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Topological phase transitions in Ge-In-Se glasses
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The investigation of the composition dependence ofGegInySe, mis given by

the various properties of chalcogenide glasses has in-

creased in recent years for two reasons. The first one [4x + 3y + 67]

is scientific because this type of research provides m=8- 100 1)
new challenging fundamental problems for solid-state

physicists. Second, many of these glasses have founghere 4, 3, and 6 are the number of valence electronsin
appllcatlons_ln solid-state devices [1-3]. The Ge-In-SeGe, In, and Se, respectively, angdy, andz are their re-
system provides one member of these glasses and fornggective concentrations in the glass composition. Equa-

bulk glasses, by melt-quenching, over a wide range ofion 1 leads to a formula fon, for Gg IngSeys_x glasses
compositions [4]. This makes it a suitable model systemunder investigation, given by

for the investigation of the composition dependence of
its properties. m = 2.18+ 0.02x )

The composition dependence of the glass transition
temperature [5, 6], the mean atomic volume [7], the

rgacfros;:hopiédeltnsisty [8|] and the plasmcl).n energytlodssbet?]e glass and with the average coordination number are
[9], for the Ge-In-Se glasses, was earlier reporte %hown in Fig.1and 2, respectively. InFig. 2, achangein

us. Composition dependence studies on other gIassgfo .

peisobserved at amvalue equal to 2.4 (correspond-
alloys were reported for Ge-Se [10, 11], Ge-Se-Pb [12ing to the composition witlx = 11 at %). This feature
11:2’ %e—SSe—GSakt) [112 122] C(;Ee—?e—ﬁs [ég 1CZ]’ ge'gg'lecan be accounted for on the basis of Phillips-Thorpe’s
[ J’Ge-s e-Sb,g\ ; ]2'3 2’5 e-Gs [S S]'b 27 (32'8 ~'®igidity percolation model. Phillips [30], by consid-
and Ge-Se-Sb-As-Te [23-25], Ge-S-Sb [27, 28] an ring short-range order structures only and equating

Ge-S-As [17]. L L the number of topological constraints per aton
In this paper, the variation of the crystalllzat!on tem- - the number ofpdeg?ees of freedom Ser atd1<la))((
perature with composition, forglass_es belonging to th%btained armm value which is equal to 2.4 at which
Ge-In-Se system, s 'reported and q[scussed. the glass possesses a mechanically optimized structure.
Gla_ssy aglloy; within the composition range& < This structural phase transition, at thisalue, was also
34 (x in at %), in the_ GelneSens system, were pre-  ,pceorned by Thorpe [31] from counting the number
pared by the classical melt-quenching method. Th f zero frequency modes. In the glass-forming region

method consisted of sealing, under a vacuum o . .

] - . .~ (GFR)[31], networks withm < 2.4 (polymeric glasses)
~10-5
Nl(')t_ gorr,lthe agpéop_r late I"?‘“é”?'c ,oropotrtlons of hl'gh are referred to as underconstrained and contain large
purity &€, In, and Se In cylindrical quartz ampou es'roppy or spongy regions with few rigid inclusions. For

The ampoules were then placed in an electric furnacﬁetworks withm > 2.4 (amorphous solids), referred to

and heated to a temperature of 4&0for one day. SL_’b' as overconstrained, the rigid regions have percolated to
sequently the temperature of the furnace was raised to

850°C and held at this temperature for two days. The . -
les at this temperature were continuousl shakeTAB LE | Glasses prepared and their peak crystallization temperatures

ampou g p . y ('?’p); compositions are in at % arig in K

to homogenize the melt. To obtain the glasses, the am-

The variation ofT, with the amount of Ge content in

poules were quenched td'Q in an ice-water mixture. Ge Se In T (K)

The differential scanning calorimetry (DSC) mea- Glassnumber  (at%)  (at%)  (at%) =£0) m
surements were performed using a Setaram DSC 9 6 o8 5 sss 530
instrument with a scan rate of 10 K/min. The powdered , 8 86 6 560 234
samples £20-30 mg) were sealed in aluminum pans 3 11 83 6 568 2.40
and compared with empty aluminum pans. The tem-4 14 80 6 589 2.46
perature calibration of the instrument was carried out 2 16 8 6 621 2.50
using the well known melting temperature of high pu- > o e : o oo
rity indium supplied with the instrument. The error in g 22 72 6 718 262
the measurement G}, was estimated to b1 K. 9 24.5 69.5 6 757 2.67

The composition of the glasses prepared and theit0 26 68 6 749 2.70
corresponding peak crystallization temperatures arél 28.33 6567 6 744 2.75
given in Table I. The average coordination numioer, 2421 gé 2 ;ig 2'22

was evaluated using the standard method [15, 29]. Far
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800 In conclusion, the composition dependence of the
peak crystallization temperatures, in Ge-In-Se glasses,
reveals peculiarities ah values of 2.4 and 2.67. These
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Figure 1 Variation of Tp with the amount of Ge at % presentinthe glass. 7.

Lines through data points are drawn as a guide for the eye.
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Figure 2 Variation of T, with the average coordination number. Lines
through data points are drawn as a guide for the eye. 20

21.

form a rigid solid with a few floppy or spongy inclu-
sions. The composition witm=2.4 is a percolation

threshold at which the transition from floppy-to-rigid 23,

network takes place. Therefore, the change in slope in

the T,-m dependence an=2.4, observed in the in- 24

vestigated networks, is attributed to the floppy-to-rigid -

transition. 26
Recently, Tanaka in a series of papers [32-34],

showed that the inclusion of medium-range order struc-

tures into the Phillips-Thorpe balance condition, lead<7-

to the prediction of a thresholdiet= 2.67. This thresh-
old can be understood provided that the networks un-

dergo a structural transition from two-dimensional (2-29.

D) structures to three-dimensional (3-D) networks due

to the increase in the number of cross-linked sites. Thgg-

32. K. TANAKA , ibid. 97 & 98 (1987) 391.

: > ; 33. Idem., ibid.103(1988) 149.
with Tanaka’s prediction, is therefore attributed to theza.

observed maximum iff, at m=2.67 (corresponding
to the GesslngSegs composition), which coincides

2D — 3D transition taking place in these glasses. The
reported topological thresholds, for the glasses under

2.
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11.
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17.

peculiarities are caused by the Phillips-Thorpe’s and
Tanaka’s topological transitions, respectively.
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