Lecture 8

Internal Rate of Return
Judging proposed investments

- IRR gets more complicated when comparing multiple alternatives
 - (Rather than evaluating a single project)

Why?
- Desirability depends on both
 - IRR
 - size of initial investment
Example

Consider two alternatives:

- Invest $1 at an IRR of 100%
- Invest $1,000,000 at an IRR of 20%

Which investment would you prefer?
Example

Consider two alternatives:

- Invest $1 at an IRR of 100%
- Invest $1,000,000 at an IRR of 20%

The more expensive project has:

- Smaller IRR

but

- Larger present worth!
Judging proposed investments

- If you are going to pick only one alternative from several,
 - Need to compare them **against each other**!
 - (based on **differences** in cost)
 - not only against the base rate of return i^*
- Need to evaluate each **incremental** investment to see if it is worthwhile
Example

- Compare options A and B:
 - A: First cost = $1420
 - Annual benefit = $256/year for 40 years
 - Rate of return = 18%
 - B: First cost = $1684
 - Annual benefit = $300/year for 40 years
 - Rate of return = 17.8%

- You can only do one of these!
Example

- Option B has:
 - Slightly lower rate of return,
 - but
 - Higher initial investment
- Present worth of benefit may be greater than option A!
Example

- Need to evaluate the incremental investment to see if it is worthwhile:
 - Delta first cost = $1684 - 1420 = $264
 - Delta annual benefit = $300 - 256 = $44 (for 40 years)
 - Rate of return = 16.6%

- Is option B worthwhile?
 - (Depends on i*)
Example

- Option A has IRR 18%, first cost $1420
 - (B - A) has IRR 16.6%, first cost $264
- If i* = 15%, then:
 - Option A is worthwhile
 - The delta for option B is also worthwhile
- If i* = 17%, then:
 - Option A is worthwhile, but not B
Example

- Option A has IRR 18%
 - (B - A) has IRR 16.6%
- If i* = 20%, then:
 - Neither option A nor option B is good
Judging proposed investments

- To compare multiple alternatives with:
 - Different initial investments
 - Same lifetimes
- Look at differences between options
- Compare them against each other!
 - Not only against the base rate of return i^*
Judging proposed investments

- To compare multiple alternatives with:
 - Same initial investments
 - **Different** lifetimes

 can just compare IRR values directly

- Assume that each option is repeated:
 - The one with the better IRR in early years will still have the better IRR later on!
Judging proposed investments

To compare multiple alternatives with:

- **Different** initial investments
- **Different** lifetimes

Must first convert to equal lifetimes:

- Then look at **differences** between options
- Compare them **against each other**!
 - Not only against the base rate of return i^*
Judging proposed investments

- Possible mistakes:
 - Highest IRR is not necessarily best
 - Another project with a larger investment might yield a larger total benefit!
 - Project with largest initial investment is also not necessarily best
 - But we know that options with IRR < i* will never be chosen!
Judging proposed investments

- Compute incremental rate of return:
 - Based on a smaller investment that is already known to acceptable!

Example:
- \(i^* = 15\% \)
- IRR of option \(A = 12\% \)
- Option \(B \) may not be worthwhile
 - Even if IRR of \((B - A) \) is > \(i^* \)!
Can also plot graphically

- Overall IRR is where it crosses X axis
 - *Incremental* IRR is where 2 curves cross
Judging proposed investments

- If \(i^* < \text{IRR of } (B - A) \), then:
 - Option B is better

- If \(\text{IRR of } (B - A) < i^* < \text{IRR of } A \):
 - Option A is better

- If \(i^* > \text{IRR of } A \), then:
 - Neither option has positive present worth
 - *Don’t do either one!*
Combinations of investments

- Buy a mine for $1.5 million, n=8:
 - Annual benefit = $391,000
 - IRR = 20%

- Put aside money each year at 4% for 8 years (equal annual deposits), to pay $1.5M in year 8:
 - Annual amount A equals $163,000/year
 - Remaining mine revenue = $228,000/year
Combinations of investments

- Combined investment:
 - *Pay* $1.5 million in year 0
 - *Receive* $228,000/year for 8 years
 - *Receive* $1.5 million in year 8
 - IRR = 15.2% for this combination
 - But investing at 4% is not worth it even if \(i^* < 15\% \)!
 - Must judge both investments *separately*!
Note

- In some cases:
 - Sequences of investments over time
 - Rather than one investment period at start there may be \textit{no} IRR
 - (or more than one!)
- Increasing discount rate makes benefits worth less, but costs \textit{also} worth less
Example with no IRR

- Pay $15,000 in year 0
- Receive $5,000 in year 1:
 - $6,000 in year 2
 - $7,000 in year 3
- Pay $10,000 in year 4
- Small i* makes present worth of years 1-3 positive, *but makes cost count more*
Example with two IRR values

- Pay $700 in year 0
- Receive $200/year in years 1-10
 - $100/year in years 11-20
- Pay $3,000 in year 21
- @IRR function requires a guess:
 - With a guess of 2%, we get IRR = 2.8%
 - With a guess of 25%, we get IRR = 26.2%
Judging proposed investments

- @IRR function may create problems when there are multiple IRR values:
 - This happens for cash flow series with two or more reversals of sign
 - E.g., - + + + -
 - Or - + + - + + - + + +
- See Grant and Ireson, Appendix B
Review

- What is the single most important pitfall to avoid when using present worth to compare projects?
- What is the single most important pitfall to avoid when using internal rate of return to compare projects?