C),bT cMandletL =1x1 C":||b- Ax|l,=min. A minimum
m,n 2

norm solution is any X1 Lsuch that |X|, is minimum.

Theorem 4.10
Let Al M,.(C), m3 n, A=USV as described before and r(A) =r <n. Then the

minimum norm solution of the least sguare solutions occurs at
X=V.S'U b, where V, and U, contain the first r-columns of V and U,
respectively and S, =diag(s,,S ,,....S,) -

Pr oof

A can be written as

Oy V u
A=USV’ =[U, Um,]gS ue a=U, SV .

eo Ouenru

Then the error norm can now be written

o

lerror |2=] Ax- b|2=| [U, U]

u
a X-bf.
U

2

Bae
o
b en g e

Putting
y= V*X eVrX l,J ey u éjl _
* e -e
é‘/n rXu EyZU 832U dn-rb

and since the norm is unitarily invariant, then the error becomes
€S, Oueyl u ebl

8o OB H &.H],

Thus, we can minimize the error if we choose y, =S, 'b, and so

llerror||3=

=[[s. - bal +[p. .

eylu eSbU

y= )
g/zH ey H

where y, is arbitrary(it is in the null space since the columns of V,, span the
null space of A), so the solution of the least squares is not unique so we now

have:
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KT, =Vl =1yl + e,

Therefore, we can obtain the solution of the minimum norm by letting y, = 0

in this case X:Vrylzvrsr'lblzvrsr'lufbl. n
Example 13
Let
el -3u ez
A=€0 oUp=€oU
€ u € .u
el 34 &2

Note that b lies on the column space of A, so it has a solution but it is not
unique since r(A) =1. One of the solutions is (5,1)" another is (11,3)" but the

solution with the minimum norm is x= A'b

62 ( .
_ 6005 O -oosuA U svus
X=g 20078 . 4 U
& 015 0 015ue l) é-3/5

(S) U

Example 14
Let

61 -3 &

A=€0 oUp=%U

e u eu

&l 30 élg

b doesn' lie in the column space of A, so this system doesn't have a solution

é 120 u )
but we have X = Ao = g ( as the least squares solution.
& -3/2

The above two theorems illustrate how to solve an overdetermined system of

linear equations using SVD, which can also solve an undetermined system

of linear equations.
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For the next theorem, let AT M, (C), where m<n and suppose A have full

row rank and let A=USV " be its SVD as described before. Define

~

L ={xT c": Ax:b}. We now have
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Theorem 4.11
Let A and L be as described above.
(@) The system Ax =b aways has a solution but it is not unique.
(b) Of all solutions to Ax =b, the solution that has minimum norm is
unigue and it is given by
(*) X=V_S'Ub
Pr oof:

(@) GivenA= USV* we can write

A= U[S O]qv u,V I M_(C), whereSis an m" mdiagonal containing
nmU

the nonzero singular values of A, so Sit is nonsingular.

Then Ax =U([S o];)/xu_u[s oSyH—Usyl—b

So, we have USV_ x =b, sox =V,_S U bisasolution to Ax =h.
Since m<n, then the nullspace of A is nonempty and is spanned by the

Vectors v v, by Theorem 3.5. Let z be an element in the nullspace of A,

dyeees
then X + z is also a solution to Ax =b and this proves (a).

(b) As seen in part (a), X+ 2z represents all solutions toAx=b. Since
x=V_S'U’b, thenXis a linear combination of the vectors v;,...,v,;
on the other hand z is a linear combination of the vectors v_,,,...,V,

and since the columns of V are orthonormal, then X& zare

orthogonal. Hence, || x +z|>=[| x|I> + || z||> which is minimized only if

of z=0. So, the minimum norm solution to Ax =bis as described by

(*)- m
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Example 15:

Let
1 5u élu

A= -and b=z /.
o =g

2
3

MD:D> D~

Then the minimum norm solution for the system Ax=b is
23/65
63/130
-1/26

Xx=A'b=

@D> (D> (D> (D~
[eo Y Y exY a]

The rank deficient may or may not have a solution depending on the right

hand side, and it can be treated as in Theorem 4.10

Summary: For any system of linear equations Ax =b, the solution if exists is
A'b; if there are more than one solution, then the minimum norm solution is
also A'b; if we have no solution to the overdetermined system then, again,

the minimum linear least squares solution is A'b.
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Chapter Five
More Applications of the Singular Value
Decomposition
In this chapter we study more applications of SVD such as low rank
approximation of matrices, determining the effective rank of matrices and

study image compression as an application of SVD in image processing.

5.1 Low Rank Approximation of Matrices

In science and engineering problems such as image processing, data
compression and effective rank, one would like to approximate a given
matrix by a lower rank matrix according to a given norm. One easy way to
do thisis simply the truncated SVD.

We will consider low-rank approximation of a matrix A according to
spectral norm and Frobenius norm. First we give the theorem for the

spectral norm.

Recall that:

For any matrix Al M,,,(C), the Frobenius norm is defined as

1

Il Allle = éa a |3, | T Whereas the spectral norm is defined as

=1 j=1

Al = max { \/I_:I is an eigenvalues of AA" }.
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Theorem 5.1:
Suppose Al M_.(C) with rank r > k has SVD A=USv where

Ul M_(C)andVl M _(C) are unitary matrices and S contains the singular

values of A on its diagonal arranged in decreasing order. Then

rmrlrglzi;]:k "l A-Z "lz: Sk

This minimum occurs when
Z=A=U kSkVI:

where U, = (uy,u,,....u )T M, (C), V = (Vq, V.,V )T M ((C) and
Sy =diag(s,s,,...,Sy) (5]

Pr oof
We first show ||A- A l,=S,., Write Azésiuivf, and define

i=1

k
A =8 s,uv . Then:

i=1

n
[o) * ' . .
MNA- A L=l & s .UV, IL=S - (ci s are in decreasing order ).
i=k+1

It remains to show that there is no rank k matrix closer to A than A..

Suppose  there exists BI M,,(C) with r(B)=k such that
IlA- BlIL<IlA- A lll,=s ... Since the dimension of the null space of B = n-
k, the space spanned by the set T ={v,,v,,...,v,,,} has dimension k+1 and

since the sum of the two dimensions is n+1, then there exists a unit vector
k+1 Kk+1
win their intersection. i.e., Bw=0 and w= g cv, with ||w|?=g ¢ =1.

i=1 i=1

Thus, we now have:
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. éc u
9\/1[;" é u
_9 llfl{ _@kﬂu
VW_(::\/k+1,C1V1+>°°<+Ck+1Vk+1 -—e ., u
* u ~A "
8Vnu e u
eoqg
7 \2 7 7 \2
e CS; U €CS ec U
é f é é u
é f é é
&, .s ..U €, .S &, ..U
* 2 || X2k+1P k+1 Y Ok+1E k41 2 ATkl A 2
"SVWHZ_ (:Z‘ 0 u 3 (:Z‘ 0 3Sk+1§‘Ol:| =Sya-
e U e 9 U
e U e e u
é g (€ e U
e 0 g, | O e0q,
We now get:

Il A- BIE Il (A- B)w 2=l Aw [E=USV w [B=l|SV ' w [E3 s Z,,, a contradiction. m

Example 1
Let
@ 0y
— ]
A_go -3
€ 0d
Find arank 1 approximation of A with respect to the spectral norm.
Solution:
We first find the SVD of A,
€O 1 003 0u
A=Usv =& 0 0% 2 15
¢ e “ug oY
€ 0 1ge0 0Oy

The matrix A is of full rank, we want to approximate it with a rank 1

matrix, so we find:
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Then
€@ 0u & Ou
A=USV, =0 -3awith [l A- A .=l Oflll,=s, = 2.
@ 04§ &0 0g
Example 2
Let

Find arank 2 approximation of A with respect to the spectral norm.
Solution:

Using Matlab, the SVD of AisuUsv" where
é- 1153/1729  665/1223 587/1152 v

ey e} enlY enl eny end

U=¢ -208/431 -277/1410 - 2028/2017 Y,
§ - 515/1853 - 207/364 437/862  f
65139/892 O 0 0 0
s=§ 0 250031 0 0 0 Yand
g 0 0 803494 0 0
&-322/797 -1929/2620 111/5761 397/1654 - 307/631
€ -203/1437 -135/326 - 506/1005 347/4158 1411/1840
V' =6 -199/865 837/2995 0112936 704/823  1120/5533
S - 392/4479 473/1378 - 3101/3746 815/3273 - 575/1612
§ - 767/882 1306/4341 153/2272 - 428/1137 335/3997

This matrix is of rank 3, sowefind A, =U,S,V,

é- 1153/1729  665/1223 15130/892 0 ¢
U= 208431 -277/1410Y, 5, =¢ 0  2500/531 E
@ 515/1853 - 297/364 © )
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é-322/797 -1929/2620 111/5761 397/1654

V' =g
& 203/1437 -135/326 - 506/1095 347/4158

- 307/631 i
1411/1840 §’

The problem rl}izr)‘_z Il A- Z |||, has the solution Z = A, =U,S,V, .

€ 756/635 2315/1309 - 763/607 - 1490/2103 640/167
0, A, :g 3701/ 2127 4672/1409 587/1674 - 962/931 188/153
g 571480 4077/1472 689/395 - 2353/3338 - 2533/1169

with || A- A, [Il,=s , =803/494.

Example 3

Let

>

1
@D> (D> (D> (D~
onNn kP

D

]

D
[eo Y Y exY a]

Approximate A with arank 1 matrix( i.e., find Ay).

With Matlab A=USV" where

5 - 257/3386-217i/1026 4754/5955 - 371i/951
- 1407/1489+ 217i/2052  215/1608 + 521i/2671
- 217/1026 + 2971/11234 - 371/951+ 2231/4573

U=

@D D> D> D

5 4747/753 0 0
1217/1085 0
0 0

and

n

I
@D D D D
fcoY ey el e

0
0

& 517/1658 - 57265/85898 57265/85898
V' = gl353/1424 - 177/809- 200i/7313 177/809 + 200i/7313
g 0 1658/2353+162i/2741  1658/2353 +162i/2741
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Since r(A)=2, wefind A =U,S)\V, , where
é - 257/3386 - 217i/1026 |

U, =& - 140771489 + 217i/2052 Y, s, =[ 4747753 | ,
§ - 217/1026 + 297i/11234§
V, =[ -517/1658 - 57265/85808 57265/85898 | and
¢ 131/878 + 955/2207 554/2665 + 365i/303 - 554/2665 - 3651/393
A =% 730/303 - 554i/2665 1651410 + 277/5330 - 1651/410 - 277i/5330 U
§ 955/2297 - 277i/5330 1207/1337 - 1207/1337 f

and computing ||| A- A |ll,=s, = 1217/1085 .

Fact
For Aand B M,,(C), tr(A'B) =tr(BA).

Lemma 1l
Let AT M_.(C), with A=USV", then the matrices

v,

1=12,...m, ] =12,...,n
form an orthonormal basis for M ., (C).
pr oof
For it k, u,and u, areorthonormal and by Fact above, we have
tr((u;v)(u,v;)) =tr(v,uju,v;) =0.
Similarly, for 11 j, tr((u,v)(u,v;)) =tr(v,uju,v,)=0.
For i=k&Il=j, (uVv)).uVv))=tr(v,uiuv;)=tr(v,v;)=1.
So the set of matrices u;v;, i=12,...m, j=12,...,nare orthonormal and

so linearly independent. Since we have mn such matrices then they form a

basis for M, ,(C). n
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Theorem 5.2
Suppose Al M_.(C) with rank r > k has SVD A=USV where

UT M_(C)andV1 M (C) are unitary matrices and S contains the singular

values of A on its diagonal arranged in decreasing order. Then
min(m,n)

min | A- Z|l-=,/ & s?

r(2)=k =
And it occurs for
Z=A =USYV,
where U, =(u,,u,,..,u)l M, (C),V, =(v,V,,...v,)I M (C) and
S, =diag(s,,S,,.-,S;) - [6]

Pr oof
Letzi M,,,(C). By Lemmal above, wewrite Z=§ mu,v, for some
i
coefficientsm, and for an orthonormal basis M (C) of the form
uv;, i=12..m j=12..,n.

| ]!

Now we have

2

IlA- ZlIg=

2
:mé (s i " mj)uiv*j
F i

o] * o * _ o 2
aSijUiVj'aijiVj —a(Sij'mj)
ij ij ivj

.
= (s, - m)>+a nf . For minimum choose the second term equal to zero.
i=] i
We then have
Z= é. miUiV?
Since the rank of Z is equal to the number of terms in this sum, we see that
the constraint r(2)= k implies that we should have exactly k nonzero terms

in the sum. To minimize the objective function, we then choose
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k
m =s., i=12...k. S0, Z=g s,u,v, which givesthe desired result.

i=1

Example 4
él 2 -1 0 4y

Consider the matrixA=$2 3 0 -2 1%inExample5.2.Then
8L 3 2 0 -2

the problem r(r;i)g2 Il A- Z ||| has the same solution A, with

3
A~ Al = [as’ =803494 .
i=3

Example 5
él [ -1 U
Consider the matrix Azg 2 4 -4 gin Example 5.3. Then
g0 1 -1 §

the problem rpzi)l;ll Il A- Z ||| has the same solution A; with

3
|A- A= |&s?=1217/1085.
i=2

5.2 Image Compression Using the Singular Value Decomposition

Another approximation of SVD that will use the low rank
approximation is the image compression, which we define below.

A computer represents an image on a display device with a set of
evenly spaced coloured dots called pixels (picture elements). If these pixels
are close enough together they approximate a continuous image.

Each pixel represents a section of a picture, but how is all the relevant
information associated? In a simple case of black and white pictures each

pixel can be one of two states O or 1. This can be represented with elements
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of Z, (Integers modulo 2). If the picture is a greyscale then every pixel
represents the intensity using a real number from O (black) to «. However
any picture can be viewed as a matrix; the picture can be partitioned into
tiny squares. Each square represents an entry in that matrix. If the picture is
partitioned into m by n matrix, then we need mn spaces in the computer to
store it. But we can compress (reduce the number of spaces in which we
store the picture) some images using SVD.

Consider an image which is partitioned into m by n matrix with rank

r, then we need r(m + n+1) spaces for storage by SVD instead of mn, thisis
because any matrix can be written with the SVD as é s.uv, =U SV . Tha

=1
computes r(m + n+1) entries.

We can further approximate the matrix by leaving off more singular terms
of the matrix A. Since the singular values are arranged in decreasing order,
the last terms will have the least effect on the overall image. Doing this
reduces the amount of space required to store the image on a computer. The

following example illustrates this.

Example 6

Consider the black and white image of a tree in Figure 2 which we
are going to compress to a computer using SVD. It is partitioned - for
example - into (12)(12)=144 tiny squares (see Figure 3). Each square has a
blackness level, and we assign the number 1 to any at least half black and O

otherwise.
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The storage of this image needs 144 spaces. And this number increases if

we partition this photo in more than 144 squares.

Figure (2) The original image Figure (3)

The matrix that represents Figure (3) is

@ 000000000 0 O
90000110000 0
@ 000111100 0 00
900011110000
®© 00011110000
© 0011111100 0]

A=S y
©®0001111000 0f
0011111100 0g
11111111110
@ 0000110000 O
9000000000 0 0
€ 000D0D00O0O0O0 0 Of
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Using matlab the SVD of AisA=USv where

U=

Columns 1 through 9

0
-0.1721
-0.3238
-0.3238
-0.3238
-0.3982
-0.3238
-0.3982
-0.4521
-0.1721

0

0

0
-0.2350
-0.2777
-0.2777
-0.2777

0.1341
-0.2777
0.1341
0.7383
-0.2350
0
0

0
-0.4472
-0.0000
-0.0000
-0.0000

0.4472
-0.0000
0.4472
-0.4472
-0.4472
0
0

Columns 10 through 12

0
-0.7071

0

0
-0.0000
-0.0000
0.0000
0.0000

0.7071

0

0
0
0

0

0

0

0
0

0

0

0
0
0

0

0

0

0
0

0

0

0.4638
-0.2609
-0.2609
-0.2609
0.3514
-0.2609
0.3514
-0.2249
0.4638

0

0

0
-0.0000
0.8614
-0.2172
-0.3628
-0.0000
-0.2815
-0.0000
0.0000
-0.0000

0

0

0
-0.0000
-0.0849
0.8111

-0.5517
0.0000
-0.1746
0.0000
-0.0000
-0.0000

0

0
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-0.0000
0.0280
0.2118
0.5604
-0.0000
-0.8002
0.0000
-0.0000
-0.0000
0
0

0

-0.0000
-0.0000
-0.0000
-0.0000
-0.7071
0.0000
0.7071
-0.0000
-0.0000
0
0

1.0000
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0 10000 O
0 0 1.0000
S=
57923 0 0 0 0 0 0 0 O 0 0 O
0 22109 O 0 0 0 0 0 O 0 0 O
0 0 14142 0 0 0 0 0 O 0 0 O
0 0 0 1.2494 0 0 0 0 O 0 0 O
0 0 0 0 0.0000 0 0 0 O 0 0 O
0 0 0 0 0 0.0000 0 0 O 0 0 O
0 0 0 0 0 0 0.0000 0 O 0 0 O
0 0 0 0 0 0 0 0.0000 O 0 0 O
0 0 0 0 0 0 0 0 O 0 0 O
0 0 0 0 0 0 0 0 O 0 0 O
0 0 0 0 0 0 0 0 O 0 0 O
0 0 0 0 0 0 0 0 O 0 0 O
V=
Columns 1 through 9
0 0 0 0 0 0 0 0 1.0000
-0.0780 0.3339 -0.3162 -0.1800 0.6260 -0.2813 -0.3093 -0.4241
-0.0780 0.3339 -0.3162 -0.1800 -0.77/21 -0.1665 -0.2371 -0.2619
-0.2155 0.4553 0.3162 0.3825 0.0087 0.6238 -0.1205 -0.3073
-0.4391 -0.0472 0.3162 -0.4527 -0.0236 -0.0852 0.5787 -0.3930
-0.4985 -0.2598 -0.3162 0.2898 0.0000 -0.0000 0.0000 0.0960
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-0.4985 -0.2598 -0.3162 0.2898 -0.0000 0.0000 -0.0000 -0.0960
-0.4391 -0.0472 0.3162 -0.4527 0.0236 0.0852 -0.5787 0.3930

0
0
-0.2155 0.4553 0.3162 0.3825 -0.0087 -0.6238 0.1205 0.3073 0
-0.0780 0.3339 -0.3162 -0.1800 0.0731 0.2239 0.2732 0.3430 0

0

-0.0780 0.3339 -0.3162 -0.1800 0.0731 0.2239 0.2732 0.3430
0 0 0 0 0 0 0 0 0

Columns 10 through 12

0 0 0
-0.0581 0 0
-0.0359 -0.0000 0
-0.0421 0.0000 0
-0.0539 0.0000 0
-0.7006 -0.0000 0
0.7006 0.0000 0
0.0539 -0.0000 0
0.0421 0.0000 0
0.0470 -0.7071 0
0.0470 0.7071 0
0 0 1.0000

Since we have 4 nonzero singular values then r(A) = 4<12 ; so, using the
compact SVD we can write Aas A=U,S,V, where
Uys=
0 0 0 0
-0.1721 -0.2350 -0.4472 0.4638
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-0.3238 -0.2777 -0.0000 -0.2609
-0.3238 -0.2777 -0.0000 -0.2609
-0.3238 -0.2777 -0.0000 -0.2609
-0.3982 0.1341 0.4472 0.3514
-0.3238 -0.2777 -0.0000 -0.2609
-0.3982 0.1341 0.4472 0.3514
-0.4521 0.7383 -0.4472 -0.2249
-0.1721 -0.2350 -0.4472 0.4638

0 0 0 0

0 0 0 0
S, =
5.7923 0 0 0

0 22109 0 0

0 0 14142 0

0 0 0 1.2494
andv, =

0 0 0 0
-0.0780 0.3339 -0.3162 -0.1800
-0.0780 0.3339 -0.3162 -0.1800
-0.2155 0.4553 0.3162 0.3825
-0.4391 -0.0472 0.3162 -0.4527
-0.4985 -0.2598 -0.3162 0.2898
-0.4985 -0.2598 -0.3162 0.2898
-0.4391 -0.0472 0.3162 -0.4527
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-0.2155 0.4553 0.3162 0.3825

-0.0780 0.3339 -0.3162 -0.1800

-0.0780 0.3339 -0.3162 -0.1800

0

0

0

0

If we use rank 1 approximation for A we have:
1
A =U,SV, =g s,uv (need ( 1(12+12+1)=25 spaces for storage)

i=1

Columns 1 through 9

0

o O O O o o o o o o o

0
0.0778
0.1464
0.1464
0.1464
0.1800
0.1464
0.1800
0.2044
0.0778

0
0

0
0.077/8
0.1464
0.1464
0.1464
0.1800
0.1464
0.1800
0.2044
0.077/8

0
0

0

0
0.2149
0.4042
0.4042
0.4042
0.4971
0.4042
0.4971
0.5644
0.2149

0
0

0
0.4378
0.8235
0.8235
0.8235
1.0127
0.8235
1.0127
1.1498
0.4378

0
0

0

0.4971
0.9349
0.9349
0.9349
1.1498
0.9349
1.1498
1.3055
0.4971

0
0
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0.4971
0.9349
0.9349
0.9349
1.1498
0.9349
1.1498
1.3055
0.4971

0

0

0.4378
0.8235
0.8235
0.8235
1.0127
0.8235
1.0127
1.1498
0.4378
0
0

0.2149
0.4042
0.4042
0.4042
0.4971
0.4042
0.4971
0.5644
0.2149

0

0
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Columns 10 through 12
0 0
0.0778 0.0778
0.1464 0.1464
0.1464 0.1464
0.1464 0.1464
0.1800 0.1800
0.1464 0.1464
0.1800 0.1800
0.2044 0.2044
0.0778 0.0778
0 0

o O O O o o o o o o o o

0 0

The picture that represents A; is

Figure (4)
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If we use rank 3 approximation for A we have:

3
A, =U,S.V., = s,uv (need 3(12+12+1)=75 spaces for storage)

i=1

Columns 1 through 9

0
0.1043
-0.0587
-0.0587
-0.0587
0.0790
-0.0587
0.0790
0.9494
0.1043

0

O O O O O o o o o o o o

0

0
0.1043
-0.0587
-0.0587
-0.0587
0.0790
-0.0587
0.0790
0.9494
0.1043

0

0

Columns 10 through 12

0 0

0

0.1043 0.1043

-0.0587 -0.0587

-0.0587 -0.0587

0
0
-0.0587 -0.0587 0
0
0

0.0790 0.0790

0
-0.2216
0.1247
0.1247
0.1247
0.8321
0.1247
0.8321
1.1075
-0.2216

0

0

0
0.2624
0.8524
0.8524
0.8524
1.1988
0.8524
1.1988
0.8728
0.2624

0
0

0
0.8321
1.0944
1.0944
1.0944
0.8728
1.0944
0.8728
1.0814
0.8321

0
0
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-0.0587 -0.0587 0
0.0790 0.0790 0
0.9494 0.9494 0
0.1043 0.1043 0

0 0 0
0 0 0

The picture that represents Ag is

Figure (5)

we can see that bigger rank gives better approximation.

Note

A serious problem with the use of SVD for compression is that starting
with a single m by n image matrix A and applying SVD results in a mxm,
nxn, and a diagonal m x n matrix. If m = n, originally n? values are
required for picture, and after SVD we have 2m’+ m( values for an exact

representation of picture where the rank of this picture = m. Therefore the
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approximation must be at most rank m?/(2mt+l) in order to have

compressed the image at all, otherwise the storage requirements increase.

5.3 Determination of the Effective Rank

The SVD can be used to determine both the numerical (effective) and the
actual rank of a matrix. This is done by counting the number of singular
values that are above a certain tolerance,t . The tolerance t =0 is used for
the actual rank and some small number determined by the user according to
the application at hand for the numerical rank(i.e., t >0 for numerical rank)

(e.g.,t =e|| Al[,=es,,where eis machine precision). The numerical rank

of a matrix is now defined as the number of singular valuess >t ,
r(A), ={k:s, (A)>t,s (A EL}.

Example 5.4
é 10000 01000 - 21000 0 - 10000y
€ 09000 - 20000 17000 - 35000 0 U
Let A=€ u,
€ 12000 0 0 - 01100 30000 U
€ o 01000 - 02000 02500 - 01700

Find the effective rank where the tolerance t =0.5. By Matlab, the SVD of
Aisgivenby A=USV", where
U=

0.2137 -0.2520 -0.9421 -0.0570

-0.9583 -0.2293 -0.1597 0.0600

-0.1740 0.9396 -0.2928 0.0330
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0.0758 -0.0317 -0.0346 0.9960

S=
4.5791 0 0 0
0 32551 0 0
0 0 2.3230 0
0 0 0 0.0629

andV =
-0.1873 0.4249 -0.4571 0.7408 -0.1635
0.2056 0.1322 0.0448 0.2123 0.9451
-0.6187 0.0954 0.7378 0.2507 0.0299
0.5817 -0.4159 0.3596 0.5609 -0.2114
0.4488 0.7873 0.3397 -0.1695 -0.1858

Since s,,s,ands, >t , but s, =0.0629<t , then the matrix we want is As
and we find
Us =

0.2137 -0.2520 -0.9421

-0.9583 -0.2293 -0.1597

-0.1740 0.9396 -0.2928

0.0758 -0.0317 -0.0346

4.5791 0 0
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0 32551 0

0 0 23230
V, =

3

-0.1873 0.4249 -0.4571 0.7408 -0.1635
0.2056 0.1322 0.0448 0.2123 0.9451

-0.6187 0.0954 0.7378 0.2507 0.0299
€10021 00985 - 20987 0.0020 -10008 U

08078 -10984 16086 - 35021 00008
811988 00009 - 00007 - 01112 30004 U
& 00364 01261 - 02225 02149 - 01568(

and A, =U,SV, =
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