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ON THE HK COMPLETIONS OF SEQUENCE
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ABSTRACT

If the space ¢ (the finite sequences) is equipped with the norm which is
naturally induced by a positive definite Hermitian and diagonally blockwise constructed
matrix, then an HK completion exists.

1. Preliminaries:

An HK space is a Hilbert space of sequences on which
coordinate projections are all continuous.

An FK space is a linear topological space of sequences which
is a locally convex Frechet space with continuous coordinate projec-
tions.

A BK space is the special case of the foregoing in which the
Frechet space is a Banach space.
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On The HK Completions Of Sequence Spaces

An AD space is an FK space in which ¢ is dense.

Throughout this paper, o will stand for the collection of ail
complex sequences, C for the complex numbers, and ¢ will denote the
space of all members of w which are square summable.
ie. PF={xe m/Z.)]xijz = | x [*, < w).

i

Let, for n = 1,2,..., " be the sequence defined as:

n
e = 1 ifn=k
k
o otherwise, and finally, let M be the soi ol all
infinite matrices A = (a;) which are Hermitian »rd posin- - fmt
n
For x = B x, €“ ep and A ¢ M, define the norm || x |, whi
k=1
induced by A as :
D n
IxFa= Z I x;8%
i=1 j=1

This, of course, makes (¢, | . |,) a normed sequence space. In this
paper, we present sufficient conditions for this space to have an HK
completion.
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2. The continuity of coordinate projections:

For n = 1,2,..., we define the n® coordinate projection P, as :
Pu (x) = X, (X € (1)).

With A € M, the HK definition requires that P, be continuous
on (¢,] . |l for each n. One needs the following.

2.1 Continuity Criterion ("', 4.0.3): If X is a linear topological
space with topology determined by a family P of seminorms, then the
linear functional f is continuous on X iff there exists an s > o and q,,
d,s -++» q, Selected from P such that

n
If(x)| <s & q (x) forall x e X.
k=1

In the present setting , P = {] . |,}; and the following example
shows a casc where P, is not continuous on (¢, || . {,)-

2.2 Example :

For each n, let E" = {x ¢ w : X, = o for all k > n). Consider the
matrix A = (a,) where :

1 if i=j=1
a; =) Sifi=j>1
- 2 if |i4j]=1
0 elsewhere.
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A is clearly Hermitian. As for the positive definiteness:
Let X = 0 be an arbitrary element in E*. We may assume that x, # o.

X* AX

I X s

= {;, - 222 3 ‘2;1 + Siz - 2%3, - 212 + 5i3 ‘2%, aeey
2%, + 5K, )%

= 1%, 1% - 2%,%, - 2%,%, + 5[%, )7 - 2x,%, - 2X,X, +
51%af% - oo+ 51%gy [ 2%, %, - 2X,,%, + S|x, [P

= %, 2 2%,%; - 2%%; + 5% - 20X, - :}-Kfz;‘a +
51%507 - oo S [P 200K, 20K + S ik, |"

= (- 4Re(xX) + 4R (ol - 18 (X))
+ 4|X3|2)+ (|xn~ll2 - 4§{c{xn‘5(n) oy e
jxn %

= X 2%+ X 2% [P+ [x2% 7 ¢ (X
>0
Therefore, A ¢ M.

For k > 2, choose x, = Xk-1 to get x, = X, , and no one has:
2 2n—1

I x 12 = %[
= |x,)?, or:

2n-2
P
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Now, (2.1) implies that P, is not continuous on (¢, | . | A)
We now proceed to establish sufficient conditions for coordi-
nate projections to be continuous. We first make the

2.3 Lemma :

For the nxn positive definite matrix A, let A = min {A, : A, is
an eigen value of A). It is then known that, for x ¢ E*,
n
X*AX 2 A | x| where | x P=2 |x]*
k=1
Proof: Let U be a unitary matrix which diagonalizes A. Let x = U,
for some y ¢ E*
Now, x* A x = y* AUy

- y* Dy
n
= 2 A, |yc|* where D = diag (&,, A, ... , &p).
k=1
since U is unitary, | x | = | y | and so the assertion follows. /!

with this at hand, it is now possible to prove.
2.4 Theorem :
If A e M has the form A = diag (A, A,, ...) where, for each k,

A, is an S, x S, matrix, then for each n = 1,2, ... P, is continuous on

(d, I - 1a)
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Proof : It is clear that, for each k, A, is Hermetian and positive
definite.

For each k, define the matrix A{ = diag (A, 0,0, ..), and the
matrix B, = diag (A}, A,, ..., A, O, O, ..).

Fix n, let A = min {A,:1, is an eigen value of B}, and for x ¢ ¢
let | x | be as in (2.3).

Now, [x,I° < x|

2
< 1 | x|r,by (23)

A
n
=1 2 |x|
A k=1 k
* 2
<1 2 x|,
A k=1 k
2
=1 x|,
A

By (2.1), P, is continuous on (¢, || . ||,)-
It is now our objective to show that this matrix diagonal

blockwise construction also solves the existence problem. The existing
completions are to be shown unique and of desired form.
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As for the uniqueness question, the next well-known lemma
takes care of it.

2.5 Lemma : let X and Y be two BK spaces. If S is a dense
subspace of X and of Y such that | x |, = | x |, for all x & S, then
X=Y.

Proof : Let x € X be arbitrary. Choose a sequence {x"} ¢ S with
x" --—--> x in X. The sequence {x"} is then a Cauchy sequence in X
and so, for all ¢ > o there exists a positive integer N for which

| x™ -x" |, < e whenever m,n > N. But this says that | x"-x" |, < ¢
for all m,n > N. Therefore, {x"} is Cachy in Y, hence converges to
someye Y.

Now, x"----> x e X; so, for each k, x", ---> x, (in C). Also,
X" --->y e Y; so, for each k, X%, -—->y, (in C), implying that x =y,
thus X cY. [/

Luckily enough, inner product spaces transfer their inner
products to their completions. But the problem is that a completion
of a specific type may not exist, and this is actually the existence
problem being considered here.

2.6 Proposition : Let (X, <., .>) be an inner product space, and K
a completion of X, then K is an inner product space.

Proof : First of all, one has to note that a completion always exists.
Take for example the closure of X in its second dual under the
canonical embedding.

For x, y ¢ K, define :
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<Xy > =n1iJ;'lw< x", y" >y where, (x") < X, {y"] X are two
sequences converging respectively, 1o X, and y. This inner product is
well defined, indeed;

‘<Xm,ym>_<xn,yu>\=<xm,ym>+<xm’yn>_<xm,
yﬂ>-<x“,y“>ig|<xm,ym>-<xm,y“>|+
|<xn’yu>_<xm’yﬂ>|

SOIX™EIy" -y "I+ 0y 11 x"x"|-->0

So the sequence {< x“, y' >} is a Cachy sequence in C, hence
converges to a unique limit. //

As it was remarked earlier, turning ¢ into an inner product
space does not necessarily force an FK completion to exist. The
following example shows this claim.

2.7 Example : Suppose that A ¢ M makes coordinate projections
continuous on (¢, || . |[,). For x e ¢, let.

I x| = x Pa * |[fx)|*'? where f is a non-
continuous linear functional on (¢, | . |,)- [f exists since ¢ is infinite
dimensional; see example 3.3.14 of? ]. We claim that the space (¢,
I . ) is an inner product space which is continuously embedded in ,
but has no FK completion.

To prove, we need the following

2.8 Lemma : (special casc of theorem 3.11 p. 80 of*)):
Let X be a lincar metric space of sequences on which P, is continuous
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for all n. Then X has an FK completion iff for every Cauchy
sequence {x"} ¢ X which converges to zero pointwise, we have
x"--->0in X.

We can now prove our claim.

Note first that the norm || . | is given by the inner product
<Xy > = <Xy >, t (%) f(y)

Define the matrix B = (b, ) as:
b, = <e e >

So,the norm || . | = | . |p-

Now, (¢, || . |g) is continuously embedded in w {Fix n, and let
x e ¢ be arbitrary.

Ix,] <s | x |, for some s > o by (2.1)

< s | x |z by the construction of | . |z].

But (¢ [ . |z) has no FK completion [The set {x e ¢ : f(x) = 1} is
dense in (¢, | . |, by example (3.2) page (81) of £3], Therefore, there
exists a sequence {x"] < ¢ with f(x") = 1 for all n, and
I x*|p -—->o0

Finally, {x"] is Cauchy in (¢, | . |g)since, | x™ - X" =
(I x™ - x*, + [ - xDH? = | x® - x*|,, X* —-> 0 in w, but

| x* | --—-> 1 wo. Our claim now follows from lemma 2.8. /l

Turning to the existence problem,; it is essential to recall the
following.
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2.9 Remarks :

(a) (¥, 7.1.3) : A finite dimensional inner product space is
a Hilbert space.

by (P, page 80) : If (H,) is a sequence of Hilbert
spaces, then the direct sum o, H, is the Hilbert space H of all
sequences {x" : x* ¢ H ) such that the sequence {|x"|;,} & €.
Addition, scalar multiplanation and inner product are defined on H as
follows:
For = {x"},y = {y" eH, and for a € C,
define x+y= {x"+y%,
a Xx= {a x"} and
<x,y>H=%<x“,y“>Hn,
Consider the matrix A of (2.4)
For each n, let:

n
r,=2 S,
k=1

¢, = {x e ¢: x, = o for all k except, possibly, forr,, <k <]},
A, = diag (0.0, ... ,0,A,,0,0, ) where the zero-block appears
(r,,) - times before the block A, and let H, = (¢, | . l10)-

By remark (2.9), H is a Hilbert space of sequences, and by its
very construction, H has AD.
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With all this at hand, theorem (2.4), now, casily and clearly
implies the

2.10 Theorem (main result) :

Suppose that A is an infinite matrix which is Hermitian and
positive definite. If A has the form

A = diag (A, A,, ... ) where, for each n, A isan S, x S,

matrix, then the normed sequence space (¢, | . |,) has an HK
completion wich has the AD property.

Proof : Done already. /

136



On The HK Completions Of Sequence Spaces

REFERENCES

1. A. Wilansky, “Summability Through Functional Analysis”,
North Holand - N.Y. 1984.

2. , "Modern Methods in Topological Vactor Spaces”
1978.

3. , “Topics in Functional Analysis”, Springer-verlag,
N.Y. 1967.

4. , "Functional Analysis”, 1964.

5. A. Mukherjed and K. Pothoven, “Real and Functional Anal-
ysis”, 1978,

137



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

