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The radiation exchange in both convex and non-convex enclosures of diffuse gray

surfaces is given in the form of a Fredholm boundary integral equation of the second

kind. A boundary element method which is based on the Galerkin discretization

schem is implemented for this integral equation. Four iterative methods are used

to solve the linear system of equations resulted from the Galerkin discretization

scheme. A comparison is drawn between these methods.

Theoretical error estimates for the Galerkin method has shown to be in a good

agreement with numerical experiments.
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1. INTRODUCTION

Transport of heat radiative energy between two points in convex or non-convex

enclosures of diffuse gray surfaces is one of the few phenomena that are often gov-

erned directly by an integral equation. One of the consequences of this fact is that

the pencil of rays emitted at one point can impinge another point only if these

two points can “see” each other, i.e. the line segment connected these points does

not intersect any surface. The presence of the shadow zones should be taken into

account in heat radiation analysis whenever the domain where the radiation heat

transfer is taking place, is not convex.
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Shadow zones computation in some respect is not easy, but we were able to de-

velop an efficient algorithm for this purpose and was implemented in our computer

program. The integral equation governing the heat radiation (see section 2 for the

formulation of the problem) was earlier solved for the convex enclosure using the

Monte Carlo method [5].

In [2, 3] a boundary element method was implemented to obtain a direct numerical

solution for this integral equation. This latter method permits quite high error

bounds. For two-dimensional enclosure and three-dimensional rotational symmet-

ric convex enclosure a Panel method has been developed [9] and then coupled with

heat transport through radiation and conduction.

In this paper we are concerned to use the boundary element method, which is

regarded to be the most popular numerical method for solving this type of prob-

lems. Thus we will present an efficient and reliable iterative methods to solve the

linear system arises from Galerkin discretization scheme for the boundary integral

equation. Numerical results for both convex and non-convex geometries have been

obtained. We will present some error estimates for the Galerkin discretization

method. Theoretically Galerkin method requires a time consuming double inte-

gral over Γ for the calculation of every element of the stiffness matrix. Thus we

choose the corresponding numerical Gaussian quadrature formula with respect to

a fast computation, i.e. by evaluating the kernel of the integral equation as sel-

dom as possible. Numerical experiments with examples show high accuracy and

efficiency of this method. The theoretical asymptotic error estimates are in rather

good agreement with numerical experiments.

2. THE FORMULATION OF THE TWO

DIMENSIONAL HEAT RADIATION PROBLEM

We consider an enclosure Ω ⊂ R
2 with boundary Γ. The boundary of the enclosure

is composed of N elements as shown in Fig. 1.
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Fig.1

element k

elements j

The heat balance for an element k with area dAk reads as

Qk = qkdAk = (q0,k − qi,k)dAk, (2.1)

where

qi,k : is the rate of incomming radiant energy per unit area on the element k.

qo,k : is the rate of outgoing radiant energy per unit area on the elment k.

dAk : is the area of element k.

qk : is the energy flux supplied to the element k by some means other than the radiation

inside the enclosure to make up for the net radiation loss and maintain the specified

inside surface temperature.

A second equation results from the fact that the energy flux leaving the surface is

composed of emitted plus reflected energy. This yields to

q0,k = εkσT k
4 + lkqi,k (2.2)
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where

εk : is the emissivity coefficient (0 < εk < 1).

σ : is the Stefan-Boltzmann constant which has the value 5.6696 × 10−8 W/m2K.

lk : is the reflection coefficient with the reation lk = 1 − εk is used for a gray surfaces.

The incident flux qi,k is composed of the portion of the energy leaving the viewable

surfaces of the enclosure and arriving at the k-th surface. If the k-th surface can

view itself (is non convex), a portion of its outgoing flux will contribute directly

to its incidient flux. The incidient energy is then equal

dAkqi,k = dA1q0,1F1,kβ(1, k) + dA2q0,2F2,kβ(2, k) + . . .

+dAjq0,jFj,kβ(j, k) + . . . + dAkq0,kFk,kβ(k, k) + . . . (2.3)

+dANq0,NFN,kβ(N, k).

From the view factor reciprocity relation [11] follows

dA1F1,kβ(1, k) = dAkFk,1β(k, 1)

dA2F2,kβ(2, k) = dAkFk,2β(k, 2)
...

dANFN,kβ(N, k) = dAkFk,Nβ(k, N)



























(2.4)

Then equation (2.3) can be rewritten in such a way that the only area appearing

is dAk:

dAkqi,k = dAkFk,1β(k, 1)q0,1 + dAkFk,2β(k, 2)q0,2 + . . .

+dAkFk,jβ(k, j)q0,j + . . . + dAkFk,kβ(k, k)q0,k + . . . (2.5)

+dAkFk,Nβ(k, N)q0,N .

so that the incident flux can be expressed as

qi,k =

N
∑

j=1

Fk,jβ(k, j)q0,j (2.6)
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The visibility factor β(k, j) is defined as (see for example [12])

β(k, j) =















1 when there is a heat exchange between the

surface element k and the surface element j

0 otherwise
(2.7)

Substituting (2.6) into (2.2) and using the relation lk = 1 − εk yields

q0,k = εkσT 4
k + (1 − εk)

N
∑

j=1

Fk,jβ(k, j)q0,j. (2.8)

2.1. The Calculation Of The View Factor Fk,j

The total energy per unit time leaving the surface element dAk and incident at

the element dAj is given through

Qk,j = LkdAk cos (θk)dωk, (2.9)

where dωk is the solid angle subtended by dAj when viewed from dAk (see Fig.2)

and Lk is the total intensity of a black body leaving the element dAk.
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Fig.2

k

θ

θ j

k

dA
k

dA j

n

n

j

k

ωd

The solid angle dωk is related to the projected area dAk and the distance Sk,j

between the elements dAk and dAj and can be calculated as

dωk =
dAj cos (θj)

S2
k,j

, (2.10)
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where θj denotes the angle between the normal vector nj and the distance vector

Sk,j. Substituting (2.10) into (2.9) gives the following equation for the total energy

per unit time leaving dAk and arriving at dAj:

Qk,j =
LkdAk cos (θk)dAj cos (θj)

S2
k,j

(2.11)

In [12], we have the relation between the total intensity Ek of a black body i.e.,

Lk =
Ek

π
=

σT 4
k

π
(2.12)

and consequantly equation (2.11) becomes

Qk,j =
σT 4

k cos (θk) cos (θj)dAkdAj

πS2
k,j

. (2.13)

From the definition of the view factor Fk,j (see [11]) together with (2.13), we get

Fk,j =
Qk,j

σT 4
k dAk

=
cos (θk) cos (θj)dAj

πS2
k,j

. (2.14)

2.2. The Boundary Integral Equation

Now we are able to derive the boundary integral equation describing the heat

balance in a gray body. The substitution of equation (2.14) into equation (2.8)

leads to

q0,k = εkσT 4
k + (1 − εk)

N
∑

j=1

cos (θk) cos (θj)dAj

πS2
k,j

β(k, j)q0,j. (2.15)

If the number of the area elements N → ∞, then for all x ∈ dAk we obtain the

following boundary integral equation

q0(x) = ε(x)σT 4(x) + (1 − ε(x))

∫

Γ

G(x, y)q0(y)dΓy for x ∈ Γ, (2.16)

where the kernel G(x, y) denotes the view factor between the points x and y of Γ.

From the above consideration and for general enclosure geometries G(x, y) is given

through
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G(x, y) := G∗(x, y)β(x, y) =
[n(y) · (y − x)] · [n(x) · (x − y)] · β(x, y)

2|x − y|3
. (2.17)

For convex enclosure geometries β(x, y) ≡ 1. If the enclosure ist not convex then

we have to take into account the visibility function β(x, y):

β(x, y) =

{

1 for n(y) · (y − x) ∧ n(x) · (x − y) > 0 ∧ ~xy ∩ Γ = ∅

0 for ~xy ∩ Γ 6= ∅ (2.18)

where ~xy denotes the open straight segment between the points x and y. Definition

(2.18) implies that β(x, y) = β(y, x). Since G∗(x, y) is symmetric then G(x, y) is

also symmetric.

Equation (2.16) is a Fredholm boundary integral equation of the second kind. We

introduce the integral operator ˜K : L∞(Γ) → L∞(Γ) with

˜Kq0(x) :=

∫

Γ

G(x, y)q0(y)dΓy for x ∈ Γ, q0 ∈ L∞(Γ). (2.19)

Some of the properties of the integral operator (2.19) along with the solvability of

equation (2.16) have been investigated in [12].

3. NUMERICAL APPROXIMATION TO THE

SOLUTION OF THE FREDHOLM INTEGRAL

EQUATION

3.1. Boundary Element Method and Galerkin Discretization

In a two-dimensional case we let Γ be a curve that is given by a regular parameter

representation [10]

Γ : y = Zj(t) for t ∈ R, j = 1, . . . , L (3.1)

Qatanani,Barghouthi326



We choose on R a family of 1-periodic interval partition:

0 = t0 < t< · · · < tN = 1,

Πh = {tk}
∞
−∞ , tk+N = tk + 1 with h = max{tk+1 − tk} → 0. (3.2)

Let Sd,r
h be a family of 1-periodic piecewise polynomials of degree (d − 1) with

respect to the partition Πh in the sense of Babuska an Aziz [1] which is (r − 1)

times continuous and differntiable. We denote with Φk(t) the basis trial functions

with a smallest possible support (B-splines) (see Fig.3).

1

1

0

Fig. 3

t3t2 t4 t5 t

Φ2

Γh : y = Zh(t)

Γ : y = Z(t)

t1

The approximate solution has the general form

qh(t) =

n
∑

k=1

qkΦk,n(t) (3.3)

where n is the number of free grids and qk ∈ R, k = 1, . . . , n are the partition

coefficients.

On partition in the parameter domain we use Sm+1,1
h -Lagrange-System of finite ele-

ments. Then the local representation of Γ transplant these finite element functions

onto Γh. The ansatz functions (3.3) on Γh will then be defined by

Γh : y = Zjh(t) (3.4)
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with Zjh(t) = Zj(tk).

The ansatz functions (3.3) have the following approximation property

Approximation Property:

Let σ ≤ τ ≤ d be fulfilled and, for

σ < r +
1

2
, σ <

3

2
(3.5)

with the boundary approximation Γh, then there exists a constant c depending

only on τ , σ and r and to any v ∈ Hτ (Γ) and any Sd,r
h of our family there exists

a finite element χh ∈ Sd,r
h such that

‖v − χh‖Hσ(Γ) ≤ chτ−σ‖v‖Hτ (Γ). (3.6)

Sometimes we shall additionally use the inverse property which holds for regular

families Sd,r
h subject to quasi-uniform of meshes.

Inverse Property:

For τ ≤ σ with (3.5) there holds an estimate

‖χh‖Hσ(Γ) ≤ c∗hτ−σ‖χh‖Hτ (Γ) for χh ∈ Sd,r
h (3.7)

where the constant c∗ is independent of χh and h.

3.1.1. Representation Of System Of Equations

The Fredholm integral equation (2.16) can be expressed as

q = g + Kq (3.8)

where Kq = (1 − ε) ˜Kq and

˜Kq(x) =

∫

Γ

G(x, y)q(y)dΓy for x ∈ Γ and q ∈ L∞(Γ) (3.9)

We let

〈u, v〉Γ :=

∫ 1

0

u(t)v(t)|ẋ(t)|dt.
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The Galerkin discretization of the integral equation (2.16) with the ansatz function

(3.3) is given by

n
∑

k=1

qk 〈Φk,n, Φl,n〉Γ = 〈g, Φl,n〉Γ +

n
∑

k=1

qk 〈KΦk,n, Φl,n〉Γ (3.10)

Equation (3.10) can be written in the following short form:

(An − Bn)an = bn (3.11)

using the abbreviation A = (ql,k)l,k=1,...,n for the mass matrix, with

ql,k = 〈Φk,n, Φl,n〉Γ =

∫ 1

0

Φl,n(t)Φk,n(t)|ẋ(t)|dt, (3.12)

B = (Bl,k)l,k=1,...,n for the view factor matrix with

Bl,k = 〈KΦk,n, Φl,n〉Γ =

∫ 1

0

∫ 1

0

(1 − ε(t))Φl,n(t)G(t, τ)Φk,n(τ)|ẋ(t)||ẋ(τ)|dtdτ

(3.13)

and the vectors a = (qk)k=1,...,n and b = 〈g, Φl,n〉Γ, l = 1, . . . , n.

Properties Of The Matrices

The mass matrix A in (3.11) is symmetric, positive definite and diagonal dom-

inant hence it is invertible. Let λmin and λmax be the minimum and the maximum

eigenvalues of the matrix A respectively then follows the well known estimations

λmin‖q‖
2
l2 ≤ (Anq, q) ≤ λmax‖q‖

2
l2 (3.14)

1

λmax

‖q‖2
l2 ≤ (A−1

n q, q) ≤
1

λmin

‖q‖2
l2 (3.15)

where (·, ·) denotes the Euclidean scalar product of R
n with (q, q) = ‖q‖2

l2
.

Furthermore holds

‖An‖l2 = λmax,
1

‖A−1
n ‖l2

= λmin. (3.16)
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Also the system of equations (An − Bn) is symmetric and positve definite.

Since the mass matrix A is invertible, equation (3.11) can then be expressed in the

form

(I − A−1
n Bn)an = A−1

n bn (3.17)

Equation (3.17) can also be written as

qn = gn + Knqn, (3.18)

where qn = an, gn = A−1
n bn and Kn = A−1

n Bn.

3.1.2. Hiearchie Discretized Problem

The discretization parameter n defines in general the dimension of the problem.

For the multi-grid method we use the hiearchie of discretization in multi levels.

For each stepwise hl there is a corresponding parameter nl. Hence the discretized

vector equation of level l has the form

qnl
= gnl

+ Knl
qnl

(3.19)

To avoid the double indices nl, we use for short

ql = gl + Klql (l ≥ 0) (3.20)

where ql = al, gl = A−1
l bl and Kl = A−1

l Bl.

3.2. Solution Methods

To solve equation (3.20) we use four approximate iterative methods. These are

the Picard-iteration or Neumann series method, two-grid and multi-grid methods

and the conjugate gradient method.

3.2.1. Picard-Iteration

This is one of the iterative approximate method in which the pre-iteration step

qi+1
l = gl + Klq

i
l (3.21)
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with the iteration step index i is directly obtained from the linear system of equa-

tions. It converges if and only if the spectral radius

ρ(Kl) < 1 (3.22)

holds [7].

A sufficient condition for the convergence of this iteration method is

‖Kl‖ < 1 (3.23)

for a suitable matrix norm.

3.2.2. Two-Grid Method

The usual two-grid iteration of level l for one iteration step qi
l → qi+1

l :

Smoothing step: qi+1
l = gl + Klq

i
l i = 1, . . . , ν, ν ≥ 2 (3.24)

Residues: rν+1
l = (qν+1

l − gl − Klq
ν+1
l ) (3.25)

Breakdown criterion: ρν+1
l =

∥

∥rν+1
l

∥

∥

2
,

ρν+1
l

ρ0

< ε stop

Coarse grid correction: dl = r(qν+1
l − gl − Klq

ν+1
l ) (3.26)

δl−1 = (I − Kl−1)
−1dl−1 (3.27)

q0
l+1 = qν+1

l − Pδl−1 (3.28)

Here r is nl × nl−1 restriction matrix and P is nl−1 × nl prolongation matrix. The

indices l − 1 and l are used for the coarse grid and fine grid respectively.

Convergence Of The Two-Grid Method

The mapping qi
l → qi+1

l of the two-grid algorithm is affined an has the repre-

sentation

qi+1
l = MTGM

l qi
l + Cl (3.29)

where MTGM
l is the two-grid iteration matrix.
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Lemma 3.1. The two-grid iteration matrix MTGM
l has the form [7]

MTGM
l =

[

I − P (I − Kl−1)
−1r(I − Kl)

]

Kl for all l ≥ 1

The partition of this matrix yields

MTGM
l =

{

(I − Pr) + P (I − Kl−1)
−1 [(I − Kl−1)r − r(I − Kl)]

}

Kl

=
{

(I − Pr) + P (I − Kl−1)
−1 [rKl − Kl−1r]

}

Kl (3.30)

A sufficient condition for the convergence of this method ist the validity of the

contraction condition
∥

∥MTGM
l

∥

∥

Al

< 1 (3.31)

where MTGM
l is given in (3.30).

3.2.3. Multi-Gird Method

The multi-grid iteration consists of a smoothing step and a coarse grid correction.

The latter step uses the restricted defect r(qν+1
l − gl − Klq

ν+1
l ). The resulting

iteration is defined by the following recursive procedure:

Smoothing step: qi+1
l = gl + Klq

i
l i = 1, . . . , ν, ν ≥ 2 (3.32)

Residues: rν+1
l = (qν+1

l − gl − Klq
ν+1
l ) (3.33)

Breakdown criterion: ρν+1
l =

∥

∥rν+1
l

∥

∥

2
,

ρν+1
l

ρ0

< ε stop

Coarse grid correction: dl−1 = r(qν+1
l − gl − Klq

ν+1
l ) (3.34)

Multi-grid approximation (δl−1 = dl−1 + Kl−1δl−1) (3.35)

q0
l+1 = qν+1

l − Pδl−1. (3.36)

Convergence Of The Multi-Grid Method

The mapping qi
l → qi+1

l of the multi-grid algorithm has the representation [7]

qi+1
l = MMGM

l qi
l + Cl (3.37)

where MMGM
l is the multi-grid iteration matrix.
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Lemma 3.2. The multi-grid iteration matrix MMGM
l has the form [7]

MMGM
l = MTGM

l + P (MMGM
l−1 )2(I − Kl−1)

−1r(I − Kl)Kl. (3.38)

An alternative representation to (3.38) is

MMGM
l = MTGM

l + P (MMGM
l−1 )2

[

r − (I − Kl−1)
−1(rKl − Kl−1r)

]

Kl. (3.39)

A sufficient condition for the convergence of this method ist the validity of the

contraction condition
∥

∥MMGM
l

∥

∥

Al

< 1 (3.40)

where MMGM
l is given in (3.39).

3.2.4. Conjugate Gradient Iteration

This is an iteration method for solving the linear system

Clal = bl (3.41)

where Cl = (Al − Bl).

It is an effective method for symmetric and positive definite systems.

This CG-iteration is given by the following algorithm [6]:

1. Choose an initial vector a0
l and compute r0 = Cla

0
l − bl.

Set p0 = r0 and k = 0

2. Compute

αk =
rT
k pk

pT
k Clpk

ak+1
l = ak

l + αkpk

rk+1 = Cla
k+1
l

3. Stop if
‖rk+1‖2

‖rk‖2
< ε
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4. Compute

βk =
rT
k+1Clpk

pT
k Clpk

pk+1 = rk+1 + βlpk.

Convergence Of The Conjugate Gradient Method

From [12] follows that

ε · 〈q, q〉L2(Γ) ≤ 〈Aq, q〉L2(Γ) ≤ (2 − ε) · 〈q, q〉L2(Γ) (3.42)

where A = (I − K).

Let q ∈ Hl ⊂ L2(Γ) then we define

q(t) =

nl
∑

k=1

qkΦk(t). (3.43)

Set equation (3.43) into (3.42) we get

ε ·

∥

∥

∥

∥

∥

nl
∑

k=1

qkΦk

∥

∥

∥

∥

∥

2

L2(Γ)

≤

nl
∑

k,j

qkqj 〈AΦk, Φj〉L2(Γ) ≤ (2 − ε) ·

∥

∥

∥

∥

∥

nl
∑

k=1

qkΦk

∥

∥

∥

∥

∥

2

L2(Γ)

. (3.44)

Now
∥

∥

∥

∥

∥

nl
∑

k=1

qkΦk

∥

∥

∥

∥

∥

2

L2(Γ)

=

∫ 1

0

∣

∣

∣

∣

∣

nl
∑

k=1

qkΦk(t)

∣

∣

∣

∣

∣

2

dt =

nl
∑

k,j

qkqj

∫ 1

0

Φk(t)Φj(t)dt = (Alq, q)

(3.45)

Substituting (3.45) into (3.44) yields

ε(Alq, q) ≤ (Clq, q) ≤ (2 − ε) · (Alq, q). (3.46)

Lemma 3.3. Let λk be the real, positive eigenvalue of the mass matrix Al, and

it holds
∣

∣

∣

∣

λmax

λmin

∣

∣

∣

∣

≤ c (3.47)

then follows

λmin(q, q)Al
≤ (Alq, q) ≤ λmax(q, q)Al

. (3.48)
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Thus one obtains

λmin‖q‖
2
l2(Γ) ≤ (Alq, q) ≤ λmax‖q‖

2
l2(Γ). (3.49)

From (3.46) follows immediately

(ε)λmin‖q‖
2
l2(Γ) ≤ (Clq, q)Al

≤ (2 − ε) · λmax‖q‖
2
l2(Γ). (3.50)

The condition number κ(Cl) of the matrix Cl can then be estimated to give

κ(Cl) ≤
(2 − ε) · λmax

(ε) · λmin

(3.51)

using (3.47) then follows

κ(Cl) ≤ c ·
(2 − ε)

(ε)
.

Theorem 3.1. For a positive matrix Cl converges the Conjugate Gradient itera-

tion with the convergence estimation [8]

∥

∥ek
∥

∥

Cl

≤ 2

(

(κ(Cl) − 1)
1
2

(κ(Cl) + 1)
1
2

)k
∥

∥e0
∥

∥

Cl

(3.52)

where
∥

∥ek
∥

∥

Cl

=
∥

∥ak
l − al

∥

∥

Cl

and
∥

∥e0
∥

∥

Cl

=
∥

∥a0
l − al

∥

∥

Cl

.

3.3. Computation Of The Visibility Function β(x, y)

We illustrate in the following steps the method for which how the visibility func-

tion β(x, y) can be computed (see Fig.4)

Fig.4

Γ

z

y

z
Γ

x

o
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• We define

G : be the straight segment between the points x and y

G := {z ∈ R
2 : z = x + ϕ(x + y), ϕ ∈ [0, 1]}.

Question (1): is G ⊂ Ω ?

• We define

˜G : be the set of points such that

˜G :=
{

zi : zi = x + ϕi · (y − x), ϕi = i−1
|x−y|

, i = 1, . . . , m, m ∈ N

}

˜G is thus an approximation of the line G.

Question (2): is ˜G ⊂ Ω ?

For all z ∈ ˜G

• We require the point 0 to be always situated in the region Ω,

• We determine next zΓ, and

• Prove then if |zΓ| < |z|

If this is the case then follows immediately that β(x, y) = 0

Question (3): How can zΓ be determined ?

First we set zΓ = αz, α ∈ R.

The determination of α is necessary, therefore we demand

• zΓ ∈ Γ (see Fig.5)
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Fig.5
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Γ

x

• arg zΓ =arg z

To satisfy the first requirement, we set x = X(t0) and define Γ = {x = X(t), t ∈ [0, 1]}.

Determine next t1 = t0 + ε:

When zΓ = X(t1), follows immediately the first requirement.

4. THE ASYMPTOTIC ERROR ANALYSIS

4.1. Theoretical Error Estimation

Most the asymptotic error estimates ‖q−qh‖L2(Γ) are formulated in Sobolev spaces.

It holds the following lemma

Lemma 4.1. (Cea’s Lemma [10, 13])

The integral operator A = I − K is a pseudodifferential operator of order zero.

Therefore follows that for all q ∈ L2(Γ) the quasi-optimal error estimates

‖q − qh‖L2(Γ) ≤ c inf
wh∈Hh

‖q − wh‖L2(Γ) (4.1)

holds, where the constant c is independent of h and q.
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Theorem 4.1. The integral operator A is a strongly elliptic pseudodifferential

operator of order α. Further holds for the two dimensional case

α < 2r + 1 (4.2)

Let α − d ≤ σ ≤ α
2
≤ τ ≤ d be satisfied and in addition let qh be the Galerkin

solution of the Galerkin equation

〈Aqh, wh〉L2(Γ) = 〈g, wh〉L2(Γ) for all wh ∈ Hh

then we have the asymptotic error estimate

‖qh − q‖Hσ(Γ) ≤ chτ−σ ‖q‖Hτ (Γ) . (4.3)

Lemma 4.2. Let the ansatz functions be piecewise linear. Moreover (I − K) is

a pseudodifferential operator of order α = 0, then follows from (4.3) the error

estimate

‖qh − q‖L2(Γ) ≤ ch2 ‖q‖H2(Γ) . (4.4)

For the boundary method one needs to compute numerically the coefficients Bl,k

of the view factor matrix B. Its computation is carried out by a suitable form of

numerical integration. If the numerical integration is not accurately carried out

then one expects quite high integration error. The accuracy of the numerical inte-

gration must be discussed in relation to the asymptotic error estimation therefore

it is necessary to consider the following Lemma from Strang [4].

Theorem 4.2. (Strang Lemma [4])

We consider a family of approximated bilinear forms ah which are uniformly Hh-

elliptic. Then there exists a constant c that is independent of q and h and it holds

the following inequality

‖q − qh‖L2(Γ) ≤ c

(

inf
wh∈Hh

{

‖q − wh‖L2(Γ) + sup
wh∈Hh

|a(vh, wh) − ah(vh, wh)|

‖wh‖L2(Γ)

}

+ sup
wh∈Hh

|g(wh) − gh(wh)|

‖wh‖L2(Γ)

)

(4.5)

where the terms a(vh, wh), g(wh), gh(wh) and ah(vh, wh) in (4.5) are defined as

follows
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a(vh, wh) = 〈(I − K)vh, wh〉L2(Γ) = 〈Avh, wh〉L2(Γ)

g(wh) = 〈g, wh〉L2(Γ)

gh(wh) = 〈gh, wh〉L2(Γ)

and

ah(vh, wh) = 〈ah, wh〉L2(Γ).

The approximation ah(vh, wh) has the form

ah(vh, wh) =

∫

Γ

(I − K)vhwhdΓx =

∫

Γ

vh(x)wh(x)dΓx

−

∫

Γ

∫

Γ

(1 − ε(x))G(x, y)vh(x)wh(y)dΓxdΓy

The coefficients Ak,l of the mass matrix A (without the Quadrature error) are

Ak,l = a(Φk, Φl) =

n
∑

k=1

{
∫

Γ

Φk(x)Φl(x)dΓx −

∫

Γ

∫

Γ

(1 − ε(x))G(x, y)Φk(x)Φl(y)dΓxdΓy

}

.

If we now replace the above integration by Gaussian quadrature. This yields the

following approximation formula

˜Ak,l = ah(Φk, Φl) =

m
∑

i=1

WiFk,l(xi) +

m
∑

i=1

m
∑

j=1

WiWjEk,l(xi, yj),

where Fk,l and Ek,l are given by

Fk,l = Φk(x)Φl(x),

and

Ek,l(x, y) = (1 − ε(x))G(x, y)Φk(x)Φl(y)

here m denotes the order of the quadrature and the coefficients Wi and Wj are the

weights of the quadrature form.

The ellipticity of ah follows directly from Lemma 2.8 [12].

It holds

ε‖q‖2
L2(Γ) ≤ 〈Aq, q〉L2(Γ) ≤ (2 − ε)‖q‖2

L2(Γ) (4.6)

Let the approximation operator Ah satisfies the approximation inequality

‖(A − Ah)q‖L2(Γ) ≤ chτ
l ‖q‖Hτ (Γ) (4.7)
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where τ is defined in (3.5).

Let qh be our assigned ansatz function, then follows

ε‖qh‖
2
L2(Γ) ≤ 〈Aqh, qh〉L2(Γ) + chτ

l ‖qh‖Hτ (Γ) · ‖qh‖L2(Γ) (4.8)

with the help of the inverse inequality (3.7) we get

ε‖qh‖
2
L2(Γ) ≤ 〈Aqh, qh〉L2(Γ) + c∗1

(

hl

hl−1

)τ

‖qh‖
2
L2(Γ). (4.9)

Finally we obtain
(

ε − c∗1

(

hl

hl−1

)τ)

‖qh‖
2
L2(Γ) ≤ 〈Ahqh, qh〉L2(Γ) (4.10)

under the assumption c∗2 ≤

(

hl

hl−1

)

≤ c∗3 one obtains for the case τ = 1

〈Ahqh, qh〉L2(Γ) ≥
1

2
ε · ‖qh‖

2
L2(Γ). (4.11)

Hence ellipticity is proved. From this condition follows how exact the numerical

quadrature error must be.

5. NUMERICAL RESULTS

5.1. Numerical Examples For The Solution Of The System Of

Equations

Since the convergence requirements of the four solution methods are satisfied [12],

then we can apply now these methods to solve the following two-dimensional con-

vex and non-convex enclosures.

Convex Enclosure

Example 5.1. Let Ω be the domain of an ellipse. The boundary of this ellipse

has the following parameterization

Gamma =

{

x ∈ R
2 : x =

(

a cos 2πt

b sin 2πt

)

, a = 4, b = 2, 0 ≤ t < 1

}

. (5.1)
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The computation of the coefficients Al,k = 〈Φk,n, Φl,n〉, bn = 〈g, Φl,n〉 and Bl,k =

〈KΦk,n, Φl,n〉 have been carried out be Gaussian quadrature form.

Here we have g(t) = ε(t)σT 4(t) with

The emissivity coefficient ε = 0.9

The Boltzmann coefficient σ = 5.6696 × 10−8 and

The surface temperature T (t) = 1
2
(T1 + T2) −

1
2
(T2 − T1) cos 2πt, where T1 = 1000

and T2 = 1800.

Table (I) shows the numerical results for the solutions of equation (3.20) by using

Picard’s iteration, two-grid and multi-grid methods and CG-iteration method for

the ellipse. It contains both the number of iteration steps and the required CPU-

time in second. The mesh width hl = 1
nl

with nl = 2l. The number n = nl denotes

the parameter of the solved problem. The four iteration methods converge for all

levels l. Comparing these iterations together we see clearly that the two-grid and

multi-grid methods require both a small number of iterations and CPU-time in

comparison with the Picard’s iteration. On the other hand the CG-iteration needs

more iteration steps but less CPU-time in comparison with the other methods.

Table I. Solution Methods for an Ellipse

nl Picard Two-grid Multi-grid CG

Iter sec Iter sec Iter sec Iter sec

32 14 < 1 6 < 1 2 < 1 16 < 1

64 14 0.50 6 < 1 2 < 1 18 < 1

128 14 2.02 6 1.12 2 < 1 19 < 1

256 14 8.05 6 4.42 2 1.51 20 0.51

512 14 32.09 6 16.69 2 6.01 20 2.05

1024 14 128.26 6 69.98 2 24.07 20 8.16

Non-Convex Enclosure

Example 5.2. We consider for an example the non-convex curve shown in Fig.6.

In this case the visibility function β(t, τ) must be taken into consideration, with

β(t, τ) is defined in (2.18). The computation of this visibility function has been
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illustrated in section 3.3. Table (II) contains the numerical resuts for this non-

convex case.

Table II. Solution Methods for the Nonconvex Curve in Fig.6

nl Picard Two-grid Multi-grid CG

Iter sec Iter sec Iter sec Iter sec

32 16 < 1 8 < 1 3 < 1 27 < 1

64 16 0.58 8 < 1 3 < 1 31 < 1

128 16 2.31 8 1.38 3 0.53 40 < 1

256 16 9.14 8 5.49 3 2.09 43 1.07

512 16 36.50 8 21.98 3 8.31 43 4.23

1024 16 145.48 8 86.92 3 33.02 43 16.88

5.2. Numerical Examples For The Error Estimation

5.2.1. Convex Case

a) Γ Describes the boundary of a circle

Example 5.3. Let q(t) = cos 2πt for 0 ≤ t ≤ 1 be the exact solution of the

integral equation

q(t) = g(t) + (1 − ε)

∫ 1

0

G∗(t, τ)q(τ)|ẋ(τ)|dτ . (5.2)

Then the exact g(t) for the given exact q(t) has been calculated as follows

For the unit circle ~n(τ) · (~t − ~τ) = 1
2

and |~τ − ~t| = 2| sinπ(t − τ)|.

Then the kernel G∗(t, τ) in (2.17) reduced to

G∗(t, τ) =
1

2
·
1

4
|~t − ~τ | =

1

4
| sin π(t − τ)|. (5.3)

Substituting (5.3) into (5.2) with |ẋ(τ)| = cos 2πt to obtain the exact g(t) as

g(t) = cos 2πt +
1

3
(1 − ε(t)) cos 2πt (5.4)

This computed exact g(t) in (5.4) has then been used in our program to

obtain the approximat solution qh with the help of our numerical iterations.
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b) Γ Describes the boundary of square

Example 5.4. Let q(t) = x1(t) be the exact solution for the case of a unit

square. Then the exact g(t) can be computed as follows:

For t ≥ 0 and t < 0.25 we have

g1(t) = 4t − 4(1 − ε(t))

{

∫ 1/4

0

G∗
11(t − τ) · 4τdτ +

∫ 1/2

1/4

G∗
12(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
13(t − τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
14(t, τ) · 0dτ

}

, (5.5)

where

G∗
11 = 0, G∗

12 = G∗
21 =

(1 − 4t)(4τ − 1)

2 [(4t − 1)2 + (4τ − 1)2]
2/3

,

G∗
13 = G∗

31 =
1

2
[

16(t − 3
4

+ τ)2 + 1
]2/3

and

G∗
14 = G∗

41 =
16t

2 [16t2 + 16(1 − τ)2 + 1]
2/3

For t ≥ 0.25 and t < 0.5 we have

g2(t) = 1.0 − 4(1 − ε(t))

{

∫ 1/4

0

G∗
21(t, τ) · 4dτ +

∫ 1/2

1/4

G∗
22(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
23(t, τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
24(t, τ) · 0dτ

}

, (5.6)

with G∗
22 = 0, G∗

23 = G∗
32 =

(1 − 2t)(2τ − 1)

2 [(2t − 1)2 + (2τ − 1)2]
2/3

,

and G∗
24 = G∗

42 =
1

2
[

16(t − 5
4

+ τ)2 + 1
]2/3

.

For t ≥ 0.5 and t < 0.75 we have

g3(t) = (3 − 4t) − 4(1 − ε(t))

{

∫ 1/4

0

G∗
31(t, τ) · 4τdτ +

∫ 1/2

1/4

G∗
32(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
33(t, τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
34(t, τ) · 0dτ

}

, (5.7)
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where G∗
33 = 0 and G∗

34 = G∗
43 =

(3 − 4t)(4τ − 3)

2 [(3 − 4t)2 + (4τ − 3)2]
2/3

.

For t ≥ 0.75 and t < 1.0 holds

g4(t) = −4(1 − ε(t))

{

∫ 1/4

0

G∗
41(t, τ) · 4τdτ +

∫ 1/2

1/4

G∗
42(t, τ) · 1dτ

+

∫ 3/4

1/2

G∗
43(t, τ) · (3 − 4τ)dτ +

∫ 1

3/4

G∗
44(t, τ) · 0dτ

}

, (5.8)

where G∗
44 = 0.

The exact g(t) in (5.5), (5.6), (5.7) and (5.8) has been explicity calculated.

Tables (III) and (IV) contain the numerical results for the two computed g(t)

in (5.4) and (5.5 − 5.8) respectively. They show the L2−error ‖q − qh‖L2

and the order of convergence. In this case we obtain an error estimation for

‖q − qh‖L2 of order O(h2).

We conlude that the theoretical error estimation (4.4) and the numerical

results in tables (III) and (IV) are equivalent.

Table III. Error Estimation

Theoretical Value = 2.0

l nl L2−Error Conv. Ord

2 4 8.505 × 10−2

2.28
3 8 1.747 × 10−2

2.08
4 16 4.139 × 10−3

2.02
5 32 1.021 × 10−3

2.01
6 64 2.536 × 10−4

2.00
7 128 6.534 × 10−5

2.00
8 256 1.588 × 10−5

2.00
9 512 3.976 × 10−6
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Table IV. Error Estimation

Theoretical Value = 2.0

l nl L2−Error Conv. Ord

2 4 4.457 × 10−2

2.23
3 8 9.483 × 10−3

2.10
4 16 2.207 × 10−3

2.01
5 32 5.490 × 10−4

2.01
6 64 1.369 × 10−4

2.00
7 128 3.414 × 10−5

2.00
8 256 5.537 × 10−6

2.00
9 512 2.139 × 10−6

5.2.2. Non-Convex Case

Example 5.5. Let

q(t) = 1 +































t2(t − 1
4
)2 for t ∈ [0, 1

4
)

(t − 1
4
)2(t − 1

2
)2 for t ∈ [1

4
, 1

2
)

(t − 1
2
)2(t − 3

4
)2 for t ∈ [1

2
, 3

4
)

(t − 3
4
)2(t − 1)2 for t ∈ [3

4
, 1)

(5.9)

be the exact solution for the non-convex curve (see Fig.6),

Fig.6

t = 0.75

t = 0.5

t = 0.25

t = 0
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then the exact g(t) can be calculated from the integral equation (2.17) as follows:

For t ≥ 0 and t < 0.5 we have

g1(t) = q1(t) − (1 − ε(t))

(

∫ 1/4

0

G1(t, τ) · q1(τ) · 4πdτ

)

(5.10)

where q1(t) = 1 + t2(t − 1
4
)2 and G1(t, τ) = 1

4
| sin 2π(t − τ)|.

For t ≥ 0.25 and t < 0.5 we have

g2(t) = q2(t) − (1 − ε(t))

(

∫ 1/2

1/4

G2(t, τ) · q2(τ) · 4πdτ

)

(5.11)

where q2(t) = 1 + (t − 1
4
)2(t − 1

2
)2 and G2(t, τ) = 1

4
| sin 2π(t − τ)|.

For t ≥ 0.5 and t < 0.75 we have

g3(t) = q3(t) − (1 − ε(t))

(

∫ 3/4

1/2

G3(t, τ) · q3(τ) · 4πdτ

)

(5.12)

where q3(t) = 1 + (t − 1
2
)2(t − 3

4
)2 and G3(t, τ) = 1

4
| sin 2π(t − τ)|.

For t ≥ 0.75 and t < 1.0 we have

g4(t) = q4(t) − (1 − ε(t))

(
∫ 1

3/4

G4(t, τ) · q4(τ) · 12πdτ

)

(5.13)

where q4(t) = 1 + (t − 3
4
)2(t − 1)2 and G4(t, τ) = 1

12
| sin 2π(t − τ)|.

The exact g(t) in (5.10), (5.11), (5.12) and (5.13) has been explicity computed.

Table (V) contains the numerical results for this computed exact g(t) (5.10 −

5.13). The table shows the L2−error ‖q − qh‖L2 and the order of convergence. We

see clearly that the L2−error ‖q− qh‖L2 for this non-convex case is of order O(h2).

We finally conclude that the theoretical error estimation (4.4) for ‖q − qh‖L2 and

the numerical results in table (V) for the non-convex case are in good agreement.
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Table V. Error Estimation

Theoretical Value = 2.0

l nl L2−Error Conv. Ord

2 4 1.2345 × 10−1

2.16
3 8 2.6834 × 10−2

2.09
4 16 6.3138 × 10−3

2.03
5 32 1.5437 × 10−3

2.01
6 64 3.8210 × 10−4

2.01
7 128 9.5049 × 10−5

2.00
8 256 2.3760 × 10−5

2.00
9 512 5.9400 × 10−6
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