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ABSTRACT: The numerical treatment of boundary integral equations in the form of boundary element
methods has became very popular and powerful tool for engineering computations of boundary value
problems, in addition to finite difference and finite element methods. Here, we present some of the
most important analytical and numerical aspects of the boundary integral equation. The concept of the
principle symbol allows the characterization of the boundary integral equation whose variational
formulation on the boundary provides there a Gãrding inequality. Therefore, the Galerkin method can
be analyzed similarly to the domain finite element methods providing asymptotic convergence if the
number of grid points increases. These asymptotic error analysis will be presented in details. To
illustrate the efficiency of the Galerkin boundary element method we consider as an numerical
experiment the strongly elliptic boundary integral equation with the logarithmic single layer potential.
Consequently, we use the Gaussian elimination method as a direct solver and the conjugate gradient
iteration to solve the positive definite linear system.  A comparison is drawn between these methods.

KEYWORDS: Strong ellipticity, variational formulation, boundary element method, Galerkin scheme.

I. INTRODUCTION

Although the reduction of elliptic boundary value problems to equivalent integral equations on the
boundary represents historically the earliest method of corresponding mathematical analysis, its
numerical exploitation has been developed only more recently creating many activities in
computational mathematics and engineering from several different fields to implement boundary
integral methods. Therefore, the corresponding integral equations form now a much larger class
than the classical Fredholm integral equations of the second kind with weakly singular kernels.
They contain singular integral equations with Cauchy respectively Giraud kernels in elasticity and
thermoelasticity, Fredholm integral equations of the first kind with weakly singular kernels as in
elasticity, flow problems, electrostatics and conformal mapping and integro-differential operators
with non-integrable kernels as in acoustics or elasticity. Whereas in classical analysis these types
of equations have been treated differently, modern Fourier analysis of pseudo–differential
operators allow us to formulate unifying properties which provide also an analysis of numerical
methods for their approximate solution. The concept of the principle symbol allows the
characterization of boundary integral equations whose variational formulation on the boundary
provides there a Gãrding inequality. Therefore Galerkin boundary element method can be
analyzed similarly to the domain finite element methods providing asymptotic convergence if the
number of grid points increases. In engineering codes, however, mostly point collection is used for
boundary element methods. Here stability is much more difficult to prove. The asymptotic error
analysis based on the Galerkin formulation will be presented. The paper is organized as follows: In
section 2 we present some important aspects of the variational formulation and strong ellipticity for
the boundary integral equation. As in finite element methods for elliptic boundary value problems,
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also in boundary element methods, the variational formulation and coerciveness properties provide
the basic mathematical foundations for rigorous error and convergence analysis. The variational
formulation rests on the weak formulation of the boundary integral equation on  . Section 3 is
devoted to the numerical handling of the boundary integral equation. Thus, we describe the
boundary element method based on the Galerkin discretization of the boundary integral operator.
Some asymptotic error results based on Galerkin formulation are presented. In section 4, we
illustrate with an example the Galerkin boundary element method for constructing the solution of
the single layer potential integral equation with Logarithmic kernel. Consequently, the conjugate
gradient method (cg–method) is implemented to solve the system of algebraic equations. This
turns out to be the most efficient method for solving symmetric and positive definite systems.

II. VARIATIONAL FORMULATION AND STRONG ELLIPTICITY

Consider the strongly elliptic boundary integral equation

 onfuA (2.1)

where A is a pp matrix of linear operator mapping the vectorp valued function on   into
vectorp  valued function, f is vectorp  valued function and u  is the unknown function.   is a

given compact sufficiently smooth manifold in 2R . The corresponding weak formulation of (2.1),
reads as to find u such that for all test functions w  there holds on 




 dwfdwuA )( (2.2)

To analyze the bilinear form on the left-hand side of (2.2) and the mapping properties involved we
introduce the Sobolev spaces of functions on  associated with the scalar products
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for 2n  and 0 . Here 
t  denote all covariant derivatives of order   in  and
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and
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turn out to be equivalent. For 0  we use the duality with respect to )(2 L ,
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Since the boundary integral operator considered here is also pseudo–differential operator, thus we
have the following mapping property:

Theorem 2.1([11]) For a pseudo–differential operator A  of order R  and any R  the
mapping

)()(:   HHA (2.9)

is continuous. For the proof see, for example, reference [11].

Since we are interested in solving (2.1), the continuity (2.9) is not enough. We also need some
properties that provide the existence of 1A . The following property is strong ellipticity defined as

Definition: A pp matrix of pseudo–differential operator A  of order   is called strongly elliptic if
there exist a positive constant 0k  and a complex–valued function )( C  such that for all

x


 and all 1 nR  with 1 and all pC  the principle symbol of A  satisfies

  2
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(2.10)

Lemma 2.1: ([15,16]) For n = 2 the strong ellipticity (2.10) is equivalent to the property: For all
x


 and all  1,0 , the principle symbol 0a satisfies

  0)1,()1()1,(aDet 00  xax


 (2.11)

For proof see, for example, [15,16]. The proposed coerciveness results read as follows:

Theorem 2.2: ([8]) If A  is a strongly elliptic pp system of pseudo–differential operator of order
   then there exist a positive constant 1k   and a completely continuous operator

)()(: 22   HHT such that for all )(2  Hw
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In other words, TAK  is elliptic)(2 H on   . The proof of (2.12) is based on (2.10) and
can also be found in [5].

III. GALERKIN BOUNDARY ELEMENT METHOD

In order to solve the boundary integral equation (2.1) numerically we are going to use the
boundary element method based on the Galerkin discretization scheme. Thus we start by
introducing a family of finite- dimensional boundary element spaces hH on  by choosing a regular

rd
hS ,  family of boundary elements in the sense of Babuska and Aziz [6], dr  . More specifically,

we use the global parametric representation

)1()(,)( 


rrxt   (3.1)

of   and introduce 1–periodic piecewise )1( d –degree polynomial splines on a family of
partitions  1................0 10  Mttt of the unit interval,  1

,....,1
max 

 jj
Mj

tth . Then, with the

parametric representation (3.1), we transplant the splines onto . Boundary integrals can then be
evaluated in the local coordinates in which the finite elements appear as simple functions. The
classical Galerkin method for solving (2.1) or (2.2) approximately uses hH for the trial as well as
for the test space, i.e. find hh Hu  such that for all hh Hw  :

)()( 22 ,,

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Let  N
jj 1

  denote a Basis of hH . Then the desired approximation solution has the form
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Where the coefficients j  are to be determined by solving the quadratic finite system of linear
equations
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These equations are equivalent to (3.2). Since )()(: 22   HHA , the bilinear form (3.2) and
the influence matrix (3.4) will be well defined only if we require the conformity condition,

)(2  HH h . For the consistency of the Galerkin approximation (3.2) we also require the
approximation property
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As is well known for linear problems, the convergence huu can only be established if the
approximate equations (3.4) are stable, which can be formulated in terms of the Ladyzenskaya–
Babuska–Brezzi condition, in short LBB–condition : There exists 0 such that for all hh Hw   and

the whole family hH with 0h
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Lemma 3.1: (Cea's Lemma [7]) If the LBB–condition holds then Galerkin equations (3.2) and (3.4)
are uniquely solvable and we have the quasi–optimal error estimate

)()( 22 inf


  Hh
HwHh wucuu

hh

     (3.7)

Where the constant c  is independent of u  and h .
Proof: i) Since 0hvA implies with (3.6) also 0hv , and since (3.4) is a system of
quadratic linear equations, the uniqueness implies solvability.
ii) Due to the previous arguments, the solution hu of (3.4) exists for 0h  satisfying

hhLhLhh HwwuAwuA 


allfor,,
)()( 22         (3.8)

Hence, the mapping uGuu hh : , the Galerkin projection hG exists for every h . Moreover, for

every )(2  Hu , we find that hG is a projection,

hhh vvG  for hh Hv   i.e.
hh HHh IG        (3.9)

Moreover, for every )(2  Hu we have with (3.6)
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Hhhh wHw  since on the finite–dimensional unit–sphere the

supremum (3.6) becomes maximum. Inserting (3.8) into (3.9) and using continuity of
duality2 L and of A , we obtain
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where the constant c  is independent of h  and .u Hence, the LBB–condition (3.6) indeed implies
stability. For (3.7) we use the inequality
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for every hh Hw  .

Theorem 3.1: Let )()(: 22   HHA  be a bijective, strongly elliptic of pseudo–differential
operator of order on ; let (3.5) and one of the following additional properties be satisfied:
i)  constant and 0T in (2.12)
ii)  constant ,
iii) The boundary elements provide in addition to (3.5) the property:

For every )( C exist constants 0 and 0C such that for all hh Hw  ,
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where hh HHP )(: 2 denotes the )(2 L  projection. Then there exists 00 h such that the
boundary element Galerkin method (3.2) is stable satisfying the LBB–condition (3.6) for all

00 hh . Sometimes (3.11)  is also called a super-approximation property. This property allows
the application of Korn’s trick, i.e. the freezing coefficient technique, also called the localization
principle,  to the boundary element methods; see references [1] and [2] for more details.
Proof: In order to show (3.6) we choose any hv  and then try to find some associated hw for which
the inequality (3.6) holds.

i) Here AK  is elliptic)(2 H  and we can choose hhh Hvw  * since here   is

constant. Then, with 0T  and (2.12) we obtain
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The above inequality yields
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ii) For this case, our proof follows the corresponding finite element version (see for example [12]).
From (i) we already have for AK   that the corresponding Galerkin projections
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Since we assume the existence of 1A and
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The first two terms can be estimated in the same manner as in case (ii), which yields
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for all h sufficiently small. 

Combining the above results, we conclude that the Galerkin method for injective, strongly elliptic
system of pseudo–differential or boundary integral equations under the assumptions of theorem
3.1 is eatable and converges quasi–optimally for 0h .
This result can further be improved by using the finite element approximation properties of
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,  drdr,S rd
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Theorem 3.2: ([15,16]). Let A  be a bijective strongly elliptic pseudo–differential operator of
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Proof: (i) For the special case
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  , the proposed inequality (3.14) follows from Cea's Lemma,

i.e. (3.7) together with (3.13).

(ii) For
2


   we perform the well–known Aubin–Nitsche duality arguments as in [5]. First we

observe that for bijective pseudo–differential operator A on also its adjoint *A with respect to the
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duality2 L is a bijective pseudo–differential operator of the same order. We therefore know
that )()(:*    HHA is continuous and bijective, in particular, for

vA*  we have )()(     
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With the Galerkin equations we have
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IV. NUMERICAL EXPERIMENT

In our test numerical experiment, we consider the boundary integral equation

   xforxfxuA )()(  (4.1)

with the logarithmic single layer potential

  ydyuyxLogxuA  


)(
2

1
)(


                                   (4.2)

where 2R is a curve with domain 1 . The integral operator A  is elliptic2 L ,
furthermore, A  is self–adjoint, positive definite operator and satisfies the Gãrding inequality on 
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(see, for example [13,14] for more details ). The classical Galerkin method for solving (4.1) uses

hV  for trial as well as for the test space. Find )(2 Luh  such that for all )(2 Lwh :

)()( 22 ,,



LLhh wfwuA  (4.3)

Let  N
jj 1

 denote a basis of hV . Then the desired approximate solution has the form





N

j
jjh xxu

1

)()(     (4.4)

Where the coefficients j are to be determined by solving the quadratic finite system of linear
equations

NkforfA
LkjLk

N

j
j ,...,2,1,,

)()(
1

22 



     (4.5)

In fact (4.5) can be written in the following short form

fS                                                                (4.6)

where xykjNjkjk ddyxyxLogSS
kj

 


 )()(
2

1
)( ,...,1, 


 for the influence matrix,

Njj ,..,1)(     and xjNjj dxxfff
J

 


 )()()( ,..,1   for the right-hand side of the

discretized equation. The computation of the influence matrix NjkjkSS ,...,1,)(   has been

performed numerically using Gauss quadrature. Since the operator A  is self–adjoint and positive
definite, it follows that the matrix S  is symmetric and positive definite. Hence we can implement
the solution methods for the discrete equation (4.6), namely: The Gaussian elimination method as
a direct solver and the conjugate gradient iteration. For more details on these methods see for
example [3,4,9]. The cg–iteration is given by the following algorithm [9,10].

1. Choose an initial vector )0(
n  and compute 00

)0(
0 , rpsetfSr nnn    .

2. For 0k  compute

 
kn

T
k

k
T
k

k pSp

pr ,


kn
k

n
k

n p  )()1(
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)1(
1


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nnk fSr

3. Stop the calculation if
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21

k

k

r

r

4. Otherwise compute

kn
T
k

kn
T
k

k pSp

pSr 1

kkkk prp   11

The convergence of the cg–iteration is based on the following theorem.
Theorem 4.1 ( [9] ), see chapter 5) For the positive definite matrix nS the conjugate gradient
method converges and fulfils the following error estimate

 
  nn S
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i e
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nnnn SnSSn

i
nS

i ee   )0()0()()( and with the equivalent norm

 
2

21, aSaaSa nnSn
  and

min

max)(cond)(


 nn SSk .

Table 4.1 shows the numerical results for the discrete equation (4.6) using the Gaussian
elimination method and the conjugate gradient iteration. It contains both the number of iteration
steps and the CPU–time in seconds required by the cg–iteration in addition to the CPU-time
required by the Gaussian elimination. The number N  denotes the dimension parameter of the
solved problem.

Gauss elimination Cg-iteration
N CPU-time

 seconds No. of iterations CPU-time
seconds

128 1.56 7 0.16
256 12.91 7 0.41
512 109.67 7 1.20
1024 902.52 7 3.36

Table 4.1

It is evident from the numerical results shown in table 4.1 that the cg–iteration is more efficient
than the Gaussian elimination method for solving positive definite systems. It requires both less
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number of iterations and CPU-time in comparison to the Gaussian elimination. This demonstrates
that one of the characteristic features of cg-iteration is its fast convergence.

V. CONCLUSIONS

This article shed some light on some of the most important analytical and numerical aspects of the
strongly elliptic boundary integral equation. For a two-dimensional boundary value problems, the
explicit Fourier analysis leads to a new class of quadrature based modified collocation methods-
qualocation providing higher–orders of convergence than the Ritz-Galerkin or collocation methods.
In order to perform any of the boundary element methods we still have to carry out numerical
integration for computing the weights

)(2,



LkjA   or ))(( kj xA


Since, in general, this cannot be done explicitly, the boundary   as well as these weights will be
approximated and a corresponding perturbation analysis is needed. Based on Strang’s lemma for
bilinear forms, such an analysis can be carried out. Still, numerical integration of the above
coefficients is one of the major problems when writing boundary element codes. For two-
dimensional problems, Galerkin collocation provides a fully discretized numerical scheme.
Combining a Taylor expansion of the kernels of the boundary integral operators with clustering of
integration domains, one can combine the integration of the boundary potentials with multigrid
methods for boundary integral equations and develop very fast and efficient solution procedure.
This analysis will be carried out in our forthcoming article.
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