Lecture 7

Internal Rate of Return
Judging proposed investments

- Don’t need to pre-specify minimum rate of return i^* in judging projects
- **Internal rate of return (IRR)** is:
 - The interest rate that makes the present worth of a project exactly 0
- Project is desirable if $i^* < \text{IRR}$,
 - Not otherwise (since present worth would be negative)
Example

Consider a stream of costs and revenues over time

Present worth equals:

- $3924 at 18%
- -$6051 at 20%
Example

Assume function is linear in between

(True function actually lies slightly below)
Example

- Present worth equals:
 - $3924 at 18%, -$6051 at 20%
- Slope = Delta Y/Delta X
 - \[\frac{-6051 - 3924}{20 - 18} = -4987.5 \]
- Want distance x such that height y = 0:
 - \[3924 - 4987.5x = 0 \Rightarrow x = 0.8 \Rightarrow \text{IRR} = 18 + 0.8 \]
 - (True value = 18.76)
Internal rate of return

Note that we don’t need to consider present worth:
- As long as it is all in one time period
Example

- A factory starts operation at the end of year 0:
 - Capital costs arise in years -2, -1, and 0
 - Can convert to present worth in year -2,
 - Or to value in year 0
Example

- Assume expenses of:
 - $300K for land in year -2
 - $800K for construction in year -1
 - $700K for construction in year 0
 - $200K for inventory in year 0
Example

- Convert to future value in year 0
 - For year -2: $300 (F/P, 10%, 2) = $363
 - For year -1: $800 (F/P, 10%, 1) = $880
 - For year 0: $900
 - Total: $2143

- Can then convert future revenues to year 0 to compute “present worth”
Another example

- Find IRR of a $10K, 7%, 20-year bond:
 - Bought for $8K
 - (Can’t do without knowing purchase price!)

- Bond pays:
 - 7% of $10K = $700/year for 20 years
 - $10K in year 20

- Would IRR be higher or lower than 7%?
Another example

- Present worth of bond at $i^* = 9\%$:
 - $700 \text{ (P/A, 9\%, 20)} = 6390$
 - $10,000 \text{ (P/F, 9\%, 20)} = 1784$
 - Purchase price = -8000
 - Total = 174
Another example

- Present worth of bond at $i^* = 10\%$:
 - $700 \ (P/A, \ 10\%, \ 20) = 5959$
 - $10,000 \ (P/F, \ 10\%, \ 20) = 1486$
 - Purchase price = -8000
 - Total = -555
Another example

- Present worth equals:
 - $174 at 9%
 - -$555 at 10%

- Would you expect the IRR to be:
 - Closer to 9%?
 - Closer to 10%?
Another example

- **Present worth equals:**
 - $174 at 9%, -$555 at 10%

- **Slope = \Delta Y/\Delta X**
 - \((-$555 - $174)/(10 - 9) = -729 \)

- **Want distance \(x \) such that height \(y = 0 \):**
 - \(174 - 729x = 0 \Rightarrow x = .24 \)
 - **IRR = 9 + .24 = 9.24**
More realistic example

- Now assume that the bond pays:
 - $350 every six months for 20 years
 - $10K in year 20
- Would IRR be higher or lower than the previous value?
 - And why?
More realistic example

- Present worth at $i^* = 4\%$ for 6 months:
 - $350 \ (P/A, \ 4\%, \ 40) = 6927$
 - $10,000 \ (P/F, \ 4\%, \ 40) = 2083$
 - Purchase price = -8000
 - Total = 1010
More realistic example

- Present worth at $i^* = 5\%$ for 6 months:
 - $350 \times (P/A, 5\%, 40) = 6006$
 - $10,000 \times (P/F, 5\%, 40) = 1420$
 - Purchase price = -8000
 - Total = -574
More realistic example

- Present worth equals:
 - $1010 at 4%, -$574 at 5% per 6 months

- Slope = Delta Y/Delta X
 - $574 - $1010)/(5 - 4) = -1584

- Want distance x such that height y = 0:
 - 1010 - 1584x = 0 \Rightarrow x = .64
 - IRR = 4 + .64 = 4.64 per 6 months!
More realistic example

- How to convert to annual interest rate?
 - *Nominal* annual interest rate

 \[= 2 \times (4.64) = 9.28\% \]
 - *Effective* annual interest rate

 \[= (1.0464)^2 - 1 = 1.095 - 1 = .095 \]

 or 9.5\%
Judging proposed investments

- Don’t need to specify exact value of i^* in judging projects:
 - Only a range
- In last example, bond is desirable if:
 - Minimum attractive rate of return < 9.5%
 - Not otherwise
- Bounding i^* is easier than estimating it!
Review

- We learned how to
 - Find internal rate of return of a project:
 - Convert all costs, benefits to one time period
 - Try different interest rates until you find:
 - One where value of project is positive
 - One where value is negative
 - Interpolate to estimate IRR
 - Compare against minimum acceptable rate of return i^* to assess desirability