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Abstract

Twizell, E.H. and S.A. Matar, Numerical methods for computing the eigenvalues of linear fourth-order
boundary-vaiue probiems, journai of Computationai and Applied Mathematics 40 (1992) 115-125.

Novel finite-difference methods are developed for approximating the cigenvalues of three types of linear,
fourth-order, two-point, boundary-value problems. The fourth-order differential equation is transformed into
a system of first-order equations and the numerical methods are derived by replacing the matrix exponential
function in a recurrence relation by Padé approximants. Numerical results are obtained for a number of
problems from the literature.

Keywords: Eigenvalue problems, fourth-order boundary-value problems, equivalent first-order problems, Padé
approximants.

1. Introduction

Numerical methods are developed in the present paper for approximating the eigenvalues of
linear, fourth-order, two-point, boundary-value problems. Such boundary-value problems occur
in several areas of applied mathematics, physics, electrical engineering and mechanical engi-
neering; most notably, such problems arise in the theory of vibrations of mechanical systems
(see, for example, [1-3,5,6,10)).

The ordinary differential equations (ODEs) arising in linear, fourth-order, eigenvalue
problems are typified by the following:

(I) the Evler—Bernoulli beam equation

[p(x)y"(0)]" = As(x)v(x) =0. (1.1)
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(ID the second-type problem
[p(x)y"(0)]" + [r(x) = As(x)] y(x) =0, (12)

and
(IZI) the general problem
[p(x)y" ()] = {a{x}y"(x)] + [r(x) = As(x)]y(x) =0, (1.3)
in which a prime denotes differentiation with respect to x.

It is clear that (1.2) is a special case of (1.3) when g(x) =0 in the latter equation, and that
(1.1) is a special case of (1.3) when g(x) = r(x) = 0. All three types have been considered in the
literature, though it is probably the equation with g(x)=r(x)=0 and p(x)=1 which has
received most attention. The numerical methods to be developed in the following section of the
paper are applicable to all three types of ODE, together with one of two sets of boundary
conditions. Numerica! results are reported in the final section (Section 5) of the paper.

Consider, therefore, the linear, fourth-order, homogeneous, self-adjoint, two-point, bound-
ary-value problem consisting of the differential equation

[p()y" (] = [a(x)y" ()] + [r(x) = As(x)]y(x) =0, a<x<b, (1.4)
together with one of the following pairs of boundary conditions:

y(ay=y"(a)=y(b)=y"(b)=0 (1.5)
or

y(a)=y'(a) =y(b) =y'(b) =0. (1.6)

It is assumed that the real-valued functions p(x), g(x), r(x) and s(x) are continuous on the
interval [a, b] and satisfy the further conditions p(x) € C*[a, b, g(x) € C'[a, b], p(x), g(x),
s(x)>0and r(x) > 9 for x €[a, bl.

It is then known from [4, Theorem 10.1.2] and [7, Theorems 2.1 and 2.3] that the eigenvalues
of (1.1)-(1.3) are real and positive.

Equation (1_.4) can be transformed into a system of first-order differential equations. To this
end let w=w(x) =y'(x), v =1v(x) =y"(x) and u = u(x) =y"(x). Then (1.4) can be written as

DY(x)=Q(x)¥(x) +AP(x)Y(x), (1.7)
where

Y(x)={u,v,w,yj", (1.8)
T denoting transpose, D = diag{d/d x} and Q = Q(x) and P = P(x) are 4 X 4 matrices given by
a(x) B(x) ¥(x) 8(x)

o(x)=| o : g 0 (1.9)

0 0 1 0

and
[0 0 0 elx)
P(x)=]0 0 0 o0
(x) 0 00 O (1.10)
0 00 O
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It then follows that, for the type (I) ODE in equation (1.1)

P '(x) _ v 3 _ _ s{x)
( ) x) ’ B( ) ( ) 'Y(X)—O, S(X)—O, E(x)—p(x)’
(1.11)
for the type (II) equatioii (1.2)
__,P') __Pr® _ __x)
alx)= 2055 B(x)= =055 () =0, 8=~
3 s(x)
e(x)= (1)’ (1.12)
and for the type (III) ODE in (1.3)
_p() _a(x)=p"(x) _ () L
_ s(x)
e(x) = o) (1.13)
All numerical methods will be applied to the points Xgs Xi5..., Xy of the grid
G: a=xy<x;<x,<x3< "+* <xpy<Xy,, =b,

obtained by discretizing the interval x € [a, b] into N + 1 subintervals each of width 4 = (b —
a)/(N+1), where N>5 is a positive integer; clearly, h =X,41—%X,, n=0,1,...,N. The
numerical methods will be developed by making approximations to the exponential term in the
exact formula

Y(x +h) = exp(hD)Y(x). (1.14)

The theoretical solution of any of the three iypes of boundary-value problem at the grid
points x =x,,, m=1, 2,..., N, at which the solution is sought, is obviously

Y(x,) = [4(x,,), 0(%,), w(x,), ¥(2,)]" = [9"(X0)s ¥ (%) ¥/ (X)s ¥(x)] -

The solution of a convergent numerical method at the same grid point will be denoted by

Ym=[um’ Um’ m?3 ym] ’

where u,, v, w,, y, denote the associated approximations to y”(x), y"(x), y'(x), y(x),
respectively, at the point x =x,, m =1, 2,..., N. Obviously, the subscripts 0 and N + 1 in all
notations refer to boundary points. It will be convenient to define a vector Y of order 4(N + 1)
by

T
ol B U AU AN A NN (1.15)
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2. A second-order methed

Using the (1, 1) Padé approximant to the exponential term in equation (1.14) leads to the
second-order equation

[1 - irD]¥(x +h) = [1+ $hD]¥(x) + O(h%), (2.1)
in which [ is the identity matrix of order four. Applying (1.7) then gives

[1-thQ(x +h)|¥(x +h) — [1 + 3hQ(x)]¥(x)

=A[3hP(x + h)¥(x +h) + %hP(x)Y(x)] + O(h%), (2.2)
in which P, Q and Y are defined by (1.10), (1.9) and (1.8), respectively.
Applving (2.2) to each of the grid points x,, k=0, 1,..., N, of G gives

A Ve B Y =A[E Y., +FY], k=0,1,2,...,N, (2.3)
in which

Ak+1=1—%th+l’ B, = ‘I“%th» Ek+l=%th+l’ Fk=%th’ (2.4)

k=0,1,..., N, are all square matrices of order four with P, = P(x,) and Q, = Q(x,) defined
by (1.10) and (1.9), respectively.

It is clear that applying (2.3) with £k =0, i,..., N results in the embedding of the matrices in
A, ., and B, in a block matrix A given by

A, B,
B, 4,
A= B, A, (2.5)
| BN AN+1 B
while the matrices E, ,, and F, are embedded in a block matrix B given by
E, F,
F, E,
B= F, E, (2.6)
L FN EN+I |

The system of equations described by (2.3) can thus be written as the generalized eigenvalue

problem

AY = ABY.

2.7)

Any change in the boundary conditions (1.5) or (1.6) will be reflected in the submatrices
Apn.p By, En,, and F, in (2.5) and (2.6).



E.H. Twizell, S.A. Matcr / Eigenvalues of linear boundary-value problems 119

3. A fourth-order method

Using, now, the (2, 2) Padé approximant to the exponential term in equation (1.14) leads to
the fourth-order equation

[1—3hD + 5h?D?|Y(x + h) = [ 1+ $hD + $h2D?]¥(x) + O(K°). (3.1)
Differentiating (1.7) gives

D?Y(x) =Q*(x)¥(x) + AP*(x)¥Y(x), (3.2)
where Q*(x) and P*(x) are given by

Q*{x)=DQ(x)+ Q%*(x) (3-3)
and

P*(x)=Q(x)P(x)+DP(x)+P(x)0(x). (3.4)

Then, using (1.7) and (3.2) in (3.1) gives
[1—3hQ(x + k) + $h*Q*(x + B)|¥(x + k) — [T + hQ(x) + 5h2Q*(x)]¥(x)
= A[{3hP(x + k) — R?P*(x + R)}Y(x + h) + {$hP(x) + 5R*P*(x)}¥(x)]
+ O(h°), (3.5)

which, when applied to the points x,, k=0, 1,..., N, of the grid G, gives an equation of the
form (2.3) with, now,

Ak+1=1_%th+1+%h2Q;§+n (3.6)

B. = —I-1hQ, - LH*QF, (3.7)

Eyy1=1hPy — 5h°PY, (3-8)
and

F,=1hP, + Sh’P}. (3.9)

Clearly, P,f = P*(x,) and Qf = Q*(x,).

The system of equations described by (2.3) with (3.6)-(3.9) can thus be written as the
generalized eigenvalue problem (2.7), in which the block matrices A and B are compiled using
the submatrices given in (3.6)-(3.9).

4. Computing the eigenvalues

The smallest positive real eigenvalue of the generalized eigenvalue problem (2.7) may be
computed using the following procedure.
Firstly, (2.7) is transformed to the usual eigenvalue problem

CY = AY, (4.1)
where C=A " 'B and A =X, A > 0. Secondly, the Power Method is used to find the largest

eigenvalue of C in (4.1) and its corresponding eigenvector. In fact, the power method is used
here without having to find the inverse of block matrix A.
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To this end, let Y be an arbitrary column vector with 4N + 4 elements: it is convenient to
take Y, =111, l]T the unit vector. The equation Z C =0, 1,2,..., is equivalent to
AZ BY and Z may _therefore be computed by writing A= LU and finding the decomposi-
tion matrices L and U of A using, say, Doolittle’s method.

Now let W BY and compute the vector V defined by the equation LV W then solve for
using the equation_ UZ V.. Define, next, a; = || Z, || . and update by normallzmg the vector
togive ¥, , =a; -1z

Convergence of the sequence {a;} is to A, the largest eigenvalue of the matrix C in (4.1). The
smallesi eigenvalue A is therefore the value to which the sequence {a; 1 converges.

To compute all the eigenvalues of the matrix C in (4.1), note first of all that A~' = (LU )7
=U 'L~ Then L~! can be found by solving the system LZ =e,j=1,2,...,4N + 4, for Z
where ¢; is the column vector of order 4N + 4, the elements of Wthh are all zero except the jth
element which i IS unity. The vector Z will be the jth column of matrix L. B

Similarly, U~! can be computed by solving the system UZ =¢, j=1,2,...,4N + 4, for Z;
which, now, is the jth column of the matrix U\

Having determined L' and U™, the elgenvalue problem (4.1) may be rewritten as the
equivalent problem

z
z

U-'L~'BY = AY. 4.2)
All the eigenvalues of (4.Z) can be determined using the NAG (Numerical Algorithms Group)

FORTRAN_subroutine FO2AFF which gives all the eigenvalues of the real matrix C=A"'B=
U-'L'B.

S. Numerical! experiments

Four different eigenvalue problems from the literature [8,9] are considered in the following
numerical exampies. In each case the smallest eigenvalue is determined for a series of values of
N. In these problems the exact values of the eigenvalues cannot be obtained by analytical
methods and so it is assumed (as in [8,9]) that the computed value of the smallest eigenvalue
obtained using the largest N is the exact (smallest) eigenvalue A.. Comparisons should then be
made on the relative error RE of the value 2, obtained using some other value of N, which is
computed from the equation

RE | e T Aw (5.1)
Ae
Example 5.1 (Usmani and Isa [8]). This example consists of the differential equation
[(+x2)y"] = [t +x2)y] +[1+x) 2 -2 +x)]y=0, 0<x<1, (5.2)
subject to the boundary conditions
y(0) =y"(0) =y(1) =y"(1) =0. (5-3)

In [8], Usmani and Isa used a method with second-order convergence to calculate their results
which are reproduced in Table 5.1. Results obtained using the second-order method of Section
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Table 5.1

Observed relative errors for #=2"" of Example 5.1 in [8]

m N A Relative errors
3 7 24.634 681 2.448-102

4 15 25.085489 6.068-10~"

5 31 25.199984 1.497-10~3

6 63 25.228721 3.563-10~*

7 127 25.235913 7.125-10°3

8 255 25.237711 0.0

2 and the fourth-order method of Section 3 ar< listed in Tables 5.2 and 5.3, respectively. onall
tables, the first two columns give m and N, where h=(b—-a)/(N+1)=1/(N+1) and
N+1=2"

All computations were performed in double-precision arithmetic using a Pyramid 9820
computer. The columns headed U, S and R in Tables 5.2 and 5.3 give, in seconds, the user
time, the system time and, in minutes and seconds, the real time, respectively. The CPU-time is
the sum of U and S, each of which is rounded tQ one decimal place. The final columns of each
table give the smallest positive eigenvalue and the associated relative error calculated for the
different values of N.

It is seen from the three tables that the numerical results obtained for large values of N,
using the fourth-order method of Section 3, are closer to the results of [8] than the correspond-

Table 5.2

Second-order method for computing the smallest eigenvalue of Example 5.1

m N S U R A Relative error
3 7 0.0 0.0 0:0 25.840469032602 6.3477247447894-10>
4 15 0.0 0.0 0:0 25.627155371202 1.5403144445101-1072
5 31 0.0 0.1 0:0 25.334813477918 3.8199283840945-10~3
6 63 0.0 0.2 0:0 25.262391076 194 9.5039669500796-10*
7 127 0.0 0.5 0:0 25.244 328279975 2.3470976789564-10~*
8 255 0.0 1.1 0:1 25.239813436483 5.5821935357914-107°
9 511 0.2 24 0:3 25.238685232680 1.1120068430071-107>

10 1023 0.2 49 0:3 25.238404 579894 0.0

Table 5.3

Fourth-order method for computing the smallest eigenvalue of Example 5.1.

m N U S R A Relative error
3 7 6.0 0.0 0:0 25.243296971413 1.9756930366577-10~*
4 15 0.1 0.0 0:0 25.238625220557 1.2463774231586-107°
5 31 0.2 0.0 0:0 25.238330362854 7.8083288812536-107
6 63 04 0.0 0:0 25.238311888279 4.8827673682084-10°8
7 127 1.1 0.1 0:1 25.238310732895 3.0486986268841-107°
8 255 2.1 0.1 0:2 25.238310660732 1.8943424606732-10°'°
9 511 4.5 0.1 0:4 25.238310656048 3.8431480220424-10 2

10 1023 9.3 0.1 0:11 25.238310655951 0.0
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Table 54

Observed relative errors for £ =2"" of Example 5.2 in [8]

m N A Relative error
3 7 19.548553 2.551-1072

4 15 19.921847 6.294-1073

5 31 20.016 196 1.551-107%
6 63 20.039847 3.691-1074

7 127 20.045764 7.380-103

8 255 20.047244 0.0

ing results obtained using the second-order method of Section 2. Comparison of Tables 5.2 and
5.3 also reveals that the fourth-order method of Section 3 is more expensive to implement than
the second-order method of Section 2.

Example 5.2 (Usmani and Isa [8]). Here, the differential equation is
(e-‘y")" - (e-‘y')' +(sin x—Acos x)y=0, 0<x<1,
and the boundary conditions are given by (5.3).

The results of [8] are reproduced in Table 5.4, while results obtained using the methods of
Sections 2 and 3 are given in Tables 5.5 and 5.6, respectively. The present authors suspect that

(5.4)

Table 5.5

Second-order method for computing the smallest eigenvalue of Example 5.2

m N U S R A Relative error

3 7 0.0 00 0:0 208.94307752710 4.2221104130598-10 2
4 15 0.0 0.0 0:9 202.529628 766 64 1.0230421656111-1072
5 31 0.1 0.0 5:1 200.986526 15748 2.5333295861572-10%
6 63 0.3 0.2 0:1 200.60441678082 6.2734418020581-10~*
7 127 0.7 0.0 0:1 200.509114 16626 15196879400573-10~*
8 255 14 0.1 0:3 200.48530640792 3.3214210328536-107°
9 511 32 04 0:4 200.47935461822 1.1120068430071-10~°
10 1023 6.8 03 0:7 200.478647 66795 0.0

Table 5.6

Fourth-order method for computing the smallest eigenvalue of Example 5.2

m N U S R A Relative error
3 7 0.0 0.0 0:0 200.479495 724 50 1.0615265780167-107°
4 15 0.1 0.0 0:0 200.477486802 64 5.9457424761433-107
5 31 0.2 0.0 0:0 200.477374 83909 3.6089510269122-10~#
6 63 0.4 0.0 0:0 200.47736805264 2.2380581832238-10°°
7 127 0.9 0.6 0:1 200.47736763152 1.3747181171198-10 10
8 255 2.1 0.2 0:2 200.477367 60529 6.6342487059501-10 12
9 511 4.5 0.2 0:5 200.477 367603 80 7.9791728779810-10~ 13

10 1023 94 0.2 0:9 200.477367 60396 0.0
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Table 5.7

Observed relative errors for #=2"" of Example 5.3 in [9]

m N A Relative error A Relative error
[9, (2.8)] [9, 3.5)]

3 7 22.187 2.557-1072 22.746419 3.358-10"¢

4 15 22.610 6.352-103 22.753574 2.129-107°

5 31 22.718 1.586-1073 22.754027 1.358-10°¢

6 63 22.745 3.962-10~4 22.754056 1.078-1077

7 127 22.752 9.907-10°°

8 255 22.753 2.480-1073

the eigenvalues given in Table 5.4 contain typographical errors and are incorrect by a factor of
10, as the results given in Tables 5.5 and 5.6 were obtained using different methods. All the
observations made on the results of Example 5.1 are applicable to those of Example 5.2.

Example 5.3 (Usmani and Sakai [9]). In this example, the differential equation is given by
[ +x2)y] + [ +22) T =20 +x)]y=0, 0<x<1, (5.5)

and the associated boundary conditions are given by (5.3) once again. Unlike the differential
equations (5.2) and (5.4) which are of the form (1.3), equation (5.5) is an example of the
second-type problem (1.2).

The numerical results obtained in [9] using the method given in [9, (2.8)], on grids for which
h=2""with Nir=1and N+1=2",m=3,4,...,8, are given in Table 5.7. Numerical results
reperted in [9] for the numerical method given in equation (3.5) of that paper, using m = 3-6
only, are also given in Table 5.7. The present authors suspect that equation [9, (4.1)] also
contains a typographical error and that the differential equation used in [9] should be

[(1 +x2)y”]"+ [(1 +x) 2 -1 +x)4]y =0, 0<x<1. (5.6)

It was seen, when solving the eigenvalue problems in Examples 5.2 and 5.3 of the present
paper, that the fourth-order method of Section 3 gives results which are closer to published
results than the second-order method of Section Z. Accordingly, only results obtained using the
fourth-order method were obtained, and these are given in Table 5.8. It is noted once more
that the relative errors obtained using this method are superior to those reported in [9].

Table 5.8

Fourth-order method for computing the smallest eigenvalue of Example 5.3

m N U S R A Relative error

3 7 0.0 0.0 0:0 22.815360699869 4.5031836880982-10°
4 15 0.0 0.0 0:0 22.814373591854 1.7648257093494-10~°
5 31 0.1 0.0 0:0 22.814337002830 1.6105217470752-107
6 63 0.3 0.0 0:0 22.814333780997 1.9832488318272-10°8
7 127 0.6 0.1 0:0 22.814333514902 8.1689874864566-10~*
8 255 15 0.0 0:1 22.814333321330 3.1567892744278-10° 1
9 511 32 0.1 0:3 22.814333328530 0.0
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Table 59

Observed relative errors for /= 27" of Example 5.4 in [9]

m N A Relative error A Relative error
[9, (2.8)] [9, 3.5)]

3 7 176.641 2.664-10°2 181.244637 5.564-10%

4 15 180.159 6.588-107% 181.339089 3.529-10°°

5 31 181.048 1.642-10° % 181.345093 2.175-10"°

6 62 181.271 4.103-107* 181.345470 9.728-10°%

7 127 181.327 1.025-107¢

8 255 181.341 2.560-1073

Exzmple 5.4 (Usmani and Sakai [9]). In this final example the differential equation is also of
the second type (1.2) and is given by

(e"y")"+(sin x—Acos x)y=0, 0<x<l1, (5.7
and the boundary conditions are given by (5.3).

The results obtained in [9] using its formulae (2.8) and (3.5) are reproduced in Table 5.9
where the values of #, N and m are the same as those used in Example 5.3. The results
obtained using the fourth-order method of Section 3 are listed in Table 5.10.

As in Examples 5.1-5.3, the smallest eigenvalue obtained using the method of the present
paper is seen to decrease as N is increased. This is in contrast to the numerical results
reported in [8,9] where the smallest eigenvalue was seen to increase as N was increased. Using
a large value of N, the resuits obtained using the methods of the present paper are in good
agreement with those reported in [8,9].

6. Summary

Two finite-difference methods, one second-order convergent and one fourth-order conver-
gent, have been developed and tested for approximating the eigenvalues of three types of
linear, fourth-order, two-point, boundary-value problems.

The fourth-order ordinary differential equation was transformed into a system of first-order
equations and the numerical methods were derived by replacing the matrix exponential
function in a recurrence relation, by one second-order and one fourth-order Padé approximant.

Table 5.10

Fourth-order methed for computing the smallest eigenvalue of Example 5.4

m N U S R A Rclative error

3 7 0.0 0.0 0:0 181.34804763802 1.4071915540592- 103
4 15 0.1 0.0 0:0 181.34564304647 8.1218973413399-10"7
5 31 0.2 0.0 0:0 181.345504 79478 4.9823459802312-10"%
6 63 04 0.0 0:0 181.34549637367 3.3866294213425-107°
7 127 1.0 0.6 0:1 181.34549574049 1.0493783619836-10~ "
8 255 22 0.0 0:2 181.345495618.91 7.7537076759171-10~ 1"
9 511 4.7 0.1 0:5 181.34549575952 0.0
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Numerical results obtained using the two methods were compared with results reported in
the literature.
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