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1. Introduction

ABSTRACT

The aim of this paper is to develop a robust numerical model for cold-formed steel square and rectangular
structural hollow sections for use as axial loaded members in earthquake engineering applications.
Pseudo-static cyclic physical tests of cold-formed steel brace specimens using axially loading are used
to develop and calibrate a robust numerical model that mimics the results from the tests. A nonlinear
fibre based beam-column element model which considers the spread of plasticity along the element is
used. This numerical model includes a low cyclic fatigue model, which wraps the nonlinear fibre based
beam-column element material in order to capture fracture in the braces. New parameters to be used
for the fatigue model are introduced in this paper. Comparisons of the maximum tensile force (Fyax), ini-
tial buckling load (F.), number of cycles to fracture, the total energy dissipated (W;.) and the energy dis-
sipated at the first cycle of ductility of 4 (W,.4) between the numerical models and the physical tests are
carried out. In general, the models captured the salient response parameters observed in the physical
tests. It is found that the numerical model gives a good prediction of the maximum measured tensile
force (Fmax) and initial buckling load (F.) with the mean values being 0.93 and 0.95 of those measured
in the physical tests, respectively. The corresponding coefficients of variation (Cy) are 0.11 and 0.08,
respectively. Moreover, the mean values of the total energy dissipated (W;.) and the energy dissipated
at the first cycle of ductility of 4 (W,=4) for the numerical model are found to be 1.12 and 0.98, of those
measured in the physical tests, respectively. The corresponding coefficients of variation (Cy) are 0.13 and
0.20, respectively. Furthermore, the numerical model was validated using another set of independent
physical tests. This validated brace element model can be used in future numerical models of concentri-
cally brace frames buildings to predict the performance of the complete structures under earthquake
loading.

© 2012 Elsevier Ltd. All rights reserved.

then validated by comparing its predictions to findings by Nip et
al. [19] for cold-formed carbon steel hollow sections. Its applicabil-

The brace element is the main element in concentrically braced
frame (CBF) systems that undergoes inelastic deformations to dis-
sipate energy during seismic actions. It is destined to carry reversal
axial forces in which it may experience yield in tension, buckle in
compression or may fracture due to the demand cycles it is ex-
pected to endure during seismic actions. Structural hollow sections
(square, rectangular, circular and oval shaped) are commonly used
as braced elements. Furthermore, increased interest has been
shown in studying the performance of hollow structural steel
sections [1-19] in order to model their inelastic behaviour.

In this paper, the hysteretic behaviours of cold-formed square
and rectangular hollow steel sections (SHS and RHS) subjected to
inelastic cyclic loading carried out by Goggins [20] are studied. A
robust numerical model for cold-formed carbon steel square and
rectangular structural hollow sections is developed. The model is
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ity to cold-formed stainless steel and hot rolled carbon steel square
and rectangular structural hollow sections is also investigated. The
numerical model could then be employed in non-linear time his-
tory analysis (NLTHA) modelling to assess the behaviour of CBF
systems.

2. Cyclic tests of steel brace specimens

Goggins [20] carried out many cyclic tests on cold-formed
square and rectangular hollow steel sections in order to obtain
experimental data to validate numerical models. In particular, the
performance of fifteen specimens fabricated from 20x20x2.0SHS,
40x40x2.5SHS and 50x25x2.5RHS sections with normalised slen-
derness ratios, 4, defined in Eurocode 3 [21], of between 0.4 and 3.2
subjected to cyclic tests were investigated. Two different lengths of
specimens (1100 and 3300mm) were used to obtain the broad
range of slenderness ratios. The tests carried out by Goggins [20]
on intermediate and long length brace specimens were subjected
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Notations

Ag the gross cross sectional area

BRB buckling restrained brace

CBFs concentrically braced frames

CF cold-formed

cS carbon steel

DI damage from cyclic loading

DI; damage for each amplitude of cycling

ey axial yield displacement

E Young’s modulus

Iy yield strength

fya the increased average yield strength due to cold work-
ing

fiv the basic yield value of sheet taken from coupon tests

fu the basic ultimate tensile strength of sheet taken from
coupon test

Fc initial buckling load

Fmax the maximum tensile force

HR hot-rolled

HSS hollow structural section

k numerical coefficient that depends on the type of form-
ing

m Fatigue ductility exponent

n the number of 90° bends in the cross-section

n current number of cycles

n number of integration points per element

n; Number of cycles at an amplitude

N¢ fatigue life

Ng Number of constant amplitude cycles of that amplitude

necessary to cause failure

NLTHA non-linear time history analysis

r radius

RHS Rectangular hollow sections

Sa stress amplitude

SHS square hollow sections

SS stainless steel

t the design core thickness of the steel material before

cold forming
Wiot total energy dissipated

Wiy energy dissipated at the first cycle of ductility of 4
Ag, Plastic strain amplitude

& Fatigue ductility coefficient

yl Normalised slenderness ratio

I ductility at fracture

to increasing amplitude cyclic displacements. For these cyclic tests,
the loading was applied according to the provisions of the ECCS
[22]. The recommended complete testing procedure was followed,
for which the axial deformation history is shown in Fig. 1. This im-
plies using one cycle at each level of 0.25, 0.5, 0.75 and 1.0ey, fol-
lowed by three cycles at each level of 2, 4, 6ey, etc.,, where ey
represents the estimated axial yield displacement. Yield displace-
ments evaluated from the monotonic tensile tests on short speci-
mens were used to determine the amplitudes of the cycles [16].

Nip et al. [19] carried out 16 cyclic tests on square and rectan-
gular hollow steel section in order to study the cyclic response of
tubular bracing members of three structural materials: hot-rolled
carbon steel, cold-formed carbon steel and cold-formed stainless
steel. These specimens were fabricated from 40x40x3.0SHS,
40x40x4.0SHS, 50x50x3.0SHS, 60x60x3.0SHS and 60x40x
3.0RHS sections with normalised slenderness ratios between 0.34
and 1.4. They were subjected to increasing amplitude cyclic dis-
placements, similar to the loading regime used by Goggins [20].
Three different lengths of specimens (1250mm, 2050mm and
2850mm) were used. In this paper, the physical tests carried out
by Goggins [20] are used to calibrate a numerical model that
can capture fracture of the specimens. The numerical model will
then be validated by comparing its performance to the results from
the physical tests by Nip et al. [19].

Throughout this paper test ID’s are identified by member size
(depth X width X thickness X length), material (either carbon steel,
CS, or stainless steel, SS), forming process (either hot-rolled, HR, or
cold-formed, CF); tests carried out by Goggins [20] are followed by
the letter G with the specimen number and tests carried out by Nip
et al. [19] are followed by the letter N with the specimen number.
Test ID’s are given in Tables 1 and 2, together with normalised
slenderness ratios of the brace about the minor axis (4y.y) and
the measured yield stress of the sections (fy).

In order to study the behaviour of concentrically braced mem-
bers, a brief discussion of the hysteretic response (axial load-axial
displacement response) of the brace 40x40x2.5x1100-CS-CF-G1
tested by Goggins [20] is presented here. Fig. 2 shows
the 40x40x2.5x1100-CS-CF-G1 bracing test specimen with the
results from the test showing the hysteretic behaviour of the
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Fig. 1. Cyclic displacement waveform for ECCS procedure.

specimen, which is described by the hysteretic response of axial
force plotted against resulting axial displacements [20]. Compres-
sion loads are negative and tension loads are positive. The area
under the hysteretic curves represents the hysteretic energy dissi-
pated by the brace.

As shown in the hysteretic response in Fig. 2b, the loading was
applied according to the provisions of the ECCS [22] discussed ear-
lier. After the occurrence of the first buckling in compression at
Point 1, for stockier members the compressive strength decreased
as a plastic hinge formed at the mid-height of the brace and next to
the connection with the stiffener. For slender members, the mem-
ber experienced mainly elastic buckling. For all members, their
compressive resistance degraded significantly in subsequent cycles
of the same axial deformation demand primarily due to residual
deformations from previous cycles, and to a lesser extent due to
the Baushinger effect (an increase in tensile yield strength causes
decrease of the compressive yield strength), similar conclusions
were found by Goggins [20] and Tremblay [9]. At every cycle, the
brace accumulated permanent elongation. The amount of inelastic
rotation imposed to the hinge at every cycle increased as the brace
elongated and the imposed deformation increased [9,20]. As the
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Table 1
Parameters and results for the specimens used to calibrate the numerical model.
Specimen ID Ayy fy (MPa) Initial camber (%) No. of cycles to fracture Numerical model/ physical tests
Physical tests Numerical model Fmax Fc Wiot Wii=a
40x40x2.5x1100-CS-CF-G1¢ 0.40 285 0.10 16 14 1.06 0.99 1.15 1.13
40x40x2.5x1100-CS-CF-G2* 0.40 285 0.10 15 14 1.07 1.02 1.19 1.12
20x20x2.0x1100-CS-CF-G3* 0.90 304 0.50 26 16 0.99 0.87 0.72 1.16
20x20x2.0x1100-CS-CF-G4* 0.90 304 0.50 17 16 0.98 1.03 1.31 1.14
50x25x2.5x1100-CS-CF-G5° 0.60 304 0.30 16 14 1.05 0.90 1.06 1.22
50x25x2.5x1100-CS-CF-G6* 0.60 304 0.30 16 14 1.04 1.00 1.27 1.18
40%40x2.5x3300-CS-CF-G7° 1.30 344 0.50 - - 0.91 1.03 1.07 0.88
40%40%2.5x3300-CS-CF-G8® 1.30 350 0.50 - - 0.93 1.02 1.09 0.89
40x40x2.5x3300-CS-CF-G9” 1.30 332 0.50 - - 0.89 0.99 1.06 0.78
20x20x2.0x3300-CS-CF-G10* 3.20 443 1.00 7 4 0.81 0.82 - -
20x20x2.0x3300-CS-CF-G11* 3.00 399 1.00 7 4 0.79 0.79 - -
20x20x2.0x3300-CS-CF-G12? 3.00 399 1.00 7 4 0.76 0.92 - -
50x25x2.5%3300-CS-CF-G13° 1.90 312 1.00 - - 1.00 1.00 1.22 0.85
50%25x2.5x3300-CS-CF-G14° 2.20 428 1.00 - - 0.85 1.00 1.16 0.74
50%25x2.5x3300-CS-CF-G15° 2.20 428 1.00 - - 0.84 0.92 1.14 0.70
Mean 0.93 0.95 1.12 0.98
Cy 0.11 0.08 0.13 0.20

¢ Tested to failure.
b Tested to maximum displacement ductility demand of between 5.6 and 9.5 without specimen failure.

Table 2

Parameters and results for the specimens used to validate the numerical model.
Specimen ID Ayy fy (MPa) Initial camber (%) No. of cycles to fracture Numerical model/ physical tests

Physical tests Numerical model Fmax F. Wiot W,

60x60x3.0x2050-CS-HR-N16* 0.57 458 0.20 10 11 1.14 1.14 1.67 1.25
40x40x3.0x2050-CS-HR-N17¢ 0.89 478 0.50 19 14 1.01 1.19 0.80 1.25
40x40x3.0x1250-CS-HR-N18* 0.50 478 0.20 14 9 1.01 1.05 0.89 1.40
60x60x3.0x2050-CS-CF-N19? 0.53 361 0.20 10 11 0.88 0.92 1.92 1.49
40x40x4.0x2050-CS-CF-N20%° 0.89 410 0.50 13 15 0.95 1.00 1.89 1.27
40x40x3.0x2050-CS-CF-N214,¢ 0.90 451 0.50 10 13 0.98 0.98 2.30 1.28
40x40x3.0x1250-CS-CF-N22* 0.50 451 0.20 10 9 0.97 1.01 1.05 1.24
60x60x3.0x2850-SS-CF-N23* 0.89 483 0.50 9 13 1.17 0.92 2.63 1.18
50x50x3.0x2850-SS-CF-N24? 1.16 552 0.50 13 14 1.03 1.00 1.45 1.13
60x40x3.0x2850-SS-CF-N25 ¢ 1.40 538 0.50 10 16 1.17 0.85 2.74 1.14
60x60x3.0x2050-SS-CF-N26* 0.62 483 0.30 10 10 1.15 1.00 1.38 1.20
50x50x3.0x2050-SS-CF-N27° 0.80 552 0.50 10 10 1.18 093 1.44 1.21
60x40x3.0x2050-SS-CF-N28? 0.97 538 0.50 10 12 1.18 0.95 1.96 1.19
Mean 1.08 1.00 1.62 1.25
G, 0.09 0.09 0.36 0.07

¢ Tested to failure.
€ Failed at end condition during physical test.
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Fig. 2. (a) Specimen diagram and (b) experimental load-displacement response of the specimen 40x40x.2.5x1100-CS-CF-G1 [20].
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Fig. 3. Failure of specimen 40x40x2.5x1100-CS-CF-G1. (a) Lateral and local buckling. (b) Fracture across local buckled area near top stiffener. (c) Fracture across local

buckled are at mid-height of the specimen [20].

brace is stocky with slenderness ratio, 4, of 0.4, local buckling of the
cross section developed at the hinge location at mid-height and
close to the end stiffeners, which induced high localised strains
in the steel material and contributed to reduce the brace compres-
sive strength further. Maximum tension force obtained is shown at
Point 2. Fracture took place at the hinges at Point 3 when the brace
was stretched in tension after local buckling has occurred, and the
ultimate failure occurred at Point 4. The described failure of the
specimen above is shown in Fig. 3. It should be noted that the
above sequence of behaviour was observed for the stockier mem-
bers only (e.g. those specimens with normalised slenderness less
than 1.3). For more slender specimens (e.g. those specimens with
normalised slenderness greater than 1.3), little or no local buckling
was observed during the tests. However, premature fracture oc-
curred for specimens with high slenderness ratios (i.e. specimens
with slenderness ratio of 3.2). Eurocode 8 [23] specifies limits to
the normalised slenderness ratio between 1.3 and 2.0 for concen-
trically braced frames with X diagonal bracing and suggests to
use low width to thickness ratio and Class 1 cross-section defined
in Eurocode 3 [21]. Further details on specimens and physical test
set-up as well as specimen performance in low cyclic fatigue load-
ing are given in [16].

3. Numerical modelling of steel brace elements

The computational framework Open System for Earthquake
Engineering Simulation (OpenSees) [24] is used in this study to de-
velop numerical models of structural steel hollow section brace
elements that capture the salient features of the response of these
elements to low-cycle tension-compression loading. OpenSees
uses the physical-theory models to represent the braces. Two ways
to represent the physical theory models are found in Opensees. The
first is distributed plasticity, which considers the spread of plastic-
ity along the element and is used for this paper. The second is con-
centrated plasticity (also known as lumped plasticity), where the
interior of the element behaves elastically with plasticity consid-
ered to be concentrated over specified hinge lengths at the element
ends.

The main limitation in the physical theory model used in Open-
Sees is that plane sections are assumed to remain plane and it does
not account for the section distortion and the local buckling, so the
accuracy of the model is degraded after the occurrence of the local
buckling. This limitation can be ignored by calibrating the param-
eters of the numerical model to represent test models.

A numerical model to be used in OpenSees for brace members
was proposed by Uriz [25], which is able to model the effect of glo-
bal buckling. Uriz [25] also calibrated a material model that can be
incorporated in the numerical model to account for the effects of
low cyclic fatigue, which will be discussed and implemented in
Section 4.

Many parameters affect the behaviour of the numerical brace
model, such as initial camber, number of integration points and
number of elements. These will be studied in the following para-
graphs in order to obtain a robust numerical model that can be val-
idated using the data from physical member tests. A graph of the
numerical model setup is shown in Fig. 4. This model matches
the general characteristic of the physical test specimens, including
the specimen length, end conditions and material properties for
each individual cyclic test specimen used. End stiffeners were also
modelled. Fixed end conditions were provided except for the axial
displacement at the loaded end (Point 5 at Fig. 4). The numerical
model will first be developed using fifteen cyclic tests carried out
by Goggins [20] and then be validated using sixteen cyclic tests
carried out by Nip et al. [19].

The uniaxial Giuffre-Menegotto-Pinto steel material model
with isotropic strain hardening and the monotonic envelop shown
in Fig. 5 is used in this study. However, a low value of strain hard-
ening (<0.008) was used in this study. A nonlinear fibre beam-
column element model based on the force formulation proposed
by Spacone et al. [26] is employed. This model considers the spread
of plasticity along the element through integration of material re-
sponse over the cross section and subsequent integration of section
response along the element. The inelastic beam-column element is
derived by small deformation theory, which is used for computa-
tion of local stresses and strains along the element. In accordance
to the corotational theory described by Filippou and Fenves [27],
nonlinear geometry under large displacements is accounted for
during transformation of the element forces and deformations to
the global reference system. By using the corotational theory the
moderate to large deformation effects of inelastic buckling of the
concentric brace can be presented (small strains and large dis-
placements). Using this approach, the brace needs to be subdivided
into at least two inelastic beam-column elements. However, it is
may be necessary to divide the brace into more elements to repre-
sent accurately local deformations and steel strains at the critical
sections.

In order to get accurate buckling loads and hysteretic behaviour,
Opensees represents elements by fibres. Uriz [25] noted that when
there are fewer fibres representing the cross section, sensitivity to
the interaction between moment and axial loads increased and a



336 S. Salawdeh, ]. Goggins/ Engineering Structures 46 (2013) 332-349

O e

# Element Number
#) Node Number

P @ A®

Cyclic

k\u K

L

LB [

load

Fig. 4. Setup and loading direction of the numerical model used in OpenSees.
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Fig. 5. Monotonic envelop for uniaxial Giuffre-Menegotto-Pinto steel material [24].

loss of stiffness is found when Opensees numerically integrates to
determine the area moment of inertia. When there are fewer fibres
representing the same area, lower centroid for the fibres will be
achieved and the equivalent moment of inertia will be smaller than
the cross section with more fibres. This calculation is more sensi-
tive to the number of fibres across the thickness than the number
of fibres around the perimeter. For the numerical model used in
this paper, it was found that employing three fibres across the
thickness and a minimum of 2(b + h)/3 fibres around the perimeter
of the cross section was optimum in terms of computational effort
and accuracy, where b and h are the width and the height of the
cross section in mm. Thus, in total a minimum of 180 fibres are
used in the cross section.

In OpenSees, in order to consider buckling in an axially loaded
brace, it is essential to include an imperfection either to the geom-
etry of the brace in the form of initial camber or to the properties of
the member in the form of a residual stress distribution over the
cross section. In this model, initial camber is used to consider buck-
ling. Uriz [25] proposed to use an initial camber displacement at
mid-length of the brace with a magnitude varied between 0.05%
and 0.1% of the brace length, whereas Wijesundara [28] recom-
mends to use the initial camber displacement at mid-length of
0.5% of the brace length.

By using small initial cambers between 0.05% and 0.1% the
buckling is delayed to reach and the buckling force is overesti-
mated as shown in Fig. 6. On the other hand, incorporating initial
cambers of 0.5% was not representing the observed response of
many braces. For this study, initial camber between 0.1% and
1.0% is found to give satisfactory results, where the lower bound
is used for stockier specimens and larger initial camber values
are used for more slender specimens, as will be shown in Section
5. It is also noted that for a brace member with specified material
and section properties, the initial camber is the main parameter
that plays the major role for determining the first buckling load
in the numerical model, but does not affect the general behaviour
of the hysteretic response.

Fig. 7 shows the effect of changing the number of non-linear
beam column elements for the unstiffened length of the brace in
the numerical model for the force displacement response using
three integration points per element and constant initial camber
of 0.5% of the length of the brace. By changing the number of
non-linear beam column elements, the first buckling strength is
nearly identical and relatively insensitive to the number of sub-
elements but depends upon initial camber value used. However,
the brace modelled with two elements resists less force than a
brace modelled with four elements in the post buckling range with
a maximum difference of 18.7% (Fig. 7). Similarly, a brace modelled
with eight elements resists slightly less force in the post buckling
range than the brace modelled with four elements with a maxi-
mum difference of 5.8% (Fig. 7). The brace modelled with sixteen
elements has nearly identical behaviour in the post buckling range
and the internal curvature with the brace modelled with eight ele-
ments. However, there was a maximum difference of 1% in the post
buckling range at the second loop, but it was nearly identical for
other loops. As expected, the internal curvature and the post buck-
ling range are more accurately represented when more elements
are used with three integration points per element. From the
above, it is noted that a minimum number of elements of eight
should be used while using three integration points. On the other
hand, it is expected that less elements can be used in the brace
when more integration points are assigned, in order to minimise
the time needed for modelling and computational efforts.

The integration along the element is based on Gauss-Lobatto
quadrature (integration) rule (two integration points at the ele-
ment ends) [24]. This numerical quadrature rule interpolates poly-
nomial displacements of order 2n — 3 exactly, where n is the
number of integration points. However, due to nonlinear material
properties, these polynomial interpolants may not be physically
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Fig. 6. Experimental force-displacement response of specimen 50x25x2.5x1100-CS-CF-G5 compared to the hysteretic model found from OpenSees with (a) 0.05% initial
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Fig. 7. Effect of changing the number of non-linear beam column elements to represent the unstiffened length for the brace in the numerical model to the force displacement

response using three integration points per element.

accurate, which may result in distributions of deformations that
are not adequately described by polynomials [25]. Uriz [25] ob-
served that the specimen with only two integration points exhibits
a slightly more dramatic loss of compressive strength in the post-
bucking range. This can also be seen in Fig. 8. This is due to an un-
der integration of the element. Under-integration of element re-
sponse is not recommended and the minimum number of
integration points recommended for every inelastic beam-column
element is 3 [25]. In Fig. 8, the brace was divided into eight
elements and different integration points were used for every ele-
ment. While using two integration points, slightly lower compres-
sion resistance in the post buckling range is observed as compared
to models containing three, five and seven integration points with
a maximum difference of 18%. However, nearly identical results in
hysteretic response were found in models containing three, five,
and seven integration points, as observed in Fig. 8

To check the interaction between the number of elements of the
brace and the number of integration points per element, a compar-
ison of the response of the numerical models was conducted by

changing the number of elements and the number of integration
points per element as follows: eight elements with three integra-
tion points per element, six elements with four integration points
per element, four elements with six integration points per element
and two elements with ten integration points per element, which
is the maximum integration points that can be used for an element
in OpenSees. Fig. 9 shows that when a finer subdivision is used by
dividing the brace into a number of elements or dividing the sub-
element into number of integration points the results are nearly
identical. Thus, two elements with 10 integration points per ele-
ment for the buckling brace could be a suitable choice.

A sensitivity analysis on the predicted behaviour of the model
containing two elements and various numbers of integration
points (3, 4, 5, 6, 8 and 10) was conducted (see Fig. 10). It is con-
cluded that two elements and three integration points cannot
accurately represent the real hysteretic response of brace mem-
bers. There is a slight difference in the behaviour when using four
and five integration points. However, nearly identical results were
found when using six, eight and ten integration points. In this
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Fig. 9. Effect of changing the number of elements and integration points for the unstiffened brace in the numerical model to the force displacement response using different
non-linear beam-column element per brace and different integration points per element.

study, a minimum number of ten integration points is recom-
mended while using two elements per brace.

To assure the validity of the numerical model, a comparison be-
tween the performance of the model to cyclic and monotonic load-
ing is carried out in OpenSees for the same brace element as shown
in Fig. 11. Acceptable results are found, specifically for the first and
post buckling loads. However, maximum tensile forces in the brace
member during the first cycle at each new displacement demand
were higher than those predicted in monotonic tests in post yield
range. An explanation for this difference may be the numerical
rounding, especially with the massive number of numerical opera-
tions required. On the other hand, the maximum tensile force
experienced in second and third cycles at a given displacement
amplitude were reduced due to Baushinger effect.

4. Low cyclic fatigue modelling

Brace steel members subjected to cyclic loading suffer stages of
buckling and yielding. After the occurrence of buckling, rotational
plastic hinges will form. They experience large rotational demands
undergoing large strain deformation histories causing fracture due
to low cyclic fatigue. Fatigue process consists of three stages: initial
crack nucleation, progressive crack growth across the part and fi-
nally a sudden fracture of the remaining cross section. The fatigue
strength of a material is determined experimentally. This is
achieved by subjecting test specimens to repeated loads or strains
of specified amplitude or ranges, and determining the number of
cycles required to produce failure [29]. ASTM [30] defines fatigue
life, Ng, as the number of cycles of stress or strain of a specified
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Fig. 11. Comparison of response of numerical model to monotonic and cyclic loading.

character that a given specimen sustains before failure of a speci-
fied nature occurs.

Occurrence of local buckling within the plastic hinge, increases
strain demands causing faster fracture initiation. When local buck-
ling occurs, and the braces deform in compression, cracks will form
after the braces are loaded in tension [9,31-33]. From the cyclic
tests carried out by Goggins [20] and discussed earlier, it is found
that slender braces can exhibit better fracture life performance
than braces with low member slenderness ratio. A possible reason
of that is the occurrence of local buckling within the plastic hinge
for stockier members, which increases strain demands and reduce
fatigue life.

To quantify the damage in braces, a discrete form of damage
accumulation rule called Palmgren-Miner’s rule can be used. This
rule describes the damage in the low cycle fatigue with constant

plastic strain amplitude and associated with the relative reduction
of deformability to quantify the damage for cyclic loading, DI, as [34]

4nAg,

DI =
4NfA8p

(M
where Ag,, is the plastic strain amplitude, n is the current number of
cycles and Nt is the number of life cycles. In Eq. (1), the numerator
4nAg, denotes the current plastic strain and the denominator
4NAg, denotes the total plastic deformability, which varies depend-
ing on the given plastic strain amplitude. However, during earth-
quakes the amplitude of the cycles is not constant. As such, the
amplitude of each cyclic excursion in deformation history and the
number of cycles at each amplitude identified can be computed
using a rainflow cycle counting method [25,35,36]. Damage for each
amplitude of cycling is estimated by
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n;

Dl =1
Ny

(2)

where n; is the number of cycles at an amplitude and Ny is the num-
ber of constant amplitude cycles of that amplitude necessary to
cause failure. Manson [37] and Coffin [38] working independently
in fatigue problems, proposed a characterization of fatigue life
based on the plastic strain amplitude. They noted that when the
logarithm of the plastic strain amplitude experienced in each cycle,
&;, was plotted against the logarithm of the number of cycles to fail-
ure, Ny, a linear relationship resulted for metallic materials as shown
in the following equation [39]:

& = &(Np)" 3)

where ¢, is the fatigue ductility coefficient which is the material
parameter that roughly indicates the strain amplitude at which
one complete cycle on a virgin material will cause failure, and m
is the fatigue ductility exponent which is the material parameter
which describes the sensitivity of the log of the total strain ampli-
tude to the log of the number of cycles to failure.

Overall damage due to low cycle fatigue is estimated by linearly
summing the damage for all of the amplitudes of deformation cy-
cles considered (g;) [25]. During cycling, to get Ng for current
amplitude, constant coefficients &, and m for Eq. (3) should be
known and Eq. (2) can be written as

n;

=y (4)
10( '("0)>

Uriz [25] developed and calibrated a low cycle fatigue model to
be used with the Opensees fibre-based nonlinear beam-column
model for simulating the large displacement and the inelastic
buckling behaviour of steel struts. As described in OpenSees com-
mand language manual [24], in order to account for the effects of
low cycle fatigue, a modified rainflow cycle counter has been
implemented to track strain amplitudes. Rainflow cycle counting
necessitate examination of the entire time strain history for each
fibre at each time step, since the strain history changes as each
increment of strain occurs where rainflow cycle counting analyses
strain histories after the termination of loading to determine the
number and the amplitude of the imposed cycles. Because of the
computational effort involved in this procedure, a modified meth-
od is proposed by Uriz [25] that utilizes the traditional rainflow cy-
cle counting method to accumulate damage, but does so by
analyzing only a relatively short moving window of recent strain
history. This cycle counter is used in Miner’s Rule shown in Eq.
(4) as the linear strain accumulation model based on Coffin-Man-
son log-log relationships describing low cycle fatigue failure. This
material wraps around the parent material and does not influence
the force-deformation relationship of the original material. Once
the fatigue material model reaches a damage level of one, the resis-
tance of the parent material becomes zero (1.0 x 1078 is used to
drop the stress of the material). If failure is triggered in compres-
sion, the material stress is dropped at the next zero-force crossing
where compression force never drops to zero. The fatigue material
assumes that each point is the last point of the history, and tracks
damage with this assumption. If failure is not triggered, this pseu-
do-peak is discarded. The material also has the ability to trigger
failure based on a maximum or minimum strain.

In summary, damage during each cycle is found based upon
Palmgren-Miner’s using coffin-Manson relationship where con-
stant coefficient €, and m should be calibrated. Accumulated dam-
age is found by using Palmgren-Miner’s rule assuming the damage

DI;

accumulated linearly using a modified rainflow cycle counting
technique as in the following equation:

n;

If in any point the damage Index (DI) become one or more, then
the corresponding fibre in the cross section is removed from the
cross section by reducing its stress and stiffness to zero.

Uriz [25] calibrated OpenSees low cyclic fatigue model for four
different sections and found the constant coefficient for each of
them as follows: wide flange sections (&, = 0.191, m = —0.458), hol-
low structural section (HSS) members (&, = 0.095, m = —0.5), buck-
ling restrained brace (BRB) members (&, =0.12, m = —0.458) and
reinforcing bars (&, =0.081, m = —0.43). From the last values it is
evident that most of the material models have a very similar value
for the parameter, m, but the value of ¢, varies significantly be-
tween section types. For the HSS, the fatigue parameters where cal-
ibrated for 6”X6”X3/8” HSS only. In this paper, new parameters
representing different brace sections are proposed. It is important
to know that the model doesn’t account for the local buckling ef-
fect and the computed strains do not represent the actual strains
in the member, but parameters used in the model can be calibrated
to compensate for this fact.

To check a consistent model for the minimum number of ele-
ments that can be used for the brace using the fatigue model and
the number of integration points per element, numerical models
are tested using different number of elements and constant num-
ber of integration points. It is found that using six integration
points per element with four elements or more gives consistent re-
sults as shown in Fig. 12. On the other hand, using 10 integration
points per element with two elements for the numerical model is
satisfactory and gives the same results as dividing the brace into
more elements, as shown in Fig. 13.

The numerical models incorporating the fatigue model with the
parameters suggested by Uriz [25] for hollow structural section
(HSS) members (&, =0.095, m=-0.5) did not represent the real
behaviour of the physical specimens tested by Goggins [20] during
the cyclic loading, where the numerical model force decreases fas-
ter than the real behaviour of the specimen. Neither did numerical
models incorporating the fatigue parameters obtained by Nip et al.
[40] from physical low cyclic fatigue tests on coupons taken from
HSS members, which were on average found to be &,=0.4027
and m = —0.6392 for cold formed carbon steel. On the other hand,
Santagati et al. [41] calibrated the parameters m and &, for rectan-
gular hollow section brace members by comparing the results of
numerical simulations against the experimental behaviour of 32
HSS specimens found in literature. Based on this calibration they
recommended a constant value of the slope m equal to —0.458
and a limit strain value &, equal to 0.07. Again, utilising these
parameters in numerical models did not represent the real behav-
iour of the physical specimens tested by Goggins [20] during the
cyclic loading. Thus, the model was calibrated using new parame-
ters that can represent the behaviour of the specimens. After many
trials, it is found that by calibrating the fatigue parameters in the
numerical model to & =0.19 and m=-0.5, better results are
achieved, at least for the sections tested by Goggins [20], as will
be shown in the next section. Further, independent tests by Nip
et al. [19] are used to validate this numerical model. It is found that
using the fatigue parameters obtained by calibrating the model
using the tests of Goggins [20] gave better predictions of the frac-
ture life for most of the specimens, as will be shown in next section
and Tables 1 and 2. Furthermore, this model was subsequently

Dl;;; = DI; + (5)
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Fig. 12. Effect of changing the number of elements for the brace in the numerical model while using the fatigue model to the force displacement response using different

number of non-linear beam-column element per brace and 6 integration points.
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Fig. 13. Effect of changing the number of elements for the brace in the numerical model while using the fatigue model to the force displacement response using different

number of non-linear beam-column element per brace and 10 integration points.

validated by comparing predictions from NLTHA to measured per-
formance of brace members in full scale shake table tests [42].

5. Verification of the numerical model

OpenSees numerical models were studied for fifteen cyclic test
specimens carried out by Goggins [20] and sixteen cyclic test spec-
imens carried out by Nip et al. [19]. Cyclic tests were having differ-
ent dimensions, lengths, normalised slenderness ratios, and
material properties, as shown in Tables 1 and 2. Most of the param-
eters for the numerical models were taken the same as the ones
found on the tests. Strain hardening in the numerical model was
ignored in many cases. However, in some models it was necessary
to include a low value of strain rate (<0.008) to improve stability of

the analysis. Full fixity is assumed for end conditions. Yield
strengths used in the numerical model for the cold form specimens
carried out by Goggins [20] are taken as the increased average yield
strength, fy,, of the cross-section due to cold working as specified in
Eurocode 3 [43] without using the upper limit value as the follow-
ing equation:

knt?
fra=fp+ E

(fu —fyp) (6)

where fy;, is the basic yield value of sheet taken from coupon tests,
Ag is the gross cross sectional area (mm?), t is the design core thick-
ness of the steel material before cold forming (mm), n is the number
of 90° bends in the cross-section with an internal radius r < 5t (frac-



342 S. Salawdeh, ]. Goggins/ Engineering Structures 46 (2013) 332-349

tions of 90° bends are counted as fractions of n), k is a numerical
coefficient that depends on the type of forming (k = 7 for cold rolling
and k =5 for other methods of forming) and f, is the basic ultimate
tensile strength of sheet taken from coupon test. Goggins [20] found
that Eq. (6) gives more accurate results when an upper limit is not
apply. For the tests of Nip et al. [19] the yield strengths are taken as
the offset yield strengths with a value set at 0.2% of the strain. This
offset yield point is used normally for high strength steel which
doesn’t exhibit a yield point. It is known that the material proper-
ties of cold-formed sections vary around the cross-section due to
the different levels of cold-work during forming. For example,
Wilkinson and Hancock [44] found that the yield stress of the short
opposite face of the welded face was on average 10% higher than
that of the adjacent longer faces in the rectangular hollow sections
(RHS). Moreover, they found that the yield stress obtained from the
corner coupons was on average 10% higher than that of the opposite
face. The corner yield strength is higher than the flat faces of the
RHS, although the thickness is less than flat sections. In this study,
average yield strength taking account of enhanced yield strength
from cold forming has been used for the section and same thickness
was assumed for the perimeter.

A comparison between the hysteretic axial force-axial displace-
ment response for the tests and the numerical model is carried out
and shown from Figs. 14-35. Tables 1 and 2 give section properties
of the specimens, normalised slenderness about the Y-Y axis as de-
fined in Eurocode 3 [21], 4y.y, where the effective length is assumed
to be 0.5L, yield strength, fy, initial camber used in the numerical
model, number of cycles needed to fracture for both physical tests
and numerical model. Furthermore, ratios of the maximum tensile
force (Fnax), initial buckling load (F.), the total energy dissipated by
the specimens (W) and the energy dissipated by the specimens at
the first cycle of ductility of 4 (W,-4) found from the numerical
models and those measured from the physical tests are given in Ta-
bles 1 and 2.

5.1. Buckling and tensile loads

From Tables 1 and 2, it is found that there is a relatively good
agreement between the numerical model and physical tests results

Axial displacement (mm)

of the maximum tensile forces (Fyax) and initial buckling loads (F.)
for most of the specimens investigated. Moreover, the calibrated
models had average ratios of numerical model to physical test
model values for Fy,x and F. of 0.93 and 0.95, respectively, with
corresponding coefficients of variation (Cy) of 0.11 and 0.08,
respectively (Table 1). The models were validated for cold-formed
carbon steel, hot-rolled carbon steel, and cold-formed stainless
steel by comparing predictions from the numerical model to find-
ings from experimental physical tests carried out by Nip et al. [19],
where average ratios of numerical model to physical test model
values for F.x and F. was 1.08 and 1.00, respectively, with corre-
sponding Cy values of 0.09 and 0.09, respectively (Table 2). Thus,
the equivalent mean values for Fy,.x and F. for the total 31 speci-
mens studied were 1.01 and 0.98, respectively, with corresponding
Cy values of 0.12 and 0.09, respectively.

Initial buckling loads obtained from the numerical model were
found to be affected by initial camber provided at the middle of the
specimens, which increases for slender braces with low initial
buckling force. It is noticed that some post buckling cycles ob-
tained from the numerical models are fatter and having more post
buckling force than the cycles obtained from the physical tests.
One possible explanation would be the limitation of the model that
plane sections are assumed to remain plane, which will not capture
the local buckling at the plastic hinge locations on the specimen.
Local buckling phenomenon can be mitigated in practise by using
low width to thickness ratio and Class 1 cross-section suggested
in Eurocode 3 [21], which can form a plastic hinge with the rota-
tion capacity required from plastic analysis without reduction in
resistance that may be caused by local buckling.

While comparing the force-displacement response of the
experimental and numerical model for 50x25x2.5x3300-CS-CF-
G14 and 50x25x2.5x3300-CS-CF-G15, it is found that the yield
capacity of the braces in the numerical model is lower than the
yield capacity on the experiments (see Fig. 19). A possible explana-
tion of that is the specific feature of the cold formed elements of
increasing locally their yield strength due cold forming. Even
though the average yield strength defined in Eurocode 3 [43] that
takes into account the effect of cold forming is used, the yield dis-
placement for experimental results is found to have higher values

ailn

Axial displacement (mm)

Fig. 14. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 40x40x2.5x1100-CS-CF-G2.

-40
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Axial displacement (mm)

Fig. 15. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 20x20x2.0x1100-CS-CF-G4.
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Fig. 16. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 50x25x2.5x1100-CS-CF-G6.
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Fig. 17. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 40x40x2.5x3300-CS-CF-G8.
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Fig. 18. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 20x20x2.0x3300-CS-CF-G10.
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Fig. 19. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 50x25x2.5x3300-CS-CF-G14.

than the numerical model for these two tests, but was satisfactory numerical model incorporating a fatigue model could predict frac-
for all other tests. ture after a number of cycles close to the ones obtained in the

5.2. Fracture

physical tests for the specimens tested until fracture occurred
(see Tables 1 and 2). However, some of the physical test specimens
suffered from early fracture at end connection, where the weld it-

For many tests, plastic hinges formed in the brace specimens self or the heat affected zone adjacent to the stiffener fractured
after they experienced very large rotational demands and large during the physical tests, which is not accounted for in the numer-
strains, which caused fracture due to low cyclic fatigue. The ical model. For this reason it is found that numerical model for
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Fig. 20. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60x60x3x2050-CS-HR-N16.
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Fig. 21. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 40x40x3x2050-CS-HR-N17.
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Fig. 22. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 40x40x3x1250-CS-HR-N18.
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Fig. 23. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60x60x3 x2050-CS-CF-N19.

40x40x4.0x2050-CS-CF-N20, 40x40x3.0x2050-CS-CF-N21 and
60x40x3.0x2850-SS-CF-N25 had more cycles before capturing
fracture as it is developed to have the fracture at the middle of
the brace element not at the end connections. Specimens
40x40X2.5x3300-CS-CF-G7, 40x40x2.5x3300-CS-CF-G8, 40x
40X2.5x3300-CS-CF-G9, 50x25x2.5%x3300-CS-CF-G13, 50x25x
2.5%3300-CS-CF-G14 and 50x25x2.5x3300-CS-CF-G15 were not
tested to failure, and all of them survived displacement ductility
demands between 5.6 and 9.5.

Tremblay [9] proposed a simple approach to find the total duc-
tility reached at fracture, y. This approach is related only to the
normalised slenderness parameter, 2, as follows:

Ly =24 +8.37 )

where p¢ is the sum of the peak ductility reached in tension and the
peak ductility attained in compression in any cycle before the half-
cycle in tension in which failure of the brace is observed.
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Fig. 24. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 40x40x4x2050-CS-CF-N20.
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Fig. 25. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 40x40x3x2050-CS-CF-N21. Specimen failed at end connection.
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Fig. 26. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 40x40x 3 x1250-CS-CF-N22.
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Fig. 27. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60x60x3 x2850-SS-CF-N23.
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Fig. 28. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 50 x50 x 3 x2850-SS-CF-N24.
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Fig. 29. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60x40x3x2850-SS-CF-N25. Specimen failed at end connection.
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Fig. 30. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60 x60x3x2050-SS-CF-N26.
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Fig. 31. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 50x50x3x2050-SS-CF-N27.
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Fig. 32. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60x40x3x2050-SS-CF-N28.

Moreover, Goggins et al. [17] used their physical test data to de-
velop new relationships expressing the displacement ductility, us,
in terms of global slenderness, 4, and width to thickness ratio (b/
t) as shown in Egs. (8) and (9).

ft; = —0.68 + 26.27 (8)
f = 29.1 - 1.07(b/t) 9)

However, Nip et al. [19] proposed new predictive expressions for
the displacement ductility in terms of global slenderness ratio, /7 ,
and width to thickness ratio (b/t) for hot-rolled carbon steel, cold-
formed carbon steel and cold-formed stainless steel as follows:

Hot-rolled carbon steel:

{; = 3.69 + 6.977 — 0.05(b/te) — 0.19(7)(b/te)

Cold-formed carbon steel:

1 = 6.45 +2.287 — 0.11(b/te) — 0.06(7)(b/te)

Cold-formed stainless steel:

[ = —3.42 + 19.86(%) + 0.11(b/te) — 0.64(3)(b/te)

(10)

(11)

(12)
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Fig. 33. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60x60x3 x1250-SS-CF-N29.
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Fig. 34. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 50x50x3 x1250-SS-CF-N30.
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Fig. 35. (a) Physical test and (b) numerical model load displacement hysteretic loops for Specimen 60x40x3x1250-SS-CF-N31.

where 1 is the normalised slenderness ratio, b is the width of
the wider face of the section, t is the thickness of the section and
& =+/235/f, where f; is the yield strength.

Fig. 36 compares predicted displacement ductility values ob-
tained from the numerical model to those obtained from the
expressions established by Nip et al. [19]. It is found that Nip et
al. [19] expressions for predicting displacement ductility gives
close results to the values obtained from the numerical model.
However, these relationships overestimated the displacement duc-
tility for very slender specimens with slenderness ratio more than
three as shown in Fig. 36.

5.3. Energy dissipated

As shown in Tables 1 and 2, and Fig. 37, the numerical model
gave good predictions of the total energy dissipated, W, and en-
ergy dissipated at the first cycle of ductility of 4, W,,-4, when com-
pared to the results obtained from the physical tests during cyclic
loading. However, some cycles obtained from the numerical mod-
els were found to be fatter than the cycles obtained from the tests,
specifically for stockier specimens as the numerical model could
not capture the local buckling. This is the reason why the energy

dissipated results predicted from numerical model was slightly
more than the energy dissipated from physical tests. Total energy
dissipation for specimens 40x40x4.0x2050-CS-CF-N20, 40x40x
3.0x2050-CS-CF-N21 and 60x40x3.0x2850-SS-CF-N25, which
suffered from early fracture at end connection was less than the

12 A Nip et al (2010) expressions
i Numerical model
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Normalised slenderness ratio, A

Fig. 36. Comparison of displacement ductility, L, values obtained from the
expressions established by Nip et al. [19] to the numerical model results.
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Fig. 38. Energy index versus slenderness for the first cycle at a ductility of four measured in physical tests [16,19] and obtained from numerical models.

energy dissipated obtained from the numerical model having more
hysteretic cycles. However, for the specimens that survived 10 or
more cycles, good correlation of energy dissipated were found
when comparing the energy dissipated up to the 10th cycle (see
Fig. 37).

Similar to the observations in the measured hysteretic loops of
the physical test specimens, the stockier specimens dissipated
more energy due to their larger cross-sectional areas and the sig-
nificant yield plateaus they exhibited. Fig. 38 shows the energy in-
dex (the area under the load-axial deflection curve in both tension
and compression regions during the first cycle at a ductility level of
4 normalised to the elastic energy of the strut) plotted against the
normalised slenderness ratio. This shows how the energy dissi-
pated is reduced with brace slenderness. As can be seen from
Fig. 38, the numerical model gives good average prediction of the
energy index of the first cycle at ductility of four for specimens
over a large range of slenderness.

6. Summary and conclusion

In this paper, a study of the behaviour of braces, which are the
main elements to dissipate energy in concentrically braced frames,
is carried out. A numerical model is developed and found to be
capable to simulate the hysteretic behaviour of braces. Nonlinear
beam column elements with distributed plasticity are used, where
the cross section of the brace is divided into fibres along the perim-
eter and across the thickness. In this model, the brace is suggested
to be divided into a minimum of two elements using ten integra-
tion points per element. An initial camber on the middle of the
brace is used to account for the overall buckling and a value be-
tween 0.1% and 1% of the length of the brace is found to give the
best results for the first buckling load. A low cyclic fatigue model
with new parameters is proposed and used to wrap the fibre based
nonlinear beam column model in order to capture fracture in the
braces. It has been shown in this study that this model can accu-
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rately predict the maximum displacement ductility demand of the
brace members when fracture occurs.

In general, good agreement was found between the main re-
sponse parameters of the numerical and physical tests. For exam-
ple, average ratios of the maximum measured values to those
obtained from the numerical model for tensile forces (Fyax) and
initial buckling loads (F.) for the physical tests carried out by
Goggins [20] and Nip et al. [19], excluding tests which failed at
end connection, were 1 and 0.98, respectively. The corresponding
coefficients of variation (Gy) were 0.13 and 0.09, respectively.
Moreover, the mean values of the ratio of the total energy dissi-
pated (W) and the energy dissipated at the first cycle of ductility
of 4 (W, = 4) for the numerical model and the physical tests carried
out by Goggins [20] and Nip et al. [19], excluding tests which failed
at end connection, were found to be 1.30 and 1.12, respectively.
The corresponding coefficients of variation (Gy) were 0.32 and
0.18, respectively. There was a difference in the response between
the numerical model and some tests in the post buckling range and
the hysteretic loops were fatter. One possible reason is that the
model does not account for local buckling which should be taken
into account in future research. However, in general the models
captured the salient response parameters observed in the physical
tests.

Acknowledgements

The fellowship provided by the College of Engineering and Infor-
matics at the National University of Ireland, Galway is gratefully
acknowledged by the first author. Data provided from colleagues
at Imperial College in London is also gratefully acknowledged.

References

[1] Kahn LF, Hanson RD. Inelastic cycles of axially loaded steel members. ] Struct
Div ASCE 1976;102(5):947-59.

[2] Popov EP, Zayas VA, Mahin SA. Cyclic inelastic buckling of thin tubular
columns. J Struct Div ASCE 1979;105(ST11):2261-77.

[3] Black GR, Wenger BA, Popov EP. Inelastic buckling of steel struts under cyclic
load reversals. UCB/EERC-80/40. Berkeley (CA): Earthquake Engineering
Research Center; 1980.

[4] Jain AK, Goel SC, Hanson RD. Hysteretic cycles of axially loaded steel members.
J Struct Div ASCE 1980;106(8):1777-95.

[5] Popov EP, Black RG. Steel struts under severe cyclic loadings. ] Struct Div ASCE
1981;107(9):1857-81.

[6] Ballio G, Perotti F. Cyclic behavior of axially loaded members - numerical-
simulation and experimental-verification. ] Construct Steel Res
1987;7(1):3-41.

[7] Archambault MH. Etude du comportement séismique des contreventements
ductiles en X avec profiles tubulaires en acier. EPM/GCS-1995-09. Montréal
(Que): Department of Civil Engineering, école Polytechnique; 1995.

[8] Mamaghani IHP, Usami T, Mizuno E. Inelastic large deflection analysis of
structural steel members under cyclic loading. Eng Struct 1996;18(9):659-68.

[9] Tremblay R. Inelastic seismic response of steel bracing members. ] Construct
Steel Res 2002;58(5-8):665-701.

[10] Zhao XL, Grzebieta RH, Lee C. Void Filled cold-formed RHS braces subjected to
large deformation cyclic axial loading. ] Struct Eng ASCE 2002;128(6):747-53.

[11] Elchalakani M, Zhao X-L, Grzebieta R. Tests of cold-formed circular tubular
braces under cyclic axial loading. ] Struct Eng 2003;129(4). 507-514.

[12] Shaback B, Brown T. Behaviour of square hollow structural steel braces with
end connections under reversed cyclic axial loading. Canadian ] Civ Eng
2003;30(4):745-53.

[13] Tremblay R, Archambault MH, Filiatrault A. Seismic response of concentrically
braced steel frames made with rectangular hollow bracing members. ] Struct
Eng 2003;129:1626-36.

[14] Broderick BM, Goggins JM, Elghazouli AY. Cyclic performance of steel and
composite bracing members. ] Construct Steel Res 2005;61(4):493-514.

[15] Elghazouli AY, et al., Shake table testing of tubular steel bracing members. Proc
Inst Civ Eng - Struct Build 2005; 158(4): 229-41.

[16] Goggins JM et al. Experimental cyclic response of cold-formed hollow steel
bracing members. Eng Struct 2005;27(7):977-89.

[17] Goggins JM et al. Behaviour of tubular steel members under cyclic axial
loading. J Construct Steel Res 2006;62(1-2):121-31.

[18] Broderick BM, Elghazouli AY, Goggins J. Earthquake testing and response
analysis of concentrically-braced sub-frames. ] Construct Steel Res
2008;64:997-1007.

[19] Nip KH, Gardner L, Elghazouli AY. Cyclic testing and numerical modelling of
carbon steel and stainless steel tubular bracing members. Eng Struct
2010;32(2):424-41.

[20] Goggins J. Earthquake resistant hollow and filled steel braces. PhD thesis.
Dublin: Trinity College, University of Dublin; 2004.

[21] CEN, Eurocode 3: Design of steel structures — Part 1-1: General rules and rules
for buildings. 2005, EN 1993-1-1:2005/AC:2009.

[22] ECCS -Technical Committee 1. Structural Safety and Loadings - Technical
Working Group 1.3. Seismic design recommended testing procedure for
assessing the behaviour of structural steel elements under cyclic loads, 1986,
1st ed. Brussels; 1986.

[23] CEN, Eurocode 8, design of structures for earthquake resistance - Part 1:
General rules, seismic actions and rules for buildings. 2004, EN 1998-1:2004/
AC:2009.

[24] McKenna F, Fenves GL, Scott MH, Object oriented program, OpenSees; Open
system for earthquake engineering simulation; 2000. <http://
www.opensees.berkeley.edu>.

[25] Uriz P. Towards earthquake resistant design of concentrically braced steel
buildings. Berkeley: Department of Civil and Environmental Engineering,
University of California; 2005.

[26] Spacone E, Filippou FC, Taucer FF. Fiber beam-column model for nonlinear
analysis of R/C frames. I: Formulation. Earthquake Eng Struct Dyn
1996;25(7):711-25.

[27] Filippou FC, Fenves GL. Methods of analysis for earthquake-resistant
structures. Earthquake engineering: from engineering seismology to
performance-based engineering. Boca Rotan (FL, United States); CRC Press;
2004 [chapter 6].

[28] Wijesundara KK. Design of concentrically braced steel frames with RHS shape
braces. PhD thesis. Pavia: European Centre for Training and Research in
Earthquake Engineering (EUCENTRE); 2009.

[29] Duggan TV, Byrne ]. Fatigue as a design criterion. The Macmillan press Ltd.;
1977.

[30] ASTM, E 1049-85, Standard practices for cycle counting in fatigue analysis.
ASTM International; 2005.

[31] Gugerli H. Inelastic cyclic behavior of steel members. Ann Arbor
(MI): Department of Civil Engineering, University of Michigan; 1982.

[32] Lee S, Goel S. Seismic behavior of hollow and concrete-filled square tubular
bracing members. UMCE 87-11. Ann Arbor (MI): Department of Civil
Engineering, University of Michigan; 1987.

[33] Shermann D. Designing with structural tubing. Eng ] AISC 1996:(3rd
Quarter);101-9.

[34] Xue L. A unified expression for low cycle fatigue and extremely low cycle
fatigue and its implication for monotonic loading. Int ] Fatigue 2008;30(10-
11):1691-8.

[35] ASTM, ASTM E-1049 - Standard practices for cycle counting in fatigue analysis.
West Conshohocken (PA); 2003.

[36] Fisher J, Kulak G, Smith I, A fatigue primer for structural engineers. ATLSS
Report No. 97-11. National Steel Bridge Alliance, AISC: Chicago (IL); 1997.

[37] Manson SS. Behaviour of materials under conditions of thermal stress. In: Heat
Transfer Symposium. University of Michigan Engineering Research Institute;
1953, p. 9-75.

[38] Coffin L. A study of the effect of cyclic thermal stresses on a ductile metal.
Trans ASME 1954;1954(76). 931-50.

[39] Stephens RI et al. Metal fatigue in engineering. John Wiley & Sons, Inc.; 2001.

[40] Nip KH et al. Extremely low cycle fatigue tests on structural carbon steel and
stainless steel. ] Const Steel Res 2010;66(1):96-110.

[41] Santagati S, Bolognini D, Nascimbene R. Strain life analysis at low-cycle fatigue
on concentrically braced steel structures with RHS shape braces. ] Earthquake
Eng 2012;16(Suppl. 1):107-37.

[42] Goggins ], Salawdeh S. Validation of non-linear time history analysis models
for single storey concentrically braced frames using full scale shake table tests.
Earthquake Eng Struct Dyn, in press.

[43] CEN, Eurocode 3 - Design of steel structures — Part 1-3: General rules -
Supplementary rules for cold-formed members and sheeting; 2006, EN 1993-
1-3:2006/AC:2009.

[44] Wilkinson, Hancock. Tests to examine compact web slenderness of cold-
formed RHS. ] Struct Eng 1998;124(10):1166-74.


http://www.opensees.berkeley.edu
http://www.opensees.berkeley.edu

	Numerical simulation for steel brace members incorporating a fatigue model
	1 Introduction
	2 Cyclic tests of steel brace specimens
	3 Numerical modelling of steel brace elements
	4 Low cyclic fatigue modelling
	5 Verification of the numerical model
	5.1 Buckling and tensile loads
	5.2 Fracture
	5.3 Energy dissipated

	6 Summary and conclusion
	Acknowledgements
	References


