Lecture 11

Retirement/Replacement Decisions
Reasons for retirement

- A better alternative exists
- Needs have changed
- The equipment has deteriorated
- The equipment has been damaged
Retirement or replacement

- An asset that is “retired” from one application may be used elsewhere
 - (Either sold to another business, or kept)
- Replacement may not mean retirement:
 - Old equipment may be kept for other uses
Complicating factors

- Extending the life of an existing asset is different from replacing it
- Retirement and replacement may have implications for income taxes
 - (Will be addressed in more detail later)
- The existing asset and the replacement may have different lifetimes
Example

- Should we sell our old warehouse
 - And rent space?
- Warehouse is 10 years old
 - Purchased for:
 - $40,000 land
 - $160,000 building
 - Is this relevant???
- Assume $i^* = 20\%$ (before income tax)
Example

- Current annual expenses:
 - $14,000/year operations and maintenance
 - $4,600/year property tax
 - $1,500/year insurance on warehouse
 - $3,000/year insurance on inventory
 - $23,100/year total

(Ignore income tax for now)
Example

- Plan was to sell 10 years from now:
 - For $250,000
- Just received an offer today:
 - For $350,000
Example

New expenses if we rent space:

- $65,000/year rent
- $5,200/year operations and maintenance
- $1,600/year insurance on inventory
- $71,800/year total
Example

- Compare based on annual equivalent

Annual equivalent of current option:

- Annual expenses $23,100
- $350,000 \((A/P, 20\%, 10)\) = $83,500
 - This is like a *cost* of keeping the warehouse
 - You don’t get it unless you sell!
- -$250,000 \((A/F, 20\%, 10)\) = -$9,600
- Total = $97,000
Example

- Annual equivalent of renting:
 - Annual expenses $71,800

- Annual equivalent of current option:
 - Annual expenses $97,000

- Is renting better?
 - Yes, it’s cheaper to rent!
 - In practice, might want to do after-tax analysis with lower i*
Example

- Compare based on IRR
- Keeping warehouse has higher first cost
 - Because we forego the current sale price
- Cost of renting - cost of owning:
 - Year 0 - $350,000
 - Years 1-10 ($71,800-$23,100) = $48,700
 - Year 10 salvage value $250,000
Example

First try: discount rate $i^* = 20\%$

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash flow</th>
<th>Discounted</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-350.0</td>
<td>-350.00</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>48.7</td>
<td>40.58</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48.7</td>
<td>33.82</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48.7</td>
<td>28.18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>48.7</td>
<td>23.49</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48.7</td>
<td>19.57</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48.7</td>
<td>16.31</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48.7</td>
<td>13.59</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>48.7</td>
<td>11.33</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>48.7</td>
<td>9.44</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>48.7</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>250.0</td>
<td>40.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-105.45</td>
<td></td>
</tr>
</tbody>
</table>

Present worth: -105.45
Example

Second try: discount rate $i^* = 10\%$

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash flow</th>
<th>Discounted</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-350.0</td>
<td>-350.00</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>48.7</td>
<td>44.27</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48.7</td>
<td>40.25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48.7</td>
<td>36.59</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>48.7</td>
<td>33.26</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48.7</td>
<td>30.24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48.7</td>
<td>27.49</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48.7</td>
<td>24.99</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>48.7</td>
<td>22.72</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>48.7</td>
<td>20.65</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>48.7</td>
<td>18.78</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>250.0</td>
<td>96.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Present worth</td>
<td>45.63</td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash flow</th>
<th>Discounted</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-350.0</td>
<td>-350.00</td>
<td>0.123</td>
</tr>
<tr>
<td>1</td>
<td>48.7</td>
<td>43.37</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48.7</td>
<td>38.62</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48.7</td>
<td>34.39</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>48.7</td>
<td>30.62</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48.7</td>
<td>27.27</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48.7</td>
<td>24.28</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48.7</td>
<td>21.62</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>48.7</td>
<td>19.25</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>48.7</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>48.7</td>
<td>15.27</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>250.0</td>
<td>78.37</td>
<td></td>
</tr>
</tbody>
</table>

Present worth: 0.19

- **Converged**: discount rate $i^* = 12.3\%$
Example

- Analysis is easy:
 - Because both options have the same lives (10 years)

- Keeping the old warehouse is like investing money at 12.3%:
 - Since our i* is 20%, this is not good!
Judging proposed investments

- In this example, we used annual equivalent and internal rate of return interchangeably
 - This is OK, because options had same life
- With different lives:
 - *Use annual equivalent!*
Judging proposed investments

- Decisions about life extension involve both present and future **salvage values**
 - Forego **present** value to get **future** one *(opportunity cost!)*

- Present salvage value can be **either**
 - Added to the life extension cost, **or**
 - Subtracted from the replacement cost,
 - But not both!
Judging proposed investments

- When lifetimes are different,
 - Present salvage value *must be* added to the life extension cost!
 - Or else it won’t recur with right frequency!

- This seems unintuitive:
 - You don’t actually *get* the salvage value unless you *replace* the equipment!
Judging proposed investments

- Think of it as “buying a used item of equipment” from scratch:
 - You are choosing the best *policy*,
 - Not making a one-time choice

- If keeping your used equipment is best,
 - Assume that you will eventually replace it with a *similar* used item of equipment
 - Take an outsider’s viewpoint!
Another example

- Wrong equipment bought:
 - Pump cost $3,600 one year ago
 - Power cost = $2,000/year
 - Because of poor pump choice
 - Is this relevant???

- Assume $i^* = 18\%$
 - (before income tax)
Another example

- New expenses if we replace pump:
 - $3,400 cost of new pump
 - $1,100/year power cost
 - $700 salvage value of old pump
Another example

- Should we replace the pump?
- Assume a 10-year remaining life
 - (For both new pump and existing pump)
Another example

- Compare based on annual equivalent

Annual equivalent of current pump:

- Annual expenses $2,000/year
- $700 (A/P, 18%, 10) = $156/year
 - This is like a *cost* of keeping the current pump,
 - because you don’t get it unless you sell!

- Total = $2,156/year
Another example

- Annual equivalent of replacing pump:
 - Annual expenses $1,100/year
 - $3,400 (A/P, 18%, 10) = $757/year
 - Total = $1,857/year

- Is it better to replace the pump?
Note

- Sunk cost
 - E.g., sell asset before its expected lifetime
- Does this show that the past decision was “bad”?
Review

- We learned how to choose between
 - Life extension
 - (Keeping old item of equipment)
 - Replacement

- So far:
 - Both options had same lifetime
 - Optimal life for each option was *known!*
Dynamic example (study on your own?)

- Should we replace leaking gas mains?
 - Gas costs $5/thousand feet3
 - New pipe costs $40,000/mile
 - Old pipe has 0 salvage value

- New pipe has no leaks for 15 years,
 - Then increases by 100,000 feet3/mile/year

- Assume $i^* = 10\%$
Dynamic example

- Annual equivalent of replacing pipe:
 - Need annual equivalent of gas losses
 - This is complicated:
 - Non-equal (gradient) amounts by year
 - Doesn’t start for 15 years
 - Two ways to do this:
 - Convert gradient to annual (in several steps)
 - Trial and error in spreadsheet
Dynamic example

- Convert gradient to annual
 - Leaks in years 16-25 are equivalent to:
 - 11-year gradient starting in year 15
 - (1st year of gradient is always 0)
 - Convert to “present” value in year 14 (before start of gradient) according to:
 - $5/thousand ft\(^3\) (100,000 ft\(^3\)) (P\(_{14}/G\), 10\%, 11)
 - = $500 (26.4) = $13,200
Dynamic example

- Convert gradient to annual
 - Can we convert “present” value in year 14 directly to annual amount over years 1-25?
 - *No!* Two different time periods involved:
 - P_{14} is 14 years into the future
 - But we want to annualize it over 25 years!
 - Convert to year 0 by $13,200 (P/F, 10\%, 14)$
 - $= 3475$
 - Annualize by $3475 (A/P, 10\%, 25) = 383$
<table>
<thead>
<tr>
<th>Year</th>
<th>Losses</th>
<th>Discounted</th>
<th>Annual</th>
<th>Discounted</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>348.09</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>316.45</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>287.68</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>261.53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>237.75</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>216.14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>196.49</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>178.63</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>162.39</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>147.62</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>134.20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>122.00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>110.91</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>100.83</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.00</td>
<td>382.9</td>
<td>91.66</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>500</td>
<td>108.81</td>
<td>382.9</td>
<td>83.33</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1000</td>
<td>197.84</td>
<td>382.9</td>
<td>75.75</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1500</td>
<td>269.79</td>
<td>382.9</td>
<td>68.87</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2000</td>
<td>327.02</td>
<td>382.9</td>
<td>62.61</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2500</td>
<td>371.61</td>
<td>382.9</td>
<td>56.92</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3000</td>
<td>405.39</td>
<td>382.9</td>
<td>51.74</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3500</td>
<td>429.96</td>
<td>382.9</td>
<td>47.04</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4000</td>
<td>446.71</td>
<td>382.9</td>
<td>42.76</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4500</td>
<td>456.87</td>
<td>382.9</td>
<td>38.87</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5000</td>
<td>461.48</td>
<td>382.9</td>
<td>35.34</td>
<td></td>
</tr>
<tr>
<td>Present worth</td>
<td></td>
<td></td>
<td>3475.48</td>
<td>3475.60</td>
<td></td>
</tr>
</tbody>
</table>

Converged: annual equivalent = 383
Dynamic example

- Compare based on annual equivalent

Annual equivalent of replacing pipe:

- Annualized gas losses $383
- $40,000 (A/P, 10%, 20) = $4,407
 - Annualized capital cost

- Total = $4,790
Dynamic example

- Replace current pipe if losses > $4,790
- Assumptions:
 - Current losses are only going to grow
 - Original cost of current pipe is a *sunk cost!*
 - Current pipe has 0 salvage value,
 - So there is no opportunity cost of keeping it
 - Only annualized losses (no capital cost)