Lecture 5

Present Worth
Judging proposed investments

- There are many ways of judging proposed investments:
 - All based on a minimum rate of return i^*

- How to determine i^*?
 - At least as high as the interest rate
 - Also based on other available opportunities
 - Discussed in more detail in Chapter 18
Judging proposed investments

- Four different methods:
 - Present worth
 - Annual equivalent cash flow
 - Internal rate of return
 - Benefit/cost ratios

- All are mathematically equivalent:
 - Slightly different pluses and minuses
Judging proposed investments

- One alternative might have:
 - Higher initial cost, but
 - Lower annual cost or longer life
- Must convert to comparable terms
- Alternatives may also have different income tax implications:
 - Compare based on *after*-tax performance!
Calculation of present worth

- Based on *discounting!*
 - Future costs and benefits discounted to present
 - Discount rate = minimum rate of return i^*
 - Tells us how much we care about the future

- Present worth is the most intuitive method:
 - All costs and benefits are converted to year 0
 - Easy to interpret

- But can be difficult to implement for projects with different lives
Example

- Current labor cost is $9200/year
- Option to build new equipment:
 - **First cost**: $15,000
 - Labor: $3300/year
 - Power: $400/year
 - Maintenance: $1100/year
 - Property tax and insurance: $300/year
 - **Income tax**: $1040/year
 - **Total annual cost**: $6140/year
Example

Note:
- Only need to account for changes in property tax, insurance, etc.

Assumptions:
- Lifetime of equipment is 10 years
- Minimum rate of return $i^* = 9\%$
Example--results

- Present worth (cost) of current option:
 - $9200 \times (P/A, 9\%, 10) = \$59,050$

- Present worth (cost) of new equipment:
 - $6140 \times (P/A, 9\%, 10) = \$39,407$
 - First cost = $\$15,000$
 - Total = $\$54,407$

- Is the new equipment better?
Projects with different lives

- Cannot just bring back to present worth
- For example:
 - 20 years of service at a cost of $20,000 may (or may not) be worth more than
 - 10 years of service at a cost of $15,000
- When using present worth method:
 - Must compare options with equivalent lives
Example

- Compare options A and B at $i^* = 11\%$:

 A: First cost = $50,000

 - Annual cost = $9,000/year for 20 years

 - Salvage value = $10,000 in year 20

 B: First cost = $120,000

 - Annual cost = $7,000/year for 40 years

 - Salvage value = $20,000 in year 40

 - Salvage value should be *subtracted* from cost!
Example

- Present worth (cost) of option B:
 - First cost = $120,000
 - $7000 \((P/A, 11\%, 40)\) = $62,657
 - -$20,000 \((P/F, 11\%, 40)\) = -$308
 - Total = $182,349

- This option provides **40 years** of service
Example

- Must convert option A to 40 years!
 - First cost $50,000
 - $50,000 (P/F, 11%, 20) = $6201
 - $9000 (P/A, 11%, 40) = $80,559
 - -$10,000 (P/F, 11%, 20) = -$1240
 - -$10,000 (P/F, 11%, 40) = -$154
 - Total = $135,326
 - First cost, salvage value appear twice!
Example

- Which option is better?
 - Option B has:
 - Longer lifetime
 - Lower annual cost
 - Higher salvage value at end of life
 - But two copies of option A can provide 40 years of service with lower present worth!
Projects with different lives

- To evaluate based on present worth:
 - Must convert lifetimes of all projects to their least common multiple!
 - In this example, that was easy:
 - Least common multiple of 20 and 40 is 40
 - In some problems, it can get complicated:
 - Least common multiple of 7 and 12 is 84!
 - Would need 12 copies of one, 7 of the other
Projects with *perpetual* lives

- Some projects may last so long that they can be modeled as *perpetual*!
- Even projects with perpetual lives can have a *finite* present worth:
 - Why?
- General formula for perpetual lives:
 - \(P = \frac{A}{i^*}, \) or \(A = P i^* \)
Example

- **First cost** = $50,000
- **Annual cost** = $9,000/year forever
- **Interest rate** $i^* = 11\%

Present worth:

- $50,000 + $9,000/.11 = $131,818
Perpetual lives

- Some perpetual costs are not annual
 - For example, every 20 years we may:
 - Need to purchase new equipment ($50,000)
 - Get salvage value of old equipment ($10,000)

- To convert perpetual recurrent costs to present worth:
 - First convert to annual
 - Then divide by \(i^* \) to get present worth
Example

- Every 20 years we:
 - Need to purchase new equipment
 - $50,000
 - Get salvage value of old equipment
 - $10,000

- Annualized cost is:
 - $40,000 \((A/F, 11\%, 20) \) = $623
 - Present worth = \($623/i^* \) = $5664
Example

- Present worth of continuing project A in perpetuity:
 - First cost in year 0 = $50,000
 - Annual cost $9,000/i = $81,818
 - $40,000 (A/F, 11%, 20)/i = $5664
 - (Replacement cost minus salvage value)
 - Total present worth = $137,482
 - Only slightly greater than 2 copies ($135,326)
Perpetual lives

- Why use perpetual lives?
- Avoids the need to analyze numerous copies of a project:
 - If least common multiple of lives is large
- Can simply convert all projects to their perpetual equivalent
 - (Assuming an \textit{infinite} number of copies)
Projects with different lives

- The comparison methods so far:
 - Least common multiple of lifetimes
 - Perpetual lifetimes

make sense if the best option would be used for an extended period of time

- This may not always be the case:
 - E.g., computers (due to rapid change)
Review

- What is the single most important pitfall to avoid when using present worth to compare projects?