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Abstract 

Twizell, E.H. and S.A. Matar, Numerical methods for computing the eigenvalues of linear fourth-order 
boundary-value problems, Journal of Computational and Applied Mathematics 40 (1992) 115-125. 

Novel finite-difference methods are developed for approximating the cigenvalues of three types of linear, 
fourth-order, two-point, boundary-value problems. The fourth-order differential equation is transformed into 
a system of first-order equations and the numerical methods are derived by replacing the matrix exponential 
function in a recurrence relation by Pade approximants. Numerical results are obtained for a number of 
problems from the literature. 
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1. Introduction 

Numerical methods are developed in the present paper for approximating the eigenvalues of 
linear, fourth-order, two-point, boundary-value problems. Such boundary-value problems occur 
in several areas of applied mathematics, physics, electrical engineering and mechanical engi- 
neering; most notably, such problems arise in the theory of vibrations of mechanical systems 
(see, for example, [l-3,5,6,10]). 

The ordinary differential equations (ODES) arising in linear, fourth-order, eigenvalue 
problems are typified by the following: 

(I) the EL+ .tir-Bernoulli beam equation 

[p(_+qx)]r’ - As(x)_v(x) = 0, (1 1) . 
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(II) the second-type problem 

[P(-eY”(X)ls + [w - Wx)ly(x) = 09 

ad 
(III) the general problem 

(1 2) . 

[ p(x!y”(x)]” - [q(s)y’ (x)1’+ [r(x) -AS(X = 0, (13) . 
in which a prime denotes differentiation with respect to x. 

It is clear that (1.2) is a special case of (1.3) when q(x) = 0 in the latter equation, and that 
(1.1) is a special case of (1.3) when q(x) = T(X) = 0. All three types have been considered in the 
literature, though it is probably the equation with q(x) = T(X) = 0 and p(x) = 1 which has 
received most attention. The numerical methods to be developed in the following section of the 
paper are applicable to all three types of ODE, together with one of two sets of boundary 
conditions. Numerica! results are reported in the final section (Section 5) of the paper. 

Consider, therefore, the linear, fourth-order, homogeneous, self-adjoint, two-point, bound- 
ary-value problem consisting of the differential equation 

[P(X)y”(x)l”-[q(x)y~(x)l’+[r(x)-~s(x)]y(x)=O, a<~+ (14) . 

together with one of the following pairs of boundary conditions: 

y(a) =y”(a) =y(b) =y”(5) = 0 

or 
(15) . 

y(a) =y’(a) =y(b) =y’(b) = 0. (1 6) . 

It is assumed that the real-valued functions p(x), q(x), r(x) and s(x) are continuous on the 
interval [a, b] and satisfy the further conditions p(x) E C’[a, b], q(x) E C’[a, b], p(x), q(x), 
s(x) > 0 and T(X) 2 0 for x E [a, b]. 

It is then known from [4, Theorem 10.1.21 and [7, Theorems 2.1 and 2.31 that the eigenvalues 
of (1. I)-( 1.3) are real and posittile. 

Equation (1.4) can be transformed into a system of first-order differential equations. To this 
end let w = w(x) =y’(x), L’ = t’(x) =y”!x) and u = U(X) = y”‘(x). Then (1.4) can be written as 

DY( x) = Q( x)Y( x) i- Xf( x)Y( x), (1.7) 

where 

Y(x) = $9 u, w, YjT, (18) . 

T denoting transpose, D = diag{d/dx} and Q = Qc x) and P = P(x) are 4 x 4 matrices given by 

Q(x)= ; ; 8 ; 

i 

a(x) P(x) :W 6(x) 

(1 9) . 

0 0 1 0 I 
and 

r 0 0 0 E(X)] 

(1.10) 
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It then follows that, for the type (I) QDE in equation (1.1) 

a(x) = -2 $$9 P”(X) 
P(x)= -p(x), 

SW y(x) =o, 6(x) =o, E(X) = - 
P(X) ’ 

(1.11) 

for the type (II) equation (1.2) 

P’(X) 
(Y(x)= -2- 

P(X) 

s(x) 
e(x) = - 

P(X) ’ 

and for the type (III) ODE 

P"(X) 
9 P(x)= -p(x), y(x)=O, 6(x)= -;;, 

x 

(1.12) 

in (1.3) 

a(x)= -2 
cl(x) -P"(X) 39 mj= -’ p(x) , 

q’(x) 
Y(X) = - 

W 

P(X) ’ 
6(x) = - - 

PW 9 

44 
SW =- 
P(X) - 

(1.13) 

All numerical methods will be applied to the points x0, x,, . . . , xN of the grid 

G: a =x0 <x, <x2 <x3 < a.. <x,,, CX~+~ = b, 

obtained by discretizing the interval x E [a, b] into N + 1 ;ubintervals each of width h = (b - 
a)/(N + l), where N > 5 is a positive integer; clearly, h =x,+ 1 -x,, n = 0, 1,. . . , N. The 
numerical methods will be developed by making approximations to the exponential term in the 
exact formula 

Y(x + h) = exp(hD)Y(x). (1.14) 

The theoretical solution of any of the three types of boundary-value problem at the grid 
points x=xtn, m = 1, 2,... , IV, at which the solution is sought, is obviously 

Y(xtn) = [U(X’,), u(x,n), w(x,,), Y(X'JT = [ Y"'(X"J9 Y"(X,?J9 Y'kn)~ Ytxtn)IT- 

The solution of a convergent numerical method at the same grid point will be denoted by 

y,, = [ut,9 vt?u wt?v Y’?llT~ 

where Urn9 v,,,, qn, y,,, denote the associated approximations to y”‘(x), y”(x), y’(x), y(x), 
respectively, at the point x =x1,‘, m = 1, 2,. . . , N. Qbviously, the subscripts 0 and N + 1 in all 
notations refer to boundary points. It will be convenient to define a vector Y of order 4( N + 1) 
by 

P= [Y?, Yz', . . .) YZ, Y$+JT. (1.15) 
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2. A second-order method 

Using the (1, 1) Pad6 approximant to the exponential term in equation (1.14) leads to the 
second-order equation 

] I- fhD]Y(x +h) = [I + @D]Y(x) + 0(h3), (2 l! . 

in which I is the identity matrix of order four. Applying (1.7) then gives 

[r-+hp(x+h)]Y(x+h)-[I+$hQ(x)]Y(x) 

=h[+hP(x+h)Y(x+h)+~W(x)Y(x)] +O(h3), (2 2) . 

in which P: Q and Y are defined by (1.101, (1.91 and (1.81, respectively. 
Applying (2.2) to each of the grid points xk, k = 0, 1,. . . , N, of G gives 

AktlYk+* +Bkyk = ‘\[Ek+lYk+l +&YJ, k=O, 1,2 ,...) N, (2 3) . 

in which 

A k+l= Z-the,,,, Bk = -I- $hQ,, Ek+l = +hPk+l, Fk = $hP,, (2.4) 

k=O, l,... , N, are all square matrices of order four with pk = P(x,) and Qk = Q(x,J defined 
by (1.10) and (1.91, respectively. 

It is clear that applying (2.31 w$h k = 0, I, . . . , N results in the embedding of the matrices in 
A k+, and Bk in a block matrix A given by 

I 
A, 4 
4 4 

& 4 A3 7 (2 5) . 
. . 

. . 
. 

BN &+I_ 

while the matrices Ek+ I and Fk are embedded in a block matrix g given by 

E, Fo 

F1 & 
Ij= F, E3 . 

. . 
. . 

. 

F, EN+,_ 

(2 6) . 

The system of equations described by (2.3) can thus be written as the generalized eigenvalue 
problem 

if=Aiz. (2 7) . 
Any change in the boundary conditions (1.5) or (1.6) will be reflected in the submatrices 

A N+1, Bm EN+, and F, in (2.5) and (2.6). 
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3. A fourth-order method 

119 

Using, now, the (2, 2) Pad6 approximant to the exponential term in equation (1.14) leads to 
the fourth-order equation 

[I-~~D+~h2D2]Y(~+h)=[I+$zD+$z2D2]Y(x)+O(h5). 

Differentiating (1.7) gives 

D*Y(x) =Q*(x)Y(x) +AP*(x)Y(x), 

where Q*(x) and P*(x) are given by 

Q*/,x) =DQ(x) + Q’(x) 
and 

P*(x) = Q(x)P(x) + DP(x) + P(x)Q(x). 

Then, using (1.7) and (3.2) in (3.1) gives 

(3 1) . 

(3 2) . 

(3 3) . 

(3 94) 

[~-~hQ(x+h)+~h*Q*(~+h)]Y(xt-h)-[I+~hQ(x)+~h*Q*(x)]Y(x) 

=A[(;hP(x+h) - &h*P*(x + h))Y(x i-h) + (;hP(x) + Ah’P*(x))Y(x)] 

+ 0(h5), (3 5) . 

which, when applied to the points xk, k = 0, 1,. . . , N, of the grid G, gives an equation of the 
form (2.3) with, now, 

A k+l =I- $hQ,+, + $*Q$+,, (3 6) . 

i?,, = -I- $hQ, - Ah*&;, (3 7) . 

E k+l = +hpk+, - hh*P;+, (3 8) . 

and 

Fk = ;hP, + &h*P;. (3 9) . 

Clearly, Pi* =P*(x,) and Q$ = Q*<X,>. 

The system of equations described by (2.3) with (3.6H3.9) cgn thus be written as the 
generalized eigenvalue problem (2.7), in which the block matrices A and B are compiled using 
the submatrices given in (3X1)-(3.9). 

4. Computing the eigenvalues 

The smallest positive real eigenvalue of the generalized eigenvahre problem (2.7) may be 
computed using the following procedure. 

Firstly, (2.7) is transformed to the usual eigenvalue problem 

E=ni;, (4 1) . 

where c =k- ‘I? and A = h -I, h > 0. Secondly, the Power Method is used to find the largest 
eigenvalue of c in (4.1) and its corresponding eigenvector. In fact, the power method is used 
here without having to find the inverse of block matrix k. 
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To this end, let & be an arbitrary column vector with 4!_+ 4 elements: it is convenient to 
take U,= [l, 1, .,’ . , I]~, the unit vector. The equation Zj = C& i = 0, 1, 2,. . . , is equivalent to 
& = B< and _Zi may_ there_fore be computed by writing A = Lfi and finding the decomposi- 
tion matrices L and U of A using, say, Dool$tle’s method. 

Now let l& = & and comp_ute the vector y define_d by the equation i< = I&; then solve for 
{j using the equation-M, = B$ Define, next, ai = ]] Zj ]] Q) and update by normalizing the vector 
Zi to give U;;, , = cut: *Zi. 

Convergence of the sequence (ari} is to A, the largest eigenvalue of the matrix c” in (4.1). The 
smallest eigenvalue A is therefore the value to which the sequence {a17 ‘) converges. 

To compute all the eigenvalues of the matrix C in (4.1), note first of all that A- ’ = (Lo>: ’ 
= &lk-l_ Then L-l can be found by solving the system LLi = 5, j = 1, 2,. . . ,4N + 4, for Zj, 
where ~j is the column vector of ordef 4N + 4, the elements of which are $1 zero except the jth 
element which is unity. The vector Zj will be the jth column of matrix L- ‘. 

Similarly, C7- ’ can be computed by solving the system ~~j = ~j, j = 1, 2, . . . ,4N + 4, for zi 
which, now, is the jth column of the matrix 0-l. 

Having determined L- ’ and u-‘, the eigenvalue problem (4.1) may be rewritten as the 
equivalent problem 

All tire eigenvalues of (4.2) can be determined using the NAG (Numerical Algorithms Group) 
FORTRAN subroutine FO2AFF which gives all the eigenvalues of the real matrix C =A- ‘B = 
o- q - 1l.j. 

5. Numerical experiments 

Four different eigenvalue problems from the literature [8,9] are considered in the following 
numerical examples. In each case the smallest eigenvalue is determined for a series of values of 
N. In these problems the exact values of the eigenvalues cannot be obtained by analytical 
methods and so it is assumed (as in [8,9]) that the computed value of the smallest eigenvalue 
obtained using the largest N is the exact (smallest) eigenvalue A,. Comparisons should then be 
made on the relative error RE of the value k_L-N, obtained using some other value of N, which is 
computed from the equation 

(5 1) . 

Example 5.1 (Usmani and Isa [8]). This example consists of the differential equation 

[(1+x*)y”l”-[(1+x*)y’]‘+[(1+x)-2-A(l+X)4]y=0, O<X<l, (5 2) . 

subject to the boundary conditions 

y(0) =y”(O) =y(l) =y”(l) = 0. (5 3) . 

In [8], Usmani and Isa used a method with second-order convergence to calculate their results 
which are reproduced in Table 5.1. Results obtained using the second-order method of Section 
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Table 5.1 
Observed relative errors for h = 2-“’ of Example 5.1 in [S] 

m 

3 

N A Relative errors 

7 24.634 681 2.448. 1O-2 
4 15 25.085 489 6.068. lo-’ 
5 31 25.199984 1.497. lo-” 
6 63 25.228 721 3.563. 1O-4 
7 127 25.235 913 7.125. lo-’ 
8 255 25.237 711 0.0 

2 and the fourth-order method of Section 3 ary listed in Tables 5.2 and 5.3, respectively. on all 
tables, the first two columns give m and N, where h = (b - a)/( N + 1) = l/( N + 1) and 
N + 1 = 2’“. 

All computations were performed in double-precision arithmetic using a Pyramid 9820 
computer. The columns headed U, S and R in Tables 5.2 and 5.3 give, in seconds, the user 
time, the system time and, in minutes and seconds, the real time, respectively. The CPU-time is 
the sum of U and S, each of which is rounded to one decimal place. The final columns of each 
table give the smallest positive eigenvalue and the associated relative error calculated for the 
different values of N. 

It is seen from the three tables that the numerical results obtained for large values of N, 
using the fourth-order method of Section 3, are closer to the results of [S] than the correspond- 

Table 5.2 
Second-order method for computing the smallest eigenvalue of Example 5.1 

m N S u R h 

3 7 0.0 0.0 0:o 25.840 469 032 602 
4 15 0.0 0.0 0:o 25.627 155371202 
5 31 0.0 0.1 0:o 25.334813477918 
6 63 0.0 0.2 0:o 25.262391076 194 
7 127 0.0 0.5 0:o 25.244 328 279 975 
8 255 0.0 1.1 0:l 25.239813436483 
9 511 0.2 2.4 0:3 25.238 685 232 680 

10 1023 0.2 4.9 0:3 25.238404579894 

Relative error 

6.3477247447894.lo-’ 
1.540314444510 l-lo-* 
3.8199283840945. lo-” 
9.5039669500796.10- 
2.3470976789564.10-4 
5.582 1935357914~10-5 
1.1120068430071~10-5 
0.0 

Table 5.3 
Fourth-order method for computing the smallest eigenvalue of Example 5.1. 

111 N u s R h 

3 7 0.0 0.0 0:o 25.243 296971413 
4 15 0.1 0.0 0:o 25.238 625 220 557 
5 31 0.2 0.0 0:o 25.238330362854 
6 63 0.4 0.0 0:o 25.2383i 1888279 
7 127 1.1 0.1 0:l 25.238310732895 
8 255 2.1 0.1 0:2 25.238310660732 
9 511 4.5 0.1 0:4 25.238310656048 

10 1023 9.3 0.1 0:ll 25.238310655951 

Relative error 

1.9756930366577.10-4 
1.246377423 1586. lo-” 
7.8083288812536.10-’ 
4.882 767 368 208 4.10 - ’ 
3.048 698 626 884 l-10 - ’ 
1.8943424606732. lo- ‘C 
3.843 1480220424. lo-” 
0.0 
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Table 5.4 
Observed relative errors for h = 2-“’ of Example 5.2 in [S] 

m N A 

3 7 19.548553 
4 I5 19.921847 
5 31 20.016 196 
6 63 20.039 847 
7 127 20.045 764 
8 255 20.047 244 

Relative error 

2.551. lo-” 
6.294. lo-” 
1.551. 1o-2 
3.691. lO-4 
7.380. 1o-5 
0.0 

ing results obtained using the second-order method of Section 2. Comparison of Tables 5.2 and 
5.3 also reveals that the fourth-order method of Section 3 is more expensive to implement than 
the second-order method of Section 2. 

Example 5.2 (Usmani and Isa [S]). Here, the differential equation is 

(e’y”)W-(e-‘y’j+(sin x-A cos x)y=O, O<x< 1, (5 4) . 

and the boundary conditions are given by (5.3). 
The results of [S] are reproduced in Table 5.4, while results obtained using the methods of 

Sections 2 and 3 are given in Tables 5.5 and 5.6, respectively. The present authors suspect that 

Table 5.5 
Second-order method for computing the smallest eigenvalue of Example 5.2 

m N u S -R A Relative error 

3 7 0.0 0.0 0:o 208.943 077 527 10 
4 15 0.0 0.0 0:r) 202.529 628 766 64 
5 31 0.1 0.0 5 : 1 200.986526 15748 
6 63 0.3 0.2 0:l 200.60441678082 
7 127 0.7 0.0 0:l 200.509 114 166 26 
8 255 1.4 0.1 0:3 200.485 306 407 92 
9 511 3.2 0.4 0:4 200.479354618 22 

10 1023 6.8 0.3 0:7 200.478 647 667 95 

4.222 1104130598. lo-’ 
1.023042165611 HO-’ 
2.533329586 1572. lo-’ 
6.273441802058 1. lo-” 
1 5196879400573. 1O-4 
3.3214210328536.10-5 
1.1120068430071- 1O-6 
0.0 

Table 5.6 
Fourth-order method for computing the smallest eigenvalue of Example 5.2 

m N S R A Relative error 

3 7 0.0 0.0 0:o 200.479 495 724 50 
4 15 0.1 0.0 0:o 200.477486 802 64 
5 31 0.2 0.0 0:o 200.477 374 839 09 
6 63 0.4 0.0 0:o 200.477 368 052 64 
7 127 0.9 0.0 0:l 200.477 367 63 152 
8 255 2.1 0.2 0:2 200.477 367 605 29 
9 511 4.5 0.2 0:5 200.477 367 603 80 

10 1023 9.4 0.2’ 0:9 200.477 367 603 96 

1.0615265780167. 1O-5 
5.9457424761433.10-’ 
3.6089510269122. 10-s 
2.238 058 183 223 8 - 10 - 9 
1.3747181171198~10-“’ 
6.634 248 705 950 l-10 - I2 
7 979 1728779810. lo- ” 
0:o 
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Table 5.7 
Observed relative errors for h = 2-“’ of Example 5.3 in [9] 

m N A 

3 7 22.187 
4 15 22.610 
5 31 22.718 
6 63 22.745 
7 127 22.752 
8 255 22.753 

Relative error 
[9, (2.811 

2.557.10-* 
6,352.10-” 
1.586. lo-” 
3.962. 1O-4 
9.907-10-s 
2.480. 1O-5 

A 

22.746419 
22.753 574 
22.754 027 
22.754 056 

Relative error 
[9, (3.511 

3.358. 1O-4 
2.129. lo-” 
1.358. lo-” 
1.078. lo-’ 

the eigenvalues given in Table 5.4 contain typographical errors and are incorrect by a factor of 
10, as the results given in Tables 5.5 and 5.6 were obtained using different methods. All the 
observations made on the results of Example 5.1 are applicable to those of Example 5.2. 

Example 5.3 (Usmani and Sakai [9]). In this example, the differential equation is given by 

[(1 ++“I”+ [(l +x2)-’ -A(1 +X)4]y=o, o<x< 1, (5 5) . 

and the associated boundary conditions are given by (5.3) once again. Unlike the differential 
equations (5.2) and (5.4) which are of the form (1.3), equation (5.5) is an example of the 
second-type problem (1.2). 

The numerical results obtained in [9] using the method given in [9, (2.8)], on grids for which 
h = 2-‘” with Nh = 1 and N + 1 = 2”, m = 3, 4,. . . , 8, are given in Table 5.7. Numerical results 
reported in [9] for the numerical method given in equation (3.5) of that paper, using m = 3-6 
only, are also given in Table 5.7. The present authors suspect that equation [9, (4.1)] also 
contains a typographical error and that the differential equation used in [9] should be 

[(l ++“lR + [(l +x)_* -A(1+x)4]y=0, O<X<l. (5 6) . 

It was seen, when solving the eigenvalue problems in Examples 5.2 and 5.3 of the present 
paper, that the fourth-order method of Section 3 gives results which are closer to published 
results than the second-order method of Section 2. Accordingly, only results obtained using the 
fourth-order method were obtained, and these are given in Table 5.8. It is noted once more 
that the relative errors obtained using this method are superior to those reported in [9]. 

Table 5.8 
Fourth-order method for computing the smallest eigenvalue of Example 5.3 

m N u S R h 

3 7 0.0 0.0 0:o 22.815360699869 
4 15 0.0 0.0 0:o 22.814373591854 
5 31 0.1 0.0 0:o 22.814337002830 
6 63 0.3 0.0 0:o 22.814333780997 
7 127 0.6 0.1 0:o 22.814333514902 
8 255 1.5 0.0 0:l 22.814 333 321330 
9 511 3.2 0.1 0:3 22.814333328530 

Relative error 
_- 

4.503 1836880982. 1O-5 
1.7648257093494. 10-h 
1.6105217470752.10-’ 
1.9832488318272.10-” 
8.1689874864566. lo-” 
3.1567892744278.10-“’ 
0.0 
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Table 5.9 
Observed relative errors for I:‘= 2-“’ of Example 5.4 in [9] 

m N A Relative error 
19, (2.8)l 

A Relative error 
[9, (3.511 

3 7 176.641 2.664. lo-’ 181.244637 5.564.10-” 
i 1.5 180.159 6.588. lo-’ 181.339089 3.529. lo-” 
5 31 181.048 1.642. lo-” 181.345 093 2.175. lO-h 
6 6.2 181.271 4.103. 1o-4 181.345470 9.728. lo-’ 
7 127 181.327 1.025~ lo-’ 
8 255 151.341 2.560.10-j 

Example 5.3 (Usmani and Sakai [9]). In this final example the differential equation is also of 
the second type (1.2) and is given by 

(e-‘y”)“+(sin x-A cos x)y=O, O<x<l, (5 7) . 

and the boundary conditions are given by (5.3). 
The results obtained in [9] using its formulae (2.8) and (3.5) are reproduced in Table 59 

where the values of h, N and m are the same as those used in Example 5.3. The results 
obtained using the fourth-order method of Section 3 are listed in Table 5.10. 

As in Examples 5.1-5.3, the smallest eigenvalue obtained using the method of the present 
paper is seen to decrease as N is increased. This is in contrast to the numerical results 
reported in [8,9] where the smallest eigenvalue was seen to increase as N was increased. Using 
a large value of N, the results obtained using the methods of the present paper are in good 
agreement with those reported in [8,9]. 

6. Summary 

Two finite-difference methods, one second-order convergent and one fourth-order conver- 
gent, have been developed and tested for approximating the eigenvalues of three types of 
linear, fourth-order, two-point, boundary-value problems. 

The fourth-order ordinary differential equation was transformed into a system of first-order 
equations and the numerical methods were derived by replacing the matrix exponential 
function in a recurrence relation, by one second-order and one fourth-order Pad6 approximant. 

Table 5.10 
Fourth-order method for computing the sma!lest eigenvalue of Example 5.4 

m N u s R A Relative error 

3 7 0.0 0.0 0:o 181.34804763802 1.407 1915540592. lo-” 
4 15 0.1 0.0 0:o 181.34564304647 8.1218973413399* lo-’ 
5 31 0.2 0.0 0:o 181.34550479478 4.9823459802312. lo-’ 
6 63 0.4 0.0 0:o 18 1.345 496 373 67 3.3866294213425. lo-” 
7 127 1.0 0.0 0:l 181.34549574049 1.0493783619836.10-“’ 
8 255 2.2 0.0 0:2 181.345495618.91 7.7537076759171.10-“’ 
9 511 4.7 0.1 0:5 181.34549575952 0.0 
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Numerical results obtained using the two methods were compared with results reported in 
the literature. 
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