An-Najah National University
Faculty of Engineering
Mechanical Engineering Department
Introduction to Mechatronics Programming (67371)
Second Exam

Instructor Name: Dr. Nidal Farhat
Student Name: [Signature]
Academic Year: Spring 2014/2015
Registration Number: [Redacted]
Credit Hours: 3
Total Exam Mark: 100
Date: Thursday, April 16, 2015
Exam Duration: 50 min
Exam Weight: 20

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>ILO's</th>
<th>ILO's %</th>
<th>Question Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>25</td>
<td>1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>30</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>30</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>15</td>
<td>1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student Grade</th>
</tr>
</thead>
</table>

Exam Notes:
1. Solve all the problems.
2. Closed books and notes.
3. Read each problem carefully before attempting to solve it.
4. Write all work on this exam paper.
Question 1. (25 points)
For the relation \(y = x^2 \cdot \cos(x) \cdot \sin(x) \), write a Matlab program that does the followings:
1) Plots the relation over the interval \([-\pi, \pi]\) with a step of 0.1.
2) Calculates the maximum and the minimum and indicate their position on the same figure by red circle as shown.

\[
\begin{align*}
x &= -\pi : 0.1 : \pi \; ; \\
y &= x \cdot \cos(x) \cdot \sin(x) \; ; \\
[y_{\text{max}}, \text{loc}] &= \text{max}(y) \; ; \\
\text{plot}(x, y) \; ; \\
\text{hold on} \\
\text{plot}(x(\text{loc}), y_{\text{max}}, 'or') \\
[y_{\text{min}}, \text{loc}] &= \text{min}(y) \; ; \\
\text{plot}(x(\text{loc}), y_{\text{min}}, 'or')
\end{align*}
\]

Question 2. (30 points)
Write a function that receives from the user a number \(n \) (the input of the function) and returns to the user (output of the function) the product of the odd numbers from 1 to \(n \). The program should check that \(n \) is 1) number (not a string) 2) scalar (not a matrix) 3) positive and 4) integer. Otherwise it produces the following error message: "erroneous input".

\[
\begin{align*}
\text{function} & \quad \text{out} = \text{product}([n]) \\
\text{if} & \quad \text{isnumeric}([n]) \; \&\; \text{length}([n]) = 1 \; \&\; n > 0 \; \&\; \text{mod}(n, 2) = 0 \\
& \quad \text{error('erroneous input')}
\end{align*}
\]

\[
\begin{align*}
\text{end} \\
\text{if} & \quad n == 0 \; ; \quad \text{prod} = 0 \; \text{else} \; ; \quad \text{prod} = 1 \; \text{end} \; . \\
\text{for} & \quad i = 1 : 2 : n \\
& \quad \text{prod} = \text{prod} \times i \; ; \\
\text{end} \\
\text{out} = \text{prod} ;
\end{align*}
\]
Question 3. (30 points)
Write a function that sorts a row or column array in ascending order. This function has one input (the array to be sorted), and two outputs: the first one is the sorted array and the other one is an array of the same size that contains collection of index vectors which describes the rearrangement of the elements of the sorted array. For example:
if the input is \(A = [2 \ 5 \ 7 \ 1 \ 5 \ 7 \ 3] \)
the output is \(\text{Asort} = [1 \ 2 \ 3 \ 5 \ 5 \ 7 \ 7] \), \(\text{index} = [4 \ 1 \ 7 \ 2 \ 5 \ 3 \ 6] \)

```matlab
function [Asort, ind] = newsort(A)
    ind = zeros(size(A));
    ind(1:end) = 1:length(A);
    for i = 1:length(A)-1
        for j = i+1:length(A)
            if A(j) > A(i)
                temp = A(i);
                A(i) = A(j);
                A(j) = temp;
                temp2 = ind(i);
                ind(i) = ind(j);
                ind(j) = temp2;
            end
        end
    end
    Asort = A;
end
```

Question 4. (15 points)
Write the Matlab text string that will produce the flowing expression. Note the italic and bold faced letters.
a) \(f(x) = \sin(\theta) \cos(2\phi) \)
\[
\textsf{lbf m}\textsf{m}(\textsf{x}) = \sin(\textsf{i} \textsf{t} \textsf{h} \textsf{e} \textsf{d} \textsf{a} \textsf{r} \textsf{m}) \cos(2\textsf{i} \textsf{t} \textsf{h} \textsf{e} \textsf{d} \textsf{a} \textsf{r} \textsf{m})
\]
b) Plot of \(\sum x^2 \) versus \(x \)
\[
\textsf{lbf Plot of} \ \sum_{\textsf{x}} x^2 \ \textsf{versus} \ x
\]
c) \(B_5 \)
\[
\textsf{lbf} \textsf{B}_5 \textsf{u}\textsf{l}\textsf{e}\textsf{s}
\]