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Abstract 

The density of states expressions for graphene and Zigzag carbon 

nanotubes for different geometries had been rederived using the dispersion 

relation obtained by the well-known tight-binding method. In addition, our 

numerical results for the density of states of graphene and zigzag carbon 

nanotubes had been produced and the results support both the conducting 

and the semiconducting behavior of the nanotubes. Also we had been used 

the derived expression for the energy gap of the semiconducting zigzag 

carbon nanotubes to compute it numerically. Furthermore, we had studied 

the relativistic Dirac Hamiltonian behavior of the particle in graphene 

material near the Dirac points and the particle is found to behave as a 

massless particle. We also compared our numerical results against the very 

recently experimental and theoretical reported ones. 
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Introduction 

Nanoscience is the study of materials whose physical size is on the 

nanometer scale in the range of (1-100nm). The new properties of these 

nanosystems are mainly due to two important factors: (i) surface to volume 

ratio and (ii) quantum size effect (QSE). The surface to volume ratio for a 

cube is  
 

 
 

   

  
 

 

 
.  As the length L becomes small,  

 

 
 becomes large and 

so the number of surface atoms will be large. Thus, the smaller the system, 

the more its surfaces must affect its actual properties. Consequently, the 

chemical activity of the material can be improved as the material is reduced 

in size at the nanoscale. The properties of nanosystems are significantly 

affected by minor changes in size, shape and type of materials. In 

summary, at the nanoscale, properties become strongly size –dependent. 

The new developments in fabrication methods, like top-down and bottom-

up approaches enable us to confine the carriers in various dimensions: bulk 

(3D), quantum wells (2D), quantum well wires (QWWS) (1D) and 

quantum dots (QDS) (0D). The quantum size effect greatly changes the 

dependence of the density of states      on the energy E for these systems 

as follows: 

                                                                                                          (1.1) 

                                                                                                   (1.2) 

     
 

  
                                                                                                   (1.3) 

                                                                                           (1.4) 
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The dependence of the density of states on the dimensionality will lead to a 

considerable change in the properties of the nanosystems as we mentioned 

earlier.  

One of the nanomaterials that had been discovered very recently, in (2004), 

and shows very attractive novel properties is the graphene. Graphene 

becomes the object of intense theoretical and experimental studies. It is a 

one atom thick sheet of carbon atoms arranged laterally in a honey-comb 

lattice. The lattice has two carbon atoms A and B, per unit cell, and is 

invariant under 120° rotations around any lattice site. 

 (A. K. Geim, 2007) [1].  

A few years ago research group at the University of Manchester led by 

Geim succeeded in isolating and studying graphene. The original method of 

graphene production is based on micromechanical cleavage of graphite 

surface the so called (scotch –tape –method) of graphite, in this method a 

piece of graphite-the material from which the pencils are made-is gently 

rubbed on a piece of ordinary scotch tape. This produces carbon debris. 

The scotch tape with the debris is then pressed against a slab of oxidized 

silicon of 300 nm width. As a consequence the debris moves to the 

oxidized silicon. Using an optical microscope one can identify small 

crystalline of graphene on top of the oxidized silicon. 

 (N. M. Peres, 2009) [2]. 
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Each carbon atom with an atomic number of six has an electronic 

configuration of           (Mandar. M. Deshmukh and Vibhor Singh, 

2011) [3].  

The    electrons are essentially inert and do not contribute to the chemical 

bond (N. M. Peres, 2009) [2]. In graphene, the   ,     and     orbital of 

carbon atom combine (or hybridize) to form three new planners orbital 

called      (which will originate the sigma    bonds). The mechanical 

properties of graphene are determined by the rigidity of the bond. The 

remained orbital    (one electron) is perpendicular to the plane formed by 

the carbon atoms. The     orbital from different atoms combine to form pi 

bonds π (valence) and π*(conduction) bands. Each     orbital contribute 

with one electron, therefore graphene is a system with one electron per 

lattice site. This is called a half-filled system (H. S. Philip Wong and Deji 

Akinwande, 2011) [4]. The pi-orbitals are responsible for the unusual 

electronic properties of graphene (N. M. Peres, 2009) [2]. A hybridization 

of     character leads to hexagonal symmetry as seen in graphite, 

graphene and carbon nanotubes (CNTs) (M. M. Deshmukh and V. Singh, 

2011) [3].  

It should be noted that graphene can be considered the raw material for 

other existing form of pure carbon. For example, wrapping graphene into a 

sphere produces buckyballs (fullerenes), folding into a cylinder produces 

nanotubes, and stacking several sheets of graphene leads to graphite (H. S. 

Philip Wong and Deji Akinwande, 2011) [4] as shown in Fig. 1.1.  
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The important physics of graphene takes place close to the Dirac points; the 

equation describing the Low-energy physics in graphene is not the 

Schrodinger equation as in condensed matter physics, but the massless 

Dirac equation in (2D); so one moves from electrons interacting with a 

periodic potential to free massless Dirac particles moving with    

       , the Fermi velocity (N. M. Peres, 2009) [2]. 

Fig. 1.1: Graphene as the source of three different nanomaterial systems: 3D, 2D, 1D and 0D 

(Leonid Levitov, 2008) [5].    

The electronic properties of the two dimensional nanosystem “graphene” 

close to the Dirac points has a linear dispersion at low energies makes the 

electrons and holes in graphene mimic relativistic particles that are 

described by the Dirac relativistic equation for particles with spin 1/2, and 

they are usually referred to as Dirac fermions. Their dispersion 

relation                     
    

 
, is analogous to that of 

photons,            , but with  the velocity of light c replaced by    , the 

Fermi velocity. Thus electrons and holes in graphene have zero effective 
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mass and velocity which is about 300 times slower than the speed of light. 

The linear dispersion relationship also means that quasi-particles in 

graphene display properties different to those observed in conventional 

(3D) materials, which have parabolic dispersion             (P. 

Avouris et al., 2007) [6]; Graphene is an exception: its charge carriers 

mimic relativistic particles and are easier to describe starting with the Dirac 

equation rather than the Schrodinger equation (A. K. Geim and K. S. 

Novoselov, 2007) [7].  

In neutral graphene sheet, the valance and conduction bands meet at the 

Fermi energy so that graphene is a semi-metal or zero-gap semiconductor. 

The bands form conical valleys that touch at two of the high symmetry 

points, labeled as    and     in the Brillouin Zone as shown in Fig. 1.2. Near 

these points the energy varies linearly with the magnitude of momentum. 

The four other Brillouin Zone corners are related to    and     by reciprocal 

lattice vectors (N. M. Peres, 2009) [2]. 

Graphene has a number of fascinating properties. For example, the material 

is chemically stable, has high thermal conductivity, and has ballistic 

transport over submicron scale (N. M. Peres, 2009) [2]. An effect of Dirac 

electrons in graphene is the transparency of material to light. It is found 

that the transmissivity    (percentage of light passing through the material) 

of graphene is given by:              , where   is fine structure 

constant (N. M. Peres, 2009) [2]. 
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Fig. 1.2: The band structure of graphene near the Dirac point’s    and     shows a conical shape 

(Michael Fuhrer and Ellen Williams, 2008) [8]. 

Graphene is the thinnest material in the universe and the strongest one, 

have the smallest effective mass (it is zero) and can travel micrometer a 

long distance without scattering at room temperature (A. K. Geim, 2009) 

[9]. It has a large theoretical specific surface area (2630      ), high 

intrinsic mobility (200 000          ), high Young modulus (         ) 

and thermal conductivity (                (Y. Zhu et al., 2010) [10]. 

The structures of carbon nanotubes (which are made by rolling up 

graphene) are specified by a pair of integers (m,n) defining the chiral  

                   vector, that describes the circumference of the 

nanotube (            ), where         and         are unit vectors of the 

graphene honeycomb lattice and      is the diameter of the nanotube. The 

periodic boundary conditions around the circumference of a nanotube 

require that the component of the momentum along the circumference          is 

quantized:                         where    is a non-zero integer (Ji-Yong Park, 

2009) [11]. On the other hand, electron motion along the length of the tube 
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is free and          is continuous. The quantization on            leads to the formation 

of the metallic and semiconducting nanotube materials as we will see. 

1.1 Research Objectives: 

The objectives of this thesis can be summarized as follows: 

1) In this work the well- known tight binding (T.B) method had been used 

to derive a closed form dispersion relation (E-K) for the graphene and 

zigzag carbon nanotube (ZCNT) materials. 

2) The obtained energy expression had been used to derive the density of 

states (DOS), energy gap and to calculate the band structures for Zigzag 

and Chiral CNTs, in order to understand the metallic and semiconducting 

behavior of the CNT materials. In addition, the electron Dirac 

Hamiltonian for the CNT near Dirac points   and    also had been 

derived. 

3) The obtained expressions had been numerically displayed. 

1.2 Literatures Review: 

 Many authors had used the tight-binding method to study the band 

structure of the graphene materials. For example, the authors in different 

works (S. Datta, 2005 [12], R. Saito et al., 1998 [13], H. S. Philip Wong et 

al., 2011 [4] and Ji-Yong Park, 2009 [11]) had used the tight-binding 

approximation method to investigate the energy levels of a sheet of 

graphene by finding the energies of the tight-binding Hamiltonian. 

Gracium et al (S. Russo M. F. Gracium et al., 2009) [14] had also 
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calculated the energy bands of graphene materials made from monolayer 

and few layers.  

The theory of graphene was first explored in 1947 as a starting point for 

understanding the electronic properties of more complex, 3D graphite. The 

emergent massless Dirac equation was first pointed out by David P. De 

Vincenzo and Eugene J. Mele (en. Wikipedia. org) [15]. 

Graphene is a relatively new material. In the 1930s, physicists believed that 

a two dimensional plane was not stable enough to exist independently. 

(Ron Beech, 2011) [16]. 

CNTs were first discovered by Iijima in 1991 (S. Iijima, 1991) [17] when 

he was studying the synthesis of fullerenes. CNTs that Iijima observed 

were so called multi-walled carbon nanotubes (MWCNTs). 

Two years later, single-walled carbon nanotubes (SWCNTs), these thin, 

hollow cylinders of carbon were discovered in 1993 by groups led by 

Sumio Iijima at the NEC Fundamental Research Laboratory in Tsukuba, 

Japan, and by Donald Bethune at IBM’s Almaden Research Centre in 

California. The mass production of CNTs was done in 1995 by Rick 

Smalley’s group at Rice University in Texas (P. L. Mc Euen, 2000) [18]. 

Spires and Brown had measured the carbon bond length of 0.142 nm in 

1996 (T. Spires and R. Brown, 1996) [19]. 
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A single –wall CNTs is a graphene sheet rolled into a cylindrical shape 

with a diameter of about (0.7-2.0) nm but a multi-wall carbon nanotubes 

comprises a number of graphene sheets rolled concentrically with an inner 

diameter of about 5 nm (Edris Faizabadi, 2011) [20]. 

CNTs according to their structures are classified to three types: armchair, 

zigzag, and chiral. Armchair and zigzag nanotubes are defined by a carbon 

nanotube whose mirror image has an identical structure to the original one. 

On the contrary, chiral nanotubes mirror image cannot be superposed on 

the original one (Edris Faizabadi, 2011) [20]. 

For a general (m, 0) zigzag nanotubes, if m is a multiple of three, the 

nanotube becomes metallic as the energy gap at     becomes zero; 

however, if m is not a multiple of three, the nanotube becomes 

semiconducting because an energy gap which is proportional to nanotube 

diameter opens at      (Edris Faizabadi, 2011) [20].  

Variety of probes predicts that armchair (SWNTs) is always metallic and 

all other tubes (zigzag and chiral), depend on whether they satisfy (m - 

n=      or not (where   is an integer), are metallic or semi-metallic (Edris 

Faizabadi, 2011) [20]. 

Andre Geim and Konstantin Novoselov came up with a method after years 

of effort to isolate monolayer graphene Flakes. They developed scotch-tape 

method in 2004 and they were awarded the Nobel Prize for their discovery 

in 2010 (M. M. Deshmukh and V. Singh, 2011) [3]. 
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    Carbon nanomaterial, notably (OD) Fullerenes, (1D) (CNTs), and (2D) 

graphene have gained significant interest from various fields since their 

discovery in 1985, 1991 and 2004, respectively (Y. Zhu et al., 2010) [10]. 

Devices made from metallic (SWCNTs) were first measured in 1997. 

While, devices made from semiconducting (SWCNTs) were first reported 

by Tans et al. in 1998 (Paul L. McEuen and Ji-Yong Park, 2004) [21]. 

The recent developments in the study of graphene were fueled by a 2004 

paper by Novoselov et al. that has made a large impact on researchers 

working in the field of carbon nanotubes, as shown by the recent surge in 

publications on carbon nanostructures as shown in Fig. 1.3 (M. S. Dressel 

haus, 2012) [22]. 

 

Fig. 1.3: plot of the number of publications per year on carbon materials in the last 50 years (M. 

S. Dresselhaus, 2012) [22]. 
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1.3 Method of Calculations: 

In this work, the well known tight binding approximation, as an efficient 

method, had been used to derive a closed form expression for the 

dispersion relation E (      ) of the graphene sheet in terms of the 

momentum components,           , the lattice constant  , and the transfer 

integral / or the strength of the nearest neighbor hopping,             The 

obtained energy expression had been used to calculate the electronic band 

structure of graphene and  zigzag nanotube which corresponds to the case 

(n=0) or                . All other chiral vectors               ,       

correspond to Chiral nanotubes had been also studied.  

Our numerical results for the electronic band structure of the CNTs had 

shown the behavior of the material as a metal and as a semiconductor. This 

very interesting metallic and semiconducting behavior of carbon nanotubes 

had also been reported both theoretically and experimentally (Ji- Yong 

Park, 2009) [11] and (S. Datta, 2005) [12]. In addition, we had been 

derived expressions for the density of states for the graphene and carbon 

nanotube materials. 

The organization of the thesis is given as follows. In chapter 1 we have 

presented an introduction to the nanomaterials: graphene and carbon 

nanotubes. The theory and the tight binding calculation method for the 

graphene and carbon nanotubes are discussed in chapter 2. We have given 
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the numerical results and discussion in chapter 3. Finally, chapter 4 is 

devoted for the conclusions. 
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Theory 

The objective of this chapter is to describe the basic theoretical background 

for the physical and electronic structure of graphene and carbon nanotubes.  

2.1 Direct Lattice Structure of Graphene: 

Graphene is a two dimensional one atom thick planar sheet of     bonded 

carbon atoms densely packed in a honeycomb structure (Rene Petersen, 

2009) [23] as shown in Fig. 2.1.  

The basis vector that generates the graphene lattice is: 

                              
   

 
 
 

 
                                              (2.1) 

                              
   

 
 
  

 
                                           (2.2) 

with          =         =        ,                                     ,                      , where 

               is the carbon-carbon bond length, A and B are the two 

atoms in the unit cell of graphene and these contribute a total of two 

  electrons per unit cell to the electronic properties of graphene (H. S. 

Philip Wong and Deji Akinwande, 2011) [4].  
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Fig. 2.1:  The honeycomb lattice of graphene. The primitive unit cell is the dashed lines region 

with a basis of two atoms A and B, the angle   between           and          is      (H. S. Philip Wong 

and Deji Akinwande, 2011) [4].  

The primitive unit cell can be considered as equilateral parallelogram with 

side          =0.246 nm where   is the lattice constant of graphene 

(Davood Fathi, 2011) [24].  

Each carbon atom is bonded to its three nearest neighbors and the vectors 

describing the separation between type A atom and the nearest neighbor 

type B atoms (H. S. Philip Wong and Deji Akinwande, 2011) [4] are: 

        
 

  
    

 

  
                                                                                    (2.3)   

                          
 

   
    

 

 
     

 

   
  

 

 
                                    (2.4)  

                          
 

   
   

 

 
     

 

   
 
 

 
                                         (2.5) 

with          =          =          =    =0.142 nm.  
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2.2 The Reciprocal Lattice of Graphene: 

The reciprocal lattice of graphene shown in Fig. 2.2 is also a hexagonal 

lattice but rotated     with respect to the direct lattice. The reciprocal 

lattice vectors are: 

         
                    

                          
  

  

   
  
  

 
  

  

   
     

  

 
                                     (2.6) 

          
                    

                         
  

  

   
   

  

 
  

  

   
     

  

 
                                  (2.7) 

 

Fig. 2.2: The 2D   -space of graphene. The shaded area shows the first Brillouin zone with the 

high symmetry points   , M,   and       and     are Dirac points and they are equivalent (H. S. 

Philip Wong and Deji Akinwande, 2011) [4].  

                           . There are three key locations of high symmetry 

in the Brillouin zone. These locations are the   -point, the M-point, and the 

 -point. The   –point is at the center of the Brillouin zone,             

            and                               (H. S. Philip Wong and Deji 

Akinwande, 2011) [4]. 
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2.3 Carbon Nanotubes (CNTs): 

A single-wall carbon nanotube (SWCNT) can be observed as a single sheet 

of graphite rolled up into a cylinder with diameter varying from 0.6 to 

about 3nm (Davood Fathi, 2011) [24]. CNTs were discovered in 1991 by 

the Japanese Sumio Iijima when he was studying the synthesis of fullerenes 

(Wen-Shing Jhang, 2006) [25]. 

 If just one layer of graphite is rolled-up into a cylinder, the single cylinder 

is called a single walled carbon nanotube (SWCNT). If n layers are rolled 

around each other, the result is n concentric tubes; the concentric tubes are 

called a multi-walled carbon nanotube (MWCNT). The focus is on 

(SWCNT) because they are a simpler system. For now, we will restrict our 

discussion to single-walled nanotubes (Luke Anthony Kaiser Donev, 2009) 

[26].  

Carbon nanotubes are considered as one dimensional nanomaterial owing 

to their very small diameter that confines electrons to move along their 

length, all single-wall CNTs are either chiral (not superimpose on its mirror 

image) or achiral (superimpose on their own mirror image). Achiral CNTs 

are classified as armchair CNTs or zigzag CNTs (H. S. Philip Wong and 

Deji Akinwande, 2011) [4].   

Fig. 2.3.1 represents the two dimensional hexagonal plane that makes up a 

graphite sheet, where the carbon atoms lie at the corners of each hexagon. 

In the figure, if point O is connected to point A, and point B is connected to 



19 
 

point   , then one will observe that the sheet will be rolled into a cylindrical 

structure; as a result a nanotube can be constructed (Rashid Nizam et al., 

2011) [27]. 

                          define the chiral vector         and the translational vector       of 

the nanotube respectively. The rectangle       defines the unit cell for the 

nanotube (Sandra D. M. Brown, 2000) [28]. 

 Fig. 2.3.1 shows the honeycomb lattice of graphene and the primitive 

lattice vectors         and        . 

 

 Fig. 2.3.1: The two dimensional direct lattice of a carbon nanotube with the primitive lattice 

vectors         and         , chiral vector           , and translational vector       (Rashid Nizam et al., 2011) 

[27]. 

The CNT is characterized by three geometrical parameters, the chiral 

(circumferential) vector         , the translation vector      , and the chiral angle   

(H. S. Philip Wong and Deji Akinwande, 2011) [4] as shown in Fig. 2.3.1.  
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The chiral vector is the geometrical parameter that uniquely defines a CNT 

which is the vector connecting any two primitive lattice points of graphene 

such that when folded into a nanotube these two points are 

indistinguishable,                          for which the CNT diameter 

can be obtained by: 

  
           

 
 

           

 
                                                                          (2.8) 

 where (m, n are positive integers). A type of CNT can be deduced directly 

from the values of the chiral vector. In the first case, if      , then the 

angle   will be     ; the carbon  bonds form an armchair shaped pattern, so 

all (n, n) CNTs are armchair nanotubes. In the second case, when      is 

purely along the direction of      , (               ,     and the bonds 

along the chiral vector form a zigzag pattern the result is zigzag nanotubes. 

In the third case,          and the tubes are known as chiral 

nanotubes (Rashid Nizam et al., 2011) [27] as shown in Fig.  2.3.2. The 

chiral angle is the angle between the chiral vector and primitive lattice 

vector       where: 

      
    

           
                                                                              (2.9) 

The translation vector defines the periodicity of the lattice along the tubular 

axis. Geometrically,     is the smallest graphene vector perpendicular to        .  

Let               , where C and D are integers. The translation vector 

can be calculated from the orthogonality condition                . So, 
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                                                                        (2.10) 

where    is the greatest common divisor of (2n+m) and (2m+n). The 

length of the cylinder is: 

      
  

  
                                                                                                   (2.11) 

where                       . Some results that are useful to compute 

is the surface area of CNT unit cell, the number of hexagons per unit cell, 

and the number of  carbon atoms per unit cell. The surface area of CNT 

primitive cell is the area of the rectangle defined by         and     vectors 

as              . 

 
Fig. 2.3.2: single-wall carbon nanotubes with different geometries (m, n) types. (a) an 

“armchair” (n, n) nanotubes, (b) a “zigzag” (m, 0) nanotubes, and (c) a “chiral” (m, n) 

nanotube     (R. Bruce Weisman, 2010) [29]. 

The number of hexagons per unit cell N is the surface area divided by the 

area of one hexagon: 



22 
 

  
              

                 
  

          
 

    
                                                                              (2.12) 

Since there are two carbon atoms per hexagon, there are a total of 2N 

carbon atoms in each CNT unit cell.  

2.4 Graphene Rolling-Up: 

As we said that CNTs can be obtained by rolling up a sheet of graphite into 

a cylinder which results in additional quantization to the graphene band 

structure, such that the phase of an electron going around the circumference 

of the nanotube must be an integer multiple of     as follows (Luke 

Anthony Kaiser Donev, 2009) [26]: 

The periodic boundary condition for a nanotube wave function     is 

                                                                                                    (2.13) 

 Bloch theorem for the nanotube wave function is 

                                                                                                                (2.14) 

Combining (2.13) and (2.14) we get: 

                                      

where   is a non-zero integer.  

Nanotube states are the same as the set of graphene state in directions in 

reciprocal space that satisfy the condition (Ana Dergan, 2010) [30]: 
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                                                                                                           (2.15) 

This defines a series of parallel lines, each corresponding to different 

integer value of    (S. Datta, 2005) [12]. 

Two types of folding are of interest: the first is a fold in the    direction 

which resulting in the Zig-Zag nanotube since the circumferential edge 

looks like a ZigZag. Second is a fold in    direction resulting in the 

armchair nanotube (S. Datta, 2005) [12].  

A fold in    direction has the circumferential vector              , where m 

is an integer, and the periodic boundary condition then requires the allowed 

values of   to lie parallel to    axis described by: 

                                                                                               (2.16) 

As shown in Fig.  2.4a, a nanotube will only conduct if one of its subbands 

passes through the six corners of the Brillouin zone. So the condition of 

conduction is: 

   

   
 

  

  
           

 

  
 

 

 
                                                                       (2.17) 

Therefore, a Zigzag nanotube will be like a conductor if m is a multiple of 

three. If the lines of quantized wave vector do not intersect the graphene 

Fermi points, the CNT is semiconducting with a band gap.    

Rolling in the   -direction, create a tube with                , where m is an 

integer. This will result in real periodic boundary conditions because each 
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point on graphene will coincide with a similar one after being rolled-up. 

The periodic boundary conditions along the circumference result in: 

                                                                                               (2.18) 

Here      are series lines parallel to    as shown in the Fig. 2.4b. 

In general, it is possible to roll-up along any circumferential vector of the 

form 

                    , and m n must be a multiple of three in order for 

metallic properties to exist. By substituting the value of    and     we get: 

              
  

 
           

 

 
  )                                                  (2.19) 

But the requirement of periodic boundary conditions is                     . So, 

      
  

 
          

 

 
                                                  (2.20) 

This defines a series of parallel lines, each corresponding to different    . 

Whether the resulting subband dispersion relation will show an energy gap 

or not depends on whether one of the lines defined by Eq. 2.20 passes 

through the center of one of the valleys               
  

 
  (S. Datta, 

2005) [12]. 

So, in order for a line to pass through      , and     
  

 
 we must have 

   

 
   this can only happen if (m-n) is a multiple of three; nanotubes 

satisfying this condition are metallic. 
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If the lines do not pass through the center of one of the valleys, nanotubes 

satisfying this condition are semiconductor (M. P. Anantram et al., 2006) 

[31]. 

 
Fig. 2.4: A schematic plot for nanotubes with both types: (a) a zigzag nanotube where    is 

constrained according to the equation               . (b) An armchair nanotube where    is 

constrained by the condition                (S. Datta, 2005) [12]. 

2.5 Electronic Band Structure of Graphene:  

The electronic band structure of graphene is very important because (i) it is 

the starting point for the understanding of graphene’s solid state properties 

and (ii) it is the starting point for the understanding and derivation of the 

band structure of CNTs (H. S. Philip Wong and Deji Akinwande, 2011) 

[4]. 

The origin of the band structure is simply related to the fact that 

unhybridized    overlap with nearest neighbors to form  -orbitals spread 

out in energy and give rise to band of states extend over a range of energies 

(M. M. Deshmukh et al., 2011) [3]. 



26 
 

2.5.1 Tight Binding Approximation: 

 The energy band dispersion of graphene can be calculated using a tight-

binding model for electrons hopping in the honeycomb lattice. In this 

approximation we consider only hopping between nearest neighbor atomic 

sites since the energy contribution from the higher order hopping terms is 

small (M. F. Craciun et al., 2011) [32].  

In this section we will present only the essential mathematical steps which 

lead to the graphene dispersion relation. We will refer the interested reader 

to (Ji-Yong Park, 2009) [11] and (H. S. Philip Wong and Deji Akinwande, 

2011) [4] references for more details. 

In order to derive the band structure of graphene (E- k) relation we solve 

the Schrödinger equation as follows: 

                                                                         (2.21) 

 Where    is the Hamiltonian,   is the total wave function, and E is the 

energy of electrons in the   orbital of graphene (Ji-Yong Park, 2009) [11].  

As we said graphene lattice has two carbon atoms, A and B, per unit cell 

(A. K. Geim, 2007) [1]. So the total wave function    can be written as a 

linear combination of two Bloch functions    and    as follows: 

 

                                                                                           (2.22) 
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By substituting Eq. 2.22 in Eq. 2.21, multiplying by the complex conjugate 

of   
  and   

  and integrating over the entire space, we can write the 

Schrödinger equation in (2.21) in matrix form as follows:  

 
      
      

    
  
    

      
      

    
  
                                              (2.23) 

 where the matrix elements are defined as follows: 

       
 

 

 

                 
 

 

 

       

     are the matrix elements of the Hamiltonian or transfer integral,     are 

the overlap matrix elements between Bloch functions. 

Since the atoms A and B in the unit cell of the graphene are identical the 

matrix elements are taken to be equals such that                   

(H. S. Philip Wong and Deji Akinwande, 2011) [4], and the overlapping 

between wave functions of different atoms is neglected. i. e.,          

 , while            (Ji-Yong Park, 2009) [11].  

To get a non-trivial solution for Eq.  2.23, the determinant of this matrix 

must vanish, namely: 

 
               
               

                                                                    (2.24) 

The solution of this determinant gives us the eigenenergies in terms of the 

matrix elements: 

                                                                                            (2.25) 



28 
 

To evaluate the matrix elements which are given in Eq. 2.25 the wave 

functions    and    are taken as a linear combination of wave functions 

localized at each atom site: 

              
 

   
     

             
                                                     (2.26) 

where       is the orbital     wave function for an isolated carbon atom, 

N is the number of the unit cells (Ji-Yong Park, 2009) [11]. 

We can calculate the diagonal matrix elements (         as follows:  

    
 

 
                      

   
                       

                       (2.27) 

For calculating the matrix elements given by Eq. 2.27 we consider the 

effect of the three nearest neighbors for each atom A (B): 

                           
                                          (2.28) 

     
 

 
                         
                                         (2.29) 

     
 

 
     

       
      

                                                              (2.30) 

where      is a vector connecting atom A to its three nearest neighbor B 

atoms as shown early in equations 2.3, 2.4, and 2.5. 

Eq. 2.30 becomes:  

         
                                                                  (2.31) 
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where                     =    is the transfer integral or the nearest 

neighbor interaction. 

Eq. 2.31 becomes: 

         
                                                                                    

(2.32) 

The matrix element     can be calculating directly by substituting the 

values of the coordinates of the nearest neighbor vectors      (         in 

Eq.  2.32. 

By substituting the obtained matrix element     and it’s conjugate    
  in 

the main energy equation (2.25) to finally obtain an energy expression in a 

closed form as: 

          =          
  

                
  

 
        

   

 
        

   

 
  

 

 

            (2.33) 

Where              . 

For the sake of simplicity, we rewrite the dispersion relation in terms of the 

new parameters    
   

 
            

  

 
  as follows: 

                                        

 

 
                   

(2.34) 
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The negative and positive signs in Eq. 2.34 refer to the valance and 

conduction bands respectively (Y. Zhu et al., 2010) [10]. 

The main feature of the energy dispersion of graphene as we will see in the 

next chapter is the six   points at the corners of the Brillouin zone, where 

the conduction and valance bands meet so that, the band gap is zero only at 

these points (Ji-Yong Park, 2009) [11].  

The six points are also the points at which the Fermi energy cuts two bands 

and so the solid has six Fermi points (M. M. Deshmukh et al., 2011) [3]. 

Even more interesting is the form of the valance and conduction bands 

close to Dirac points, they show a conical shape, with negative (valance) 

and positive (conduction) energy values (N. M. Peres, 2009) [2] as we are 

going to show in the coming sections. 

If we return to the high symmetry points like   , M and   and substitute 

their coordinates in Eq. 2.33 we can see that at        , where        , the 

two bands are separated by    . At the M-points, such as     
  

   
    , the 

bands are separated by    . The vector     of one of the  -points is              
 

 
                  

  

   
    

  

  
    gives      . So at the    and   points, the 

two bands touch and they called Dirac points (Luke Anthony Kaiser 

Donev, 2009) [26].   

In order to find the Dirac points coordinate we make the determinant of the 

transfer integral vanishes such that          in Eq. 2.34 where the 
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eigenvalue          (S. Datta, 2005) [12]. Taking      , and 

let             for simplicity, this lead to the following root equation: 

                                            

 

 
  . 

For       , we have:                                    
  

 
. 

But for        , we obtain      
 

 
 . 

These six points are special as they provide the states right around the 

Fermi energy and thus determine the electronic properties. They can be put 

into two groups; each group has three points as follows: 

                                        

                                     

All three within group are equivalent point since they differ by a reciprocal 

lattice vector as shown in Fig. 2.5. Each group give (         

         . 

 
Fig. 2.5: The special points of graphene first Brillouin zone (S. Datta, 2005) [12].  
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2.6 The Conical Shape of Graphene Dispersion near the Dirac Points: 

Graphene is a half-filled system and therefore, the valance band is 

completely filled and the conduction band is completely empty (N. M. 

Peres, 2009) [2]. 

To understand the electronic properties of graphene we need to investigate 

the energy and momentum relationship of the graphene near the Fermi 

energy       (M. M. Deshmukh et al., 2011) [3]. 

For achieving this goal we substitute the values of the nearest neighbor 

vectors in Eq. 2.32 to get: 

            
 
    

      
    

       
   

 
                                                   (2.35)   

Where              . 

If we multiply Eq. 2.35 by  
    

    it can be written it in terms of a and b as 

follows: 

                                                                                     (2.36) 

Where                  
    

    . 

In order to find the shape of the dispersion relation of the graphene near the 

Dirac points we expand        from Eq. 2.36 around Dirac points (       ) 

= (0,  
  

 
) (S. Datta, 2005) [12]. The Taylor expansion of the        can be 

expressed as: 
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)                                                                                                                                                                                       

(2.37) 

          
      

 
    ( 

      

 
  , where        

  

  
) 

        
      

 
                                                                              (2.38) 

Where h         at the Dirac points is used. 

The eigenvalue             =               
 
   is given as: 

        
     

 
    

    
 
                                                                 (2.39) 

The above relation represents the equation of circles around the center 

points         ) or         ) (S. Datta, 2005) [12]. 

The energy dispersion relation given in Eq. 2.39 can be expressed as: 

        
     

 
        , where              

    
 
                                   (2.40) 

Finally, the dispersion relation in Eq. 2.40 can be rewritten in terms of the 

Fermi velocity as: 

                                                                                                      (2.41) 

where    
 

 

  

  
  

 

 

      

 
 

    

 
  

 

   
                                            (2.42) 

where c is the speed of light. 
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The linear behavior of the energy close to the Dirac points is similar to the 

Dirac spectrum for massless fermions (Y. Zhu et al., 2010) [10].  

From the results given by Eq. 2.39 and Eq. 2.41 we can conclude the 

conical shape of the dispersion relation of graphene near the Dirac points as 

shown in Fig. 2.6. 

 
Fig. 2.6: The focus on the Dirac points in the dispersion relation of the graphene which show a 

conical shape (Jean-Noel Fuchs, 2012) [33]. 

2.7 Massless Dirac Particles: 

The properties of the charge carriers of monolayer graphene at low energies 

are predicted to be governed by the Dirac Hamiltonian           (Nan 

Gu, 2011) [34]. 

To achieve this result, we are going to present in this section the complete 

analytical steps which lead to the Dirac Hamiltonian of this charge carriers 

as follows: 

Near the K point (         (upper half), at which            

where      . 
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                                                                                                      (2.43) 

    
  

  
     

  

  
                                                                     (2.44)      

Substitute equations 2.43 and 2.44 in equation 2.35 to get: 

               
 
    

      
    

       
     

 
       

 
     

      
     

        
  

  
 

   ) 2)]      

By using the well- known Taylor expansion    =1+x+…….) to expand the 

exponential and cosine terms around    and    as: 

             
     

  
      

     

   
   

 

 
  

  

 
    

 

 
              

          
     

 
 (-          

     

 
 (        )                              (2.45)     

Eq. 2.45 can be rewritten in terms of    as: 

                                                                                         (2.46)     

The Hamiltonian of the graphene derived in Eq. 2.46 can be written in a 

matrix form as:  

 H= 
       

      
 

 
  =      

         
         

                      (2.47) 

We can show that the above Hamiltonian H by Eq. 2.47 can be reduced to 

2D massless standard Dirac Hamiltonian            , where   are the 

well- known Pauli matrices in 2D as follow:                                  

                ,                                                                      (2.48) 
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Using the most common representation of the Pauli matrices: 

    
  
  

 ,          
   
  

                                                           (2.49) 

To obtain again: 

                            
         

         
       (2.50) 

By comparing the results obtained from equations 2.50 and 2.47 we can see 

that the Hamiltonian    of graphene near k points is similar to the typical 

Hamiltonian   
  of massless Dirac particles but with Fermi velocity   , 

where    
 

   
      

 

 
    

2.8 Band Structure of CNTs: 

For calculating electronic band structure in carbon nanotubes we will take 

the graphene electronic states and to account for the periodic boundary 

conditions in the circumferential direction. As we found that the nanotube 

states are the same as the set of graphene state in directions in reciprocal 

space that satisfy quantization condition (Ana Dergan, 2010) [30] as we 

mentioned early in Eq.  2.15: 

                                      

For example, Eq. 2.39 for a zigzag CNTs with periodic boundary 

conditions              becomes: 

E     =  
     

 
    

    
  , where       

  

  
 

  

  
 
  

  
          (2.51) 
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So if m is a multiple of three then conduction will be in a zigzag 

CNT; 
 

  
 

 

 
 so      and E as function of    becomes linear. Therefore 

only if m is a multiple of three then conduction will be in a zigzag 

nanotube. But if m is not a multiple of three the nanotube is a 

semiconductor with energy gap. This metallic and semiconducting behavior 

of CNT will be discussed thoroughly in the next chapter. 

For Zigzag CNTs with periodic boundary conditions                , 

if we substitute this in Eq. 2.34 then the dispersion relation for zigzag 

nanotube is: 

                       
   

 
          

   

 
   

 

 
                         (2.52) 

2.9 Semiconducting Gap for Zigzag CNTs: 

As we said that when (m-n) is not a multiple of three, we will have a 

semiconducting nanotube with finite energy gap    . 

 In order to derive an expression for the energy gap of a Zigzag nanotube 

we will reconsider its periodic boundary condition again given by Eq. 2.16 

and put them in Eq. 2.51 to get: 

              
   

  

  
 
  

  
                                                     (2.53) 

The energy gap for subband    can be defined as the difference in energies 

between the positive and negative branches at     : 

             
  

  
 
  

  
        

  

   
   

  

 
)                            (2.54) 
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The above energy gap has zero value when     
  

 
)=0;   

  

 
, m is a 

multiple of three. On the other hand, if m is not a multiple of three the 

energy gap in Eq. 2.54 is a non- vanishing quantity given as: 

       
  

   

 

 
 

    

  
                                                                         (2.55) 

Where d is the diameter of the nanotube and equals to       . 

2.10 Density of States (DOS): 

The density of states      in the energy interval E and E+ E refers to the 

number of quantum states per unit energy, and it clearly depends on 

the      ) relationship (S. Datta, 2005) [12]. 

The DOS of semiconducting CNTs near E=0 does vanish, but the DOS of 

metallic nanotube near E=0 has a finite value. In addition, the DOS of 

Zigzag CNTs shows Van Hove singularities (Edris Faizabadi, 2011) [20] as 

we will see. 

2.10.1 Density of States of Grahene: 

In order to find an expression for the density of states of grahene we 

assume graphene is a large sheet of dimensions          . Therefore, the 

surface area of the solid is      . All states in this structure will be separated 

by the distances       and       (k-space). So the numbers of states lie in 

a given k-space area (              ) is equal to: 
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If we multiply by 2 to include spin degeneracy we get: 

     
      

   
 

   

  
                                                                     (2.56) 

Where S is the surface area of 2D graphite sheet and equal to     . 

 But for graphene we approximated the E (   ) relation by:        

 
     

 
         at (       ) = (0,  

  

 
). 

 The number of states N (E) is: 

       
 

  
 

 

   
 
 
                                                                                 (2.57) 

Using the well- known definition of the density of states as the derivative 

of N(E) with respect to E to obtain D(E) expression as (S. Datta, 2005) 

[12]: 

      
     

  
 

 

      
 
    

The graphite sheet has an area which is equal                 .  

Finally, the DOS for the graphene can be obtained in a closed form as: 

       
  

    
                                                                                      (2.58) 

2.10.2 Density of State of Zigzag CNTs: 

The energy subbands for a Zigzag nanotube from Eq. 2.53 can be written as 

(S. Datta, 2005) [12]: 
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                       (2.59) 

where     
  

  
 
  

  
     and            . 

To account the number of states in the zigzag one dimensional carbon 

nanotube, we look at how many states lie in a distance k from the origin: 

 N (    
    

     
 

   

 
                                                                           (2.60)  

From equations 2.59 and 2.60 we can express the number of states N as 

function of E as follows: 

     
 

    
           

                                                               (2.61) 

Therefore, the density of states of particular subband           is given 

by: 

      
     

  
 

 

    

 

         
   

  

 
 

    

 

      
 
                               (2.62) 

where           
    

 
   

  

 
                                                      (2.63) 

 The total DOS can be obtained by summing overall subbands such that: D 

(E) =       . Then the total DOS of zigzag nanotube can be given as: 

          
  

    

 

      
 

                                                                  (2.64)   

The DOS for Zigzag nanotubes can be found by replacing the summation 

index   by an integral (S. Datta, 2005) [12] as follows:         



41 
 

             
  

    

   

      
 
                                                           (2.65) 

with     
     

    
 . 

Substitute the value of    in Eq. 2.65 to obtain a final expression for the 

DOS of ZCNT as: 

             
 

 

   

     
 

   

      
 
 

     

    
                                             (2.66) 

The DOS obtained for the ZCNT in Eq. 2.66 becomes identical to the DOS 

of a sheet of graphite given by Eq. 2.58. 
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Results and Discussions: 

In this chapter we  make use of the obtained analytical expressions to 

compute and to present the obtained numerical results for the graphene 

dispersion relation as function of    and    ,  Eq. 2.33, energy dispersion 

as function of    , the ZCNTs dispersion relation for different   and m 

integers, Eq. 2.52, band gap relation for semiconducting ZCNT as function 

of diameter,  Eq. 2.55, linear DOS of graphene for different m and d values, 

Eq. 2.58 and the DOS for Zigzag CNT for different m values, Eq. 2.64. 

3.1 The Energy Dispersion Relation of Graphene: 

3.1.1 The Dispersion Relation as Function of    and      

The numerical values of the energy of the graphene in the dispersion 

relation given by Eq. 2.33 had been calculated and displayed numerically in 

Fig. 3.1.1 with     .  

Our results obtained in Fig. 3.1.1 are in agreement with the standard results 

reported by (H. S. Philip Wong and Deji Akinwande, 2011) [4]. 
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Fig. 3.1.1: The scaled energy as function of    and     of graphene. 

3.1.2 The Dispersion Relation as Function of    : 

To show the behavior of the graphene near the Dirac point, we have used 

both the exact dispersion relation, Eq. 2.33, and the approximate results, 

Eq. 2.39, to obtain the numerical results of the energy against the wave 

vector as shown in Fig. 3.1.2. The Figure clearly shows the linear behavior 

of the dispersion relation close to the Dirac points.  

Fig. 3.1.2 displays our calculated results against the standard results 

reported in (S. Datta, 2005) [12].  

Fig. 3.1.2a is in agreement with one that reported in (S. Datta, 2005) [12]. 

However, Fig. 3.1.2.b shows the same physical equations but calculated for 

extended range of     . 
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Fig. 3.1.2: The energy (in eV) of the graphene for arbitrary    values and particular restricted 

   values (     ). The dashed curve represents the behavior of the dispersion relation near 

the Dirac points Eq. 2.39, while the solid line represents the behavior of the exact dispersion 

relation Eq. 2.33. a) Our results compared against the standard ones (S. Datta, 2005) [12]. b) 

Our results calculated for extended      range. 

3.2 The Dispersion Relation for the Zigzag CNTs: 

We have used the analytical dispersion relation derived for the zigzag 

carbon nanotubes, Eq. 2.52, to obtain the numerical energies as function of 

   for different values of   and m as shown in Fig. 3.2.1 and Fig. 3.2.2. 
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 Fig. 3.2.1a and Fig. 3.2.2a are plotted to compare our results against the 

reported ones in (S. Datta, 2005) [12]. In Fig. 3.2.1b and Fig. 3.2.2b we 

have extended our calculations to consider different values of m and  . 

Fig. 3.2.1 clearly shows that when m is a multiple of three while the band 

index   changes, the nanotube shows a metallic behavior. However, when 

m is not a multiple of three as in Fig. 3.2.2 a semiconducting behavior of 

the nanotube with a finite band gap is found.   
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Fig. 3.2.1: The eigen energies of a zigzag nanotube against the wave vector    for m and 

different    values showing metallic character (zero gap). a) our results with m=66 compared 

with ones reported in (S. Datta, 2005) [12]. b) our results calculated for extended   values and 

m=33. 
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Fig. 3.2.2: The eigen energies of a zigzag nanotube versus the wave vector    for m and 

different   values showing semiconducting character (finite energy gap). a) our results for m=65 

compared with ones reported in (S. Datta, 2005) [12]. b) our results calculated for extended   

values and m=32. 
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3.3 Semi Conducting Gap for Zigzag CNTs: 

In Fig. 3.3 we have used the closed expression that we have produced for 

the band gap of the zigzag carbon nanotubes given by Eq. 2.55 to calculate 

the the numerical values of    as function of the nanotube diameter.  

The energy gap in Fig 3.3a shows a qualitative agreement with the 

corresponding ones reported in (H. S. Philip Wong and Deji Akinwande, 

2011) [4]. 
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Fig. 3.3: The bandgap in (eV) of semiconducting Zigzag CNTs for different ranges of the 

diameter. a) Our results against the reported one in (H. S. Philip Wong and Deji Akinwande, 

2011) [4]. b) Our numerical results for different range of the diameter. c) The band gap 

calculated using Eq. 2.55 (solid line) compared with exact computation showing good 

agreement (H. S. Philip Wong and Deji Akinwande, 2011) [4]. 
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3.4 The Density of States (DOS): 

3.4.1 Density of states of Graphene: 

We have used the density of states of graphene       that produced in Eq. 

2.58 to numerically display the graphene DOS against the energy E for 

different values of m and d. 

Fig. 3.4.1 shows the linear DOS of graphene with respect to E for different 

m and d values (m=200, d=15.4nm), (m=900, d=61.7nm) and (m=400, 

d=20nm) and it show that at the Fermi energy (      the DOS is zero. 

Fig. 3.4.1a is in agreement with one that reported in (S. Datta, 2005) [12], 

but Fig. 3.4.1b and Fig. 3.4.1c is our results for different m and d values. 

The numerical values of D (E) and E are listed in the Appendix. 
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Fig. 3.4.1: The linear behavior of the DOS of graphene for different m and d values. a) Our 

results (for m=200, d=15.4 nm) compared with one reported in (S. Datta, 2005) [12]. b) Our 

results calculated for (for m=900, d=61.7nm). c) Our results for (for m=400, d=20nm). 
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3.4.2 The DOS of Zigzag CNT: 

The density of states expression for Zigzag CNT derived in Eq. 2.64 had 

been used to calculate and display the numerical values of D (E) as a 

function of the energy E for different values of m for a zigzag CNT. 

For example, Fig. 3.4.2a shows the DOS against E for zigzag CNT with 

m=300 and d=15.4nm. In Fig. 3.4.3a we have plotted the same physical 

quantity but calculated for m=200. Our numerical results show good 

agreement with ones reported in (Ji-Yong Park, 2009) [11] Fig.3.4.2b and 

Fig. 3.4.3c. The experimental results for the DOS of semiconducting 

(SWCNT) are shown in Fig. 3.4.3b and it supports our numerical results in 

Fig. 3.4.3a. 

Fig. 3.4.2 and Fig. 3.4.3 show the metallic and the semiconducting 

behavior of the CNT respectively. To further confirm this very important 

behavior, we have listed a Table for the values of D (E) and E in the 

Appendix to show the exact vanishing and non- vanishing of the DOS of 

CNT. 

 For example, the Table clearly shows the values of the DOS which are 

exactly equal to zero for energy range E= -0.025 to E= 0.025 for m=200 

and d=15.4nm, which leads to semiconducting CNT. On the other hand, the 

Table shows the finite values of the DOS for the same energy range when 

m and d are taken to be equal to m=300 and d=15.4nm. 
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In addition, the density of state of Zigzag and armchair CNTs shows Van 

Hove singularities (Edris Faizabadi, 2011) [20]. And because of the 

singularities of DOS, high optical absorption is expected when the photon 

energy matches the energy separation between an occupied peak in the 

electron DOS and one that empty (Sandra D. M. Brown, 2000) [28].  

 

 
Fig. 3.4.2: DOS for a metallic zigzag nanotube against the energy E. a) our numerical results 

with m=300, d=15.4 nm. b) Results reported in (Ji-Yong Park, 2009) [11] with m=9.  
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Fig. 3.4.3: DOS for a semiconducting zigzag nanotube against the energy E. a) our numerical 

result with m=200, d=15.4 nm. b) Experimental results reported in (Ji-Yong Park, 2009) [11]. c) 

Results reported in (Ji-Yong Park, 2009) [11] with m=10. 
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Chapter Four 

Conclusions 
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Conclusion: 

In this thesis, we have presented a detailed study of the electronic 

properties of the graphene and ZCNT band structure by calculating the 

dispersion relation, the density of states, and the energy band gap of both 

graphene and ZCNT. In particular, the behavior of the particles near the 

Fermi Dirac points is also studied in details and its relativistic Hamiltonian 

found to show that the particles behave like a massless Dirac particles but 

with velocity    
 
     . 

We have shown explicitly our numerical results for the dispersion relation, 

energy gap and the density of state of graphene and ZCNT.  

The Figures 3.2.1, 3.2.2, 3.4.2 and 3.4.3 clearly showed the conducting and 

semiconducting behavior of CNT for different values of   and m. For 

example, when m is a multiple of three as in Figures 3.4.2 and 3.2.1 the 

metallic behavior of the CNT appeared with zero energy gaps in the 

dispersion relation and finite DOS at     .  On the other hand, if m is not 

a multiple of three Figures 3.2.2 and 3.4.3 the semiconducting behavior of 

the CNT noted with energy gap and vanishing DOS at    . 

The dependence of the energy gap      of the CNT on its diameter is also 

calculated and displayed in Fig. 3.3 which showed an inverse relation 

between the energy gap and the diameter of the carbon nanotube.  
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Our results for the dispersion relation, Eq. 2.33, are in exact agreement 

with results reported in the literature (Y. Zhu et al., 2010) [10], also the 

DOS Eq.  2.64 and    Eq. 2.55 are in qualitative agreement with results 

reported in the literature (Rashid Nizam et al., 2011) [27]. The relativistic 

behavior of the Dirac particle near Dirac points   and    in CNT also had 

been derived and it is found to be in agreement with (A. K. Geim et al., 

2007 [7] and M. F. Craciun et al., 2011 [32]). 

The attractive practical properties of graphene have encouraged both 

researchers and companies to use this material in several industrial fields. 

For example, researchers at Rice University have developed electrodes 

made from carbon nanotubes grown on graphene. These electrodes have a 

very high surface area and very low electrical resistance. Also researchers 

have built a solar cell that uses graphene as electrodes while using 

buckyballs and carbon nanotubes to absorb light and generate electrons. 

The intention is to eliminate the need for higher cost materials, and 

complicated manufacturing techniques needed for conventional solar cells 

(www. Understandingnano.com) [35].  

Processing silicon-based solar cell requires a lot of steps. But our entire 

device can be built using simple coating methods that don’t require 

expensive tools and machines. The experimental solar cell consists of a 

layer, which absorbs sun light, sandwiched between two electrodes. In a 

typical thin film solar cell, the electrodes are made of conductive metals 

and Indium thin oxide. Materials like Indium are scare and becoming more 
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expensive as the demand for solar cells, touch screen and other electronic 

devices. Carbon, on the other hand is low cost and earth abundant. The 

ability to built high frequency transistors with graphene is possible because 

of the higher speed at which electrons in graphene move compared to 

electrons in silicon. Researchers have found that graphene can replace 

Indium-based electrodes in organic light emitting diodes (OLED). These 

diodes are using in electronic device display screen which require low 

power consumption. The use of graphene instead  of Indium not only 

reduces the cost but eliminates the use of metals in the (OLED), which may 

make devices easier to recycle (www. Understandingnano.com) [35]. 

These interesting device applications of carbon nanomaterials will be 

studied in details in our future research. 
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Appendix 

The DOS of semiconducting CNT with m=200 and for metallic CNT with 

m=300. 

m=200, d=15.4 nm m=300, d=15.4 nm 

E (eV) D (E) E (eV) D (E) 

 -0.25  7.99797  -0.25  13.5079 

 -0.245  8.1801  -0.245  16.9424 

 -0.24  8.40679  -0.24  5.98928 

 -0.235  8.70092  -0.235  6.04467 

 -0.23  9.10757  -0.23  6.10679 

 -0.225  9.73477  -0.225  6.17696 

 -0.22  10.9546  -0.22  6.25689 

 -0.215  17.0071  -0.215  6.34882 

 -0.21  6.91244  -0.21  6.45576 

 -0.205  7.20225  -0.205  6.58191 

 -0.2  7.64098  -0.2  6.73327 

 -0.195  8.43724  -0.195  6.91877 

 -0.19  10.8188  -0.19  7.15253 

 -0.185  4.87249  -0.185  7.45829 

 -0.18  4.9423  -0.18  7.88012 

 -0.175  5.02482  -0.175  8.51177 

 -0.17  5.12408  -0.17  9.60362 

 -0.165  5.24618  -0.165  12.2197 

 -0.16  5.40096  -0.16  3.41296 

 -0.155  5.60561  -0.155  3.43962 

 -0.15  5.89403  -0.15  3.47006 

 -0.145  6.34699  -0.145  3.50508 

 -0.14  7.23762  -0.14  3.54574 

 -0.135  11.3113  -0.135  3.59344 

 -0.13  3.99722  -0.13  3.6501 

 -0.125  4.1869  -0.125  3.71841 

 -0.12  4.48196  -0.12  3.80223 

 -0.115  5.02969  -0.115  3.90741 

 -0.11  6.65702  -0.11  4.04322 

 -0.105  2.26339  -0.105  4.22535 

 -0.1  2.28929  -0.1  4.48306 

 -0.095  2.32105  -0.095  4.87865 

 -0.09  2.36078  -0.09  5.57754 
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m=200, d=15.4 nm m=300, d=15.4 nm 

 -0.07  2.71257  -0.07  1.03063 

 -0.035  1.59736  -0.035  1.03063 

 -0.03  2.27346  -0.03  1.03063 

 -0.025  0  -0.025  1.03063 

 -0.02  0  -0.02  1.03063 

 -0.015  0  -0.015  1.03063 

 -0.01  0  -0.01  1.03063 

 -0.005  0  -0.005  1.03063 

 5.20417*10^-

18  0 

 5.20417*10^-

18  1.03063 

 0.005  0  0.005  1.03063 

 0.01  0  0.01  1.03063 

 0.015  0  0.015  1.03063 

 0.02  0  0.02  1.03063 

 0.025  0  0.025  1.03063 

 0.03  2.27346  0.03  1.03063 

 0.035  1.59736  0.035  1.03063 

 0.04  1.3858  0.04  1.03063 

 0.1  2.28929  0.1  4.48306 

 0.105  2.26339  0.105  4.22535 

 0.11  6.65702  0.11  4.04322 
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