Lecture 12

Retirement/Replacement Decisions
Review

Last time, we learned how to evaluate retirement and replacement when:

- Both options had same lifetime
- Optimal life for each option was *known!*
Complicating factors

- Alternatives may have different lifetimes
- Optimal lifetime may not be known:
 - Given present and future salvage values,
 - Consider multiple possible salvage dates
 - To determine the optimal lifetime
Example

- Equipment is 2 years old
 - Purchased for $25,000
- Assume $i^* = 15\%$ (before income tax)
- Resale value = $13,000 today
 - $10,000 in 1 year
 - $7,500 in 2 years
 - $5,500 in 3 or more years
Example

- Based on the *outsider viewpoint* (i.e., opportunity cost, *not cash flow!*),
 keeping the equipment is the same as buying it used for $13,000

- Assuming operating costs are the same as for new equipment:
 - Can safely ignore in comparison!
Example

- Compare alternative lifetimes
- Cost of keeping equipment for 1 year:
 - $13,000 (A/P, 15%, 1) = $14,950
 - This is like a *cost* of keeping the equipment
 - You don’t get it unless you sell!
 - Year 1 salvage value = -$10,000
 - Total = $4,950
 - (in year 1 dollars!)
Example

- Cost of keeping equipment for 2 years (given that I am keeping it for 1 year):
 - $10,000 (A/P, 15%, 1) = $11,500
 - Year 2 salvage value = -$7,500
 - Total = $4,000
 - (in year 2 dollars!)
Example

- Cost of keeping equipment for 3 years (given that I am keeping it for 2 years):
 - $7,500 (A/P, 15%, 1) = $8,625
 - Year 3 salvage value = -$5,500
 - Total = $3,125
 - (in year 3 dollars!)
Example

<table>
<thead>
<tr>
<th>Year</th>
<th>"Cash flow"</th>
<th>Discounted</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4950</td>
<td>4304</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>4000</td>
<td>3025</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3125</td>
<td>2055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year 1</td>
<td>4304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Years 1 and 2</td>
<td>7329</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Years 1, 2, 3</td>
<td>9384</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual (already in year 1 dollars)</td>
<td>4950</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equivalent</td>
<td>7329 (A/P, 15%, 2)= 4508</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9384 (A/P, 15%, 3)= 4110</td>
<td></td>
</tr>
</tbody>
</table>

- What is the best option?
 - Keeping for 3 years has *lowest annual cost*
General formulation

- Equivalent annual cost of an asset:
 - Bought for $B in year 0
 - (or with current value of $B in year 0)
 - Sold for salvage value S_n in year n

 equals $B \left(\frac{A}{P}, i^*, n\right) - S_n \left(\frac{A}{F}, i^*, n\right)$

- Can solve this for lots of values of n
 - To find optimum lifetime
 - (Minimum annual cost!)
General formulation

- If alternatives have same lifetime, then can treat year 0 salvage value as either:
 - A *cost* of keeping the current equipment or
 - A *benefit* of selling it
- If the alternatives have different lives, this is a problem
 - Why??
General formulation

- Assumption:
 - Each option is repeated over and over
 - If we use the old equipment for 3 years and repeat over and over
 - (e.g., by buying similar used equipment), salvage value will be paid every 3 years
 - So *should be annualized over 3 years*!
General formulation

- If alternatives have different lives, then:
 - Current salvage value *must* be considered a cost of keeping the equipment!
- If we subtract it from the cost of the new equipment:
 - It will be annualized over the wrong period
Realistic example

- In the previous example,
 - Optimum lifetime was determined *only* by declining salvage values over time

- In practice, equipment will have
 - Declining salvage values,
 - but also
 - *Increasing annual expenses!*
Realistic example

- Current machine is 1 year old, i*=15%
 - Resale value = $12,500 today
 - $8,000 in 1 year
 - $5,000 in 2 years
 - $2,200 in 3 years
 - Annual expenses = $8,900 in year 1
 - $10,500 in year 2
 - $12,500 in year 3
Realistic example

- Compare based on annual equivalent

If we keep equipment for 1 year, cost =

- $12,500 \(\text{A/P, 15\%, 1}\) = $14,375
 - Annualized opportunity cost
- -$8,000 \(\text{A/F, 15\%, 1}\) = -$8,000
 - Year 1 salvage value
- $8,900 (already in year 1) = $8,900

Total annual cost = $15,275
Realistic example

If we keep for 2 years, annual cost =

- $12,500 \(A/P, 15\%, 2\) = $7,689
- $5,000 \(A/F, 15\%, 2\) = -$2,326
 - Year 2 salvage value
 - $8,900 \(P/F, 15\%, 1\)(A/P, 15\%, 2) = $4,760
 - $10,500 \(A/F, 15\%, 2\) = $4,884
- Total annual cost = $15,008

Is this better or worse?
Realistic example

- If we keep for 3 years, annual cost =
 - $12,500 \text{ (A/P, 15\%, 3)} = $5,475
 - -$2,200 \text{ (A/F, 15\%, 3)} = -$634
 - $8,900 \text{ (P/F,15\%,1)(A/P,15\%,3)} = $3,390
 - $10,500 \text{ (P/F,15\%,2)(A/P,15\%,3)} = $3,477
 - $12,500 \text{ (A/F, 15\%, 3)} = $3,600
- Total annual cost = $15,278
 - This is worse again! (optimal lifetime=2 years)
Realistic example

- Lowest possible annual cost = $15,008

- Optimal decision:
 - If the best replacement costs < $15,008,
 - Then replace now!
 - (The best you can do by keeping it is $15,008)
 - Otherwise, replace in 2 years
 - (Assuming cost of the replacement is the same)
 - Could even keep for 3 years--When???
Realistic example

- Information gathered in next 2 years may change that decision:
 - *Actual* optimal lifetime may be more or less than predicted!
Judging proposed investments

- Annualized capital recovery cost (based on capital cost minus salvage cost) usually decreases with longer lifetime:
 - *Can amortize capital cost over more years!*

- Annualized operation/maintenance cost usually increases with longer lifetime:
 - *Equipment wears out!*
- Maintenance cost is increasing
- Capital recovery cost is decreasing
Judging proposed investments

- Minimum annual cost is often fairly flat:
 - Can choose any one of several lifetimes with only a modest difference in total cost

- In this example,
 - Cost of keeping equipment for 3 or 5 years is only slightly higher than optimum
Judging proposed investments

- Minimum annualized cost occurs when
 - Equivalent annual cost
 - = Marginal cost of an additional year
- If another year has total cost < average
 - Then keep for one more year!
- If another year has total cost > average
 - Then don’t keep equipment for that year!
Judging proposed investments

- Different rules depending on whether we will replace with:
 - Similar equipment
 or
 - *Different equipment*!
Replace with similar item

- When annualized cost is increasing:
 - Then the best option is to replace *now!*
When annualized cost is increasing,
 It may still be worth keeping equipment:
 Depends on whether cost of current equipment is still less than cost of replacement!

Future options must also be considered:
 If development will yield a better option,
 It might be worth waiting, even if the current option is more costly than the replacement that’s currently available--Example?
Review

- We learned how to choose between
 - Life extension
 - Replacement

- When options have different lifetimes:
 - Annualize, treat current salvage as a *cost*

- When optimal lifetime is unknown:
 - Compute minimum annual cost, compare!