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The energy spectrum of two interacting electrons, confined in a parabolic
quantum dot, presented in a magnetic field is obtained. We have analyzed
the energy level crossings between spin-singlet and spin-triplet states. The
influence of the quantum dot size on these crossings is also shown. The results
of our calculations seem to be in good agreement with analytical and exact
numerical data.

PACS numbers: 73.20.Dx

l. Introduction

Quasi-zero-dimensional systems, such as quantuin dots  (QDs), have been the
subject of intense research in recent years, due to the  nanofabrication techniques
that make possible the realization of systems of very small dimensions comparable
to the de Broglie wavelength of carriers. In such small structures the dynamics of
electrons is fully quantized into a discrete spectrum of energy levels. The confine-
ment in z-direction, which is the growth direction, is assumed to be stronger than
in the xy-plane, so that the dot can be viewed as a two-dimensional disk. Different
experimental [1-5] and theoretical [8-20] methods have been used to investigate
the energy spectrum and the correlation effects of the interacting electrons con-
fined in quantum dots under the effect of an applied magnetic field. One of the
most interesting features of the electron correlation is the change of the spin and
angular momenta structures in the ground state of those systems in the presence
of the inagnetic field. The singlet—triplet electron transition that occurs in the
two-electron parabolic quantum dot is a simple case but not a trivial one and has
recently received much attention [14-17].

In this work we shall study the spectroscopic properties of the two-electron
quantum dot using a different approach, namely the shifted 1/D expansion method,
where D is the number of spatial dimensions. We progress in two steps: firstly, we
used the shifted 1/D expansion to produce an analytical energy expression for
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two interacting electrons confined in a quantum dot in the presence of a magnetic
field of arbitrary strength. Secondly, we focus on the spin and angular momenta
transitions and give explanation to these phenomena, which occur in the spectra
by making use of the energy expression we have obtained. The results of this work
are outlined in the following sections. In Sec. 2 we present the Hamiltonian theory
for two interacting electrons parabolically confined in quantum dot and obtain the
eigenenergy expression using the 1/D expansion method. In Sec. 3 we present our
computed results and explanation to the singlet—triplet transition. The conclusion
is given in the final section.

2. Model

The effective-mass Hamiltonian, H, for two interacting electrons, paraboli-
cally confined in a quantum dot, in the presence of a perpendicular magnetic field
applied parallel to the z-axis is given as

L and Si , stand for the z-components of the orbital angular momentum and spin
of each electron, μ = eħ/2m*, g*, ωc = eB/m* a, and ε are the Bohr magneto.n,
Lande factor, the cyclotron frequency, and the dielectric constant of the mediuin,
respectively. The frequency ω depends on the magnetic field Β and the confinement
frequency ω0 and is given as

Upon introducing the center of mass (cm) R = (ν1 + r2)/2 and the relative
coordinates v = (r1 — ν2)/'/, the Hamiltonian in Eq. (1) decoupled to the cm
motion Hamiltonian

and the relative motion HamiltorIian

Equation (3) describes the Πamiltonian of the harmonic oscillator with well
known eieneneries

labelled by the radial (ncm = 0,1,2,...) and the azimuthal (mcm 0,±1,±2,...)
quantum numbers. Antisymmetrization of the two-electron wave function requires
that even m states are singlets and odd m states are triplets with the Zeeman
energy term Εsρin = g*μΒ5 and the total spin S = [1 — (-1)m]/2 each rep-
resenting a good quantum number for the system. The Zeeman energy is very
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small for QD made from GaAs (g* = —0.44, m* = 0.067me) in an applied mag-
netic field of practical strength 10 Τ. Ποweνer, the oscillations of the spin make
the spectra of the quantum dot more rich. The total energy states of the  Hamil-
tonian Ε ΕR(ncm, mcm) + Ε r(nr , m) + are labelled by the cm and
relative quantum numbers jn, mcm; nr , m>. The problem is reduced to obtaining
the eigenenergies Εnm of the relative motion Hamiltonian. The  eigenenergies are
obtained by the help of the 1/D expansion method. In D spatial dimensions the
radial Schrödinger equation for the efTective potential V(r) = +171/4 ω2r2 +m
becoines

: 	where k = D + 2m  — α and α is the shift parameter. Following the previous work of
the shifted 1/D expansion method [21-24], we give here only the energy expression

. 	which is needed to calculate the spectra of Hr. The energy expression then reads as

and the roots r0 are determined through the relation

The explicit forms of the parameters  ιrι and α2 are given in the Appendix in
terms of nr, ω, r0, and α. Once the roots r0 for a particular quantum state 'nr, m)
and the confining frequency ω are calculated, the task of computing the energy
using Eq. (7) is relatively simple.

3. Results

Our numerical results are computed for  QD made of GaAslAlGaAs and
presented in Figs. 1-3 and Tables  I—V. In Fig. 1 we have shown the energies of

Ι the states 10,0; 0, m>, m = 0,—i, —2, ... for two interacting electrons parabolically
confined in the quantum dot of size I = 3α* as a function of the ratio  ω/ω0. The
numerical results for the states m = 0, —1, —5, —7 are also given in Table I for the
sake of comparison.

As the ratio ω/ω0 increases, the energy of the state m  = 0 increases while
the energies of the states with non-vanishing azimuthal quantum number m de-
creases, thus leading to a sequence of different ground states. The transition in the
m-quantum number is accompanied by a flip in the spin of the state to keep the
wave function of the electron state totally antisymmetric in accordance with Pauli
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Fig. 1. The total energies of the states 0,0;0,m),m = 0,-1,-2,...,-10 for two
interacting electrons, parabolically confined in the  QD of size £ = 3α* and g* = —0.44.
For GaAs α 98.7 Α and R* = 5.83 reV ( singlet states; — - — triplet states).

exclusion principle. We observed from Fig.  Ι that the first transition (m : 0 —+ —1,
s :1 .—* 0) occurs at ω/ω0 0.6 and the second one (m : —1 —* —2, s :0 —+1) at

1.8. For the fixed value of  10 — (ħ/m*ω0)Ι/2, equivalently ω0, the second
transition occurs at a higher ω/ω0 ratio. These results are in agreement with those
reported in Ref. [15]. The ground state of the interacting electrons confined in the
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quantum dot due to this transition, changes its angular momentum (m) and its
spin (s) quantum numbers as shown in the figures.

The transition phenomena can be understood from the competition between
Coulomb and magneto-confining energies which appears in Eq. (8). The major
contribution ( 50%) to the relative energy En,.,m of the system comes from the
first term, namely,

The roots of r0 are calculated for all the quantum states 0,0; 0, m),
m = 0, —1, —2, —3,... at different values of the ratio ω/ω0. Various values for the
roots are given for ω/ω0 = 0.2,2,5 in Table ΙΙ. The dependence of the roots on 1ml
is shown both numerically (from Table  ΙΙΙ) and analytically (from Eq. (2)). As it is
clearly seen from Table ΙΙ, the roots r0 increase as 1ml decreases and thus the e—e
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interaction energy, Ve-e(r0, m) = ‚//r0(m), decreases showing its dependence on
the azimuthal quantum number. On the other hand, the magneto-confining energy

term1/4ω2rincreases. For the particular relative stateI0,m> and fixed l'0,the
roots r0 decrease as we increase the strength of the inagnetic field ω0 and so
the electron-electron interaction energy - for this state enhances. As we sweep
the magnetic field more, the e-e energy increases and thus the electron jumps to
the next state with a higher angular momentum m, equivalently, larger root of r0
and thus the e-e energy in the new state tends to a decrease.

To understand how the second transition occurs at a higher magnetic field
comparable to the first transition, we must look to Table ΙΙΙ. This shows quantita-
tively how the competition between the  e-e interaction energy and the confineinent
energy occurs for m = 0, -1, -2 states. These are calculated at the transition ra-
tios ω/ω0 = 0.5 and 1.9. Concerning the first transition: the Coulomb energy
decreases by 0.04779 whilst the quantum state changes from m = Ο to -1. On

Fig. 2. The total energies of the states m = -1 and -2 for two interacting electrons,
parabolically confined in quantum dots of sizes: (a)  Ι0 = 2α*, (b) Ι0 = 3α*, (c) Ι0 = 4α*,
(-- -m=-1, m=-2).
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the other hand, the magneto-confining energy increases by 0.0804. In the second
transition: the interaction energy decreases by 0.0389 whilst the magneto-confining
energy increases by 0.1223. The enhancement in the magneto-confining energy cor-
responds to an increase in the eifective frequency ω = [(ω/2ω0)2 + ΙΙΙ/2ω0. For
the particular quantum dot size  £ = (ħ/m*ω0)Ι/2, this means that the applied
magnetic field should be high in order the second transition to be observed.

We have plotted, in Fig. 2 and also listed in Table IV the calculated energies
of the states m = —1 and —2 as a function of the ratio ω/ω0 for quantum dots
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Fig. 3. (a) The total ground-state energy  ΙΟ, 0; 0, 0) for two interacting electrons in
a quantum dot of size Ι0 = 3α* against the ratio ω/'0. (. • • present results,  
Ref. [7]). (b) The eigenenergies of the states  ΙΟ, 0; 0, 0> (solid curve — exact, black circles
— present results) and ΙΟ, 0; 0, —1> (broken curve — exact; crosses — present results)
against the magnetic held for  hω0 3 reV. The exact diagonalizations are taken from
Refs. [8, 11].

with different sizes 4 = 2α*, 3α* and 4α*. The figures clearly show the influence
of the dot sizes on the transition ratio. We found that the transition ratios occur
at 3, 1.9, and 1.5. Our results are also in agreement with Ref. [15]. In addition
to the qualitative agreement, in Table V we have coinpared our coinputed energy
spectra with those of Zhu et al. [15] calculated at γ  = ω/2 = 1. These tabulated
results also show very good quantitative agreeinent. In addition to this, we have
also compared our results with the exact ones given in Refs. [7, 8, 11]. Our results
displayed in Fig. 1, for g* = 0, matches the corresponding one in Fig. 1b of Ref. [7].
In Fig. 3a, b we have shown our results separately, for particular quantum states,
produced by the 1/D expansion method against the exact ones [8, 11]. The figures
show that our results agree very well with the numerical data.

4. Conclusion

We have used the shifted 1/D expansion method to calculate the spectra of
the parabolic quantum dot. The spin singlet—triplet transition, which occurs in the
ground state of the quantum dot, is explained. We have also shown the influence of
the quantum dot size on the transition ratios. Based on the calculated results, the
shifted 1/D expansion method is an effective tool of producing and understanding
the spectral properties of the two-electron  QD presented in a magnetic field of
arbitrary strength.

Appendix

The parameters αι and α, appeared in Εq. (7'. are giνen  as follows:



with

The definition of εj and δi quantities are
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