AIP The Journal of . s : } d
Chemical Physics - 3 S -

Multiperturbation approach to potential energy surfaces for polyatomic
molecules
Donald H. Galvan, Moh’d AbuJafar, and Frank C. Sanders

Citation: J. Chem. Phys. 102, 4919 (1995); doi: 10.1063/1.469540
View online: http://dx.doi.org/10.1063/1.469540

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v102/i12
Published by the AIP Publishing LLC.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

=xplore the Most Cited

‘\‘ AIR | The Journay of

Chemical Physics \

[ Collection in‘Applied Physics

Downloaded 20 Aug 2013 to 212.14.233.38. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions


http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1335634424/x01/AIP-PT/AIPPub_JCPCoverPg_073113/AIP-1871_PUBS1640x440.jpg/6c527a6a7131454a5049734141754f37?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Donald H. Galvan&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Moh�d AbuJafar&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Frank C. Sanders&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.469540?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v102/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov

Multiperturbation approach to potential energy surfaces
for polyatomic molecules

Donald H. Galvan
Instituto de Fisica de UNAM, Laboratorio de Ensenada, Apto. Postal 2681, Ensenada,
Baja California 22800, Mexico

Moh'd Abu-Jafar® and Frank C. Sanders
Department of Physics and Molecular Science Program, Southern lllinois University at Carbondale,
Carbondale, lllinois 62901-4401

(Received 22 August 1994; accepted 12 December)1994

In Z-dependent perturbation theory, the lowest-order wave functions for a polyatomic molecule are
not only independent of the nuclear charges, but also of the total number of nuclear centers and
electrons in the molecule. The complexity of the problem is then determined by the highest order
retained in the calculation. Choosing the simplest possible unperturbed Hamiltonian, we describe an
n-electron,m-center polyatomic molecule as“hydrogenic” electrons on a single center perturbed

by electron—electron and electron—nucleus Coulomb interactions. WitH ghithe first-order wave
function for any polyatomic molecule will be a sum of products of hydrogenic orbitals with either
two-electron, one-center or one-electron, two-center first-order wave functions. These first-order
wave functions are obtained from calculations on He-like adlike systems. Similarly, the
nth-order wave function decouples so that the most complex terms are justhtteeder wave
functions of all thep-electron,q-center subsystem$ (- q=n+2) contained in the molecule. We
illustrate applications of this method with some results, complete through third order in the energy,
for H3-like molecules. These are compared with accurate variational results available in the
literature. We conclude that, through this order, this perturbation approach is capable of yielding
results comparable in accuracy to variational calculations of moderate complexity. The ease and
efficiency with which such results can be obtained suggests that this method would be useful for
generating detailed potential energy surfaces for polyatomic moleculek998 American Institute

of Physics.

I. INTRODUCTION method retains some important advantages for molecular
systems. As usual, the inverse nuclear charge appears as a
Z-dependent perturbation thed@DPT) has long been a natural perturbation parameter of the method. In addition, the
powerful computational tool for atomic systems. Little com-ratio of the nuclear charges also appears as a natural choice
parable work has been done, however, in molecular systemsf expansion parameter in a multiple perturbation theory.
Examples include the work of Goodismaand of Matcha These ensure a rapid convergence of the multiperturbation
and Byers Browh (on diatomic systemsbased on an unper- series for molecules possessing at least one heavy atom. Of
turbed Hamiltonian taken as the sum of one-electron, digreater importance, with these perturbation parameters the
atomic (H, -like) Hamiltonians, and the work of Dvotek individual multiperturbation wave functions and energy co-
and Hor&® (on the hydrogen moleculeof Chisholm and efficients are independent of the nuclear charges as well as of
Lodge? (on two-electron diatomic systeimsand of Mont-  the total number of electrons and the overall electronic con-
gomery, Bruner, and Knight(on ten-electron hydridgsall  figuration of the system. Consequently, results obtained for
of which utilize single-center, hydrogenic Hamiltonians to small systems can be transferred without modification to
describe the unperturbed system. These approaches illustraég@ger systems which contain the electron configuration of
one characteristic of the application of ZDPT to molecules; itthe smaller system as a subconfiguration. It is these charac-
is possible to construct a variety of unperturbed Hamilto-teristics of the method that suggest that ZDPT can be an
nians and still retain the essential features of the theory. accurate and efficient method for studying potential energy
The advantages of ZDPT and a multiperturbation apsurfaces of polyatomic systems.
proach for atomic systems are discussed in Sarfdére Chisholm and Loddestudied the ground state of two-
present paper extends this earlier work to polyatomic syselectron diatomic systemgspecifically H and HeH)
tems. One of the advantages of ZDPT is its ability to providethrough second-order in the energy. The present paper ex-
results for an entire isoelectronic sequence from a single catends these calculations to third order in the energy. These
culation. While this is less significant for polyatomic sys- results are then incorporated into a study of thg, HeH; 2
tems, where few molecular isoelectronic sequences havéequence as the simplest prototype of a polyatomic molecule.
more than one or two physically interesting examples, theas in Refs. 3—5, we place all the unperturbérydrogeni¢
orbitals on the same nuclear charge. Of the various possible
3Present address: Department of Physics, An Najah University, P.O. Box 7choices of a zero-order Hamiltonian, this produces the sim-
Nablus, West Bank via Israel. plest form for the higher-order perturbation coefficients. It
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4920 Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules

also means that contributions of the interelectron interactiomny case, it is clear that the convergence of portions of the
can be obtained directly from ZDPT calculations for atoms.multiperturbation series will be slower than might be antici-
The complete, first-order wave function of any molecule carpated based on the size Bf, alone.

then be constructed from the first-order, atoftie-like) pair Treating each term in Eq2) as a separate perturbation,
functions of all two-electron configurations present in thewe obtain the multiperturbation differential equatins.
zero-order wave function, together with the first-order, one-Through second order, these are

electron diatomic¢H; -like) wave functions of all the orbitals

in the zero-order wave function. Similarly, the second-order 0%0=0, )

correction to the energy consists entirely of one-center three- Gyl + G/ y,=0, (4)

electron, two-center two-electron, and three-center one- , .

electron contributions, no matter how complex the molecule. ~ Goi1*+G1"#o=0, )

Continuing to higher-order, the maximum degree of com- i T

plexity of the calculation increases in a predictable manner, otz 141~ €40=0, (6)

with each additional order of the calculation introducing ei- olﬂ ay _62 o= )

ther an additional electron or an additional center to the ex-

pansion coefficients. Goyi 1+ Gilj jlk+ Gjlkz//ilj — ef k=0, €)
Despite its simplicity, this zero-order Hamiltonian is i o i ilia

clearly not the best choice for many polyatomic molecules, Goyi 1 11— €ii =0, ©)

particularly homonuclear molecules. Nevertheless, it will
serve here to illustrate the general structure of the multiper-
turbation expansion and the general characteristics of thehereGy=H,— ¢y, andGi=H{- €f. Equationg4) and(6)
method. A more natural choice of zero-order Hamiltonianreduce to two-electron, one-center equations, while Eg)s.
would distribute the electrons for the system among theand(7) simplify to one-electron, two-center equations. Equa-
nuclear centers. This would significantly improve the initial, tions (8), (9), and (10) are three-electron one-center, two-
unperturbed electron density and hence also improve thelectron two-center, and one-electron three-center equations,
convergence of the perturbation series, particularly as oneespectively. From these perturbation differential equations
approaches the separated-atom limit. Of course, this wouldne can obtain all corrections to the energy through fifth
also increase the complexity of the calculation at each ordeorder® Expressions for the third-order energy coefficients are
of the perturbation by precisely the number of additionalpresented below. In these expressiansh, andc represent
centers that have been introduced into the zero-order Hamikny one of the perturbationmg or i «, with the restriction that
tonian. Such generalizations of the method are straightforall perturbations appearing in a coefficient must be different:
ward and will be examined in more detail in a later paper.

olpla |B+ Gijl_awijl_ﬁ+ Gllﬁw EllallﬁlpOZO, (10)

=(%olH1l o),
IIl. THEORY &= (¥1lGil o).
We describe an unperturbéd-electron,M-center poly- €5 1 2<¢1|Gl|¢0>
atomic molecule a?N “hydrogenic” electrons on a single a
center of chargeZ,. In charge-scaled atomic unitsthis e3=(YilGI ¥1) — 2541l o), (11
Hamiltonian is written a#d=Hy+H,, where
o €3'9=2(y3IG3 ) + (Y31 GRlY3) — 2€5( 3] o)
(1, 1 — 26wl v,
Ho=2, _EAi_Ea D) 1.1 0
P 1
- el 15=2((YalGI ) + (I GH v) + (vl Gilyh)
H _% S H”+E A, i — €2l vo) — €2 (Al o) — ex (Wil o).
! i—1 \ j>i ! “ ’ Extensions to higher order are straightforward, and examples
) can be found in Ref. 6.
Hil 1 o L It can be shown that all “unlinked” wave functions de-
1 _rij ' Lo couple into simple products of their “linked” components,
where;=Z," and\;,=Z,Z,"; the Z, being the charges €9
of the other atoms in the molecule. The perturbation expan- 7%= y1%y3*,
sion coefficients are then independent of the nuclear charges Lo e 2e
and completely transferable from one system to another. This  ¥1,1" =¥1 41", (12)

choice of zero-order Hamiltonian also reduces to a minimum 12,234 _ ;12,23 ,4a
i i

the number of nuclear centers that can appear at any particu

lar order. Note that the ratio of the nuclear charges appears ifrom this it follows that all such “unlinked” energy coeffi-

these perturbation expansions in addition to the usual inversgents disappear, e.geflﬁx:o_ These results ensure that at

of the nuclear charge. Obviousl, should be chosen as the nth order the wave functions and energy coefficients cannot

largest of the nuclear charges in the molecule, if possible. linvolve more tharp electrons andj centers, wher@+qg=n
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Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules 4921

+2. This in turn means that amth order perturbation cor- Finally, it must be kept in mind that all lengths, includ-
rection can involve no more than+1 coupled electrons ing internuclear separations, have been scaledyHence,
while the greatest number of nuclear centers involvedtin  energies calculated at a particulsecaled internuclear dis-
order is alsn+1. tance will actually correspond to different internuclear sepa-
rations for different members of an isoelectronic molecular
sequence according to the relatiBbohn=2Z,1x R(scaled
a.u).

In contrast to the corresponding expressions for atoms,
the multiperturbation expansions for a molecule have a much Degeneracy
more complex behavior with respect to the nuclear charges.
The multiperturbation expansion for the electronic energy of ~ In degenerate multiple perturbation theory, the multiper-
a heteronuclear diatomic molecule serves to illustrate thidurbation expansion becomes algebraically more complex.

A. Charge-scaling in molecules

behavior. In charge-scaled atomic units, this is Nevertheless, the multiperturbation expansion coefficients
can still be constructed from the corresponding coefficients
E=eot > NeM+ZH 24+ )\Eeﬁ\j,ﬁ" of srggller subsys_tems of the molecule._ Chisholm and
n—1 o1 Lodge™ have described one approach to this problem, dem-
onstrating how these perturbation coefficients can be con-

—2[ A n_AM —3[ A n_AM structed.
TZa% et 21 Ng€an | +Za"| €3 21 NB€3n ) For the ground state of two-electron molecules, the zero-

n= n=

order wave function is a product of hydrogenis @rbitals
4o (13) and is not degenerate. Thus, in what follows, this system will
serve to illustrate the structure of the method most clearly

— -1 H
V\;here)\lB_tZB.ZA ' Al corlnparab'le expr¢SS||c)n fo(; ths ENETYY and simply. The single-center, zero-order wave functions for
ot a polyatomic molecule requires a Simple and ObvIous eX4,, iy states of these systems and for the ground state of
tension of this form and introduces no new behavior with

t 1o ch lina. Th tation i ) has b three-electron molecules will be degenerate, however. To il-
respect fo charge-sca '”‘%; eno a”lon n _Ekﬁ_ ,\?S €eN ustrate the application of the method to these more complex,
simplified so that each “molecular” coefficieng,, each

“atomic” ficient. e and all “mixed” Hicients h often degenerate systems, a brief discussion of the multiper-
atomic coethicient, &, and all ‘mixed” Coetliclents Nave —y,  j44i0n expressions for Hike molecules is presented in
implicit in them sums over alN electrons of the molecule.

The first two terms in this expression represent the sum oﬁhe Appendix.

the energies of all states of those one-electron diatomic mol-

ecules which are subsystems of the molecule, while the sum

over all the first(“atomic” ) coefficients in each of the brack-

eted terms represents the energy of the atom which is a subl:- APPLICATION TO H3-LIKE MOLECULES
system of the diatomic molecule.

SinceAg=Z,1, the convergence of those parts of the
series involvinghg can be slower than that of the purely
“atomic” contributions. An obvious exception to this occurs _i
for the hydrides, where all the multiperturbation expansion 17 Za
parameters are identicalgj, !, and the multiperturbation ex-

pansion simply becomes a formal device for identifying theecules Hence, in what follows, all expressions are written
contributions from subsystems of the molecule. Per’[urbatio?Or Hgilike sysiems expression's for two-electron diatomics

energies and other properties of hydrides will thus have . : ' ) )
simple charge-scaling behavior. At the other extreme are t:Bemg obtained by simply settirig: equal to zero. The com

homonuclear molecules, for which alk=1. Here, the re- plete, first-order energy coefficient for the ground state of the

. . . . molecule i
sults obtained via perturbation theory can be seriously af- olecuie 1s

fected by a premature truncation of the perturbation series. ¢ = Efs+ 2Z5€1%"(Rg) +2Zcer* (Re). (15
Note in particular that the entire portion of the energy arising N

from purely one-electron diatomic energy coefficients is ofHereey ° = 3 is the first-order correction to the ground state
the same ordefin terms of the nuclear chargess the zero- energy of a two-electron atorfand corresponds to agl/)
order term. Similarly, terms of a particular orderag* will ~ while
contain contributions from multiperturbation coefficients of 1 1
much higher nominal order. Hence, for homonuclear mol- e}s"(R)=—§+ 1+ ﬁ) e 2R (16
ecules, truncating the perturbation sum at some order can

yield a relative error which actually increases a5, in- is the first-order correction to the ground state energy of a
creases. The convergence of the energy can be improvemhe-electron diatomic molecule with internuclear distaRce
considerably, however, by including the higher-order coeffi-(and corresponds to a#)). Rz andR. are the internuclear
cients of one-electron diatomics. This is effectively what wasdistances between the chargg and the two perturbing
done in the work of Joulakidron isoelectronic homonuclear charges,Zg and Z.. The angle subtended by these two
diatomics. charges is denoted by.

For two-electron, three-center molecules, the complete
perturbation is

1

EV)

1 1
_+_
e 2B

1 1
_+_
i Trac

C

B (14

For Z-=0, this becomes the perturbation fop-tke mol-
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4922 Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules

chh term 'in the perturbatign, E¢R), yields a corre- ez=e§ls+ ZzéeésG(RBszéeéso(Rc)
sponding term in the complete first-order wave function

U= lﬂils(rl 12)+ Zg[ 41> (R ,r1)1s(r3)

+18(r) #1*" (R ,12) 1+ Ze[ ¥1%(Re . T1) 18(r)
1S (Rt )] (17) whereebS = —0.157 666 4 & is known exactly?

and 2 5157 is given in Ref. 4. Note that the dependence of

1g . L. . ,
i can belobtalned saccurately from variational perturbationy,q electronicenergy on the angl® makes its first appear-
. . - ) :
calculat|0n§_ v_vhHe 1//} can be e_xpressed in clos_ed form in gnce at this order through the three-center term,
confocal elliptic coordinate¥’ but is here also obtained from

1 1
+Zger 3 7%(Rg) + Zcer 3 (Re)

+2ZpZc€1% " (Rg R, 0), (18)

a variational perturbation calculation. 1so 150 lso 1

With this wave function, the second- and third-order en- €11 =2{ ¥1 (Rg.ry)| — [ 1s(ry) ). (19
ergy coefficients can be calculated. The second-order energy
is given by The third-order energy is given by

e3= €} S+2Z3 5 (Rg) + 2221 (Re) + Zged £ (Rg) + Zced v 1% (Re) + Z3el $1%(Rg) + Z2€l $1(Re)

+2737:€5% % (Rg ,Re,0) + 22572650 (Rg R, 0) + ZgZcel v15715(Ry ,R¢,@). (20)

All of the singly-subscripted coefficients above are either

1
known exactly® or are known to high precision from varia- Y1 (r1,12)=(1+P12) 2 Comi irTP(cOS 615)
tional perturbation calculatior$. The remaining multipertur- nml
bation coefficients can be computed, via EG4), from the xexg = Bi(r1+1,)], (23)

appropriate components of the first-order wave function.
The total energy throughth order, in atomic units, is

given by 1(Rr)=2 curfPi(cosd)exp—Bir). (24
nl
n
ZpZg Zp\Z

En(RB,RC,®)=Zf\E Z;pep+ I/; B+ g < For the “atomic” wave function, Eq{(23), all terms with
p=0 B c <16 andn+m+2l<20 were included for a total of 501

7.7 terms. For the “molecular” wave function, Eq24), all 221

B4C

) (21)  terms with|<16 andl +n=<20 were utilized. For both wave
Rsc functions, the nonlinear parameteg;, of each partial wave
were separately optimized. Once obtained, the optimized

The total wave function, truncated through first order, can, tomic” function is stored. Th i i
also be used to obtain a variational bound on the energy a omlc“ wave unf lon 1S stored. The noniinear parameters
for the “molecular” wave function, however, must be opti-

5 €+ €317, ZpZg ZaZc mized for each value of the internuclear distariReFor the
E,=Zheot Zper+ 1 +Z,§2< vl ) Rg Re sake of efficiency, these parameters were obtained at inter-
vals of 0.10 bohiiand at smaller intervals near the equilib-
ZgZc 22 rium distances These were then used to interpolate for the

parameters at other values Bf Since the calculation of
these one-electron, “molecular” wave functions is extremely
Results for both the third-order perturbation sums and thisapid, it costs little in efficiency to simply recalculate them as
variational energy for Ki-like systems are presented in the needed. Hence, none of these “molecular” wave functions
tables, where they are compared with accurate, variationallyere stored and only the interpolation table for the nonlinear
obtained energies. parameters was saved.
With these wave functions in hand, it only remains to
calculate the energy expansion coefficients for each particu-
IV. METHOD lar choice ofRg, Rc, and®. These can be calculated very
efficiently; for each such point, the entire calculation of the
The first-order wave functions required by the methodenergy through third order for all values & of interest
have been obtained variationally. To simplify the calculationconsumes about 20 s of cpu time on an IBM 9021 vector
of the multicenter integrals that appear in the energy exparnprocessor with 2 cpu’s. Hence, to calculate all the data actu-
sion coefficients, we have used single-center basis sets for ally presented in the tables to follow requires less than 20
wave functions. Hence, min of cpu time. Even greater efficiency is possible in cal-

Rec
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TABLE |. Some perturbation energy coefficierits a.u); a comparison of 08 e
the present results with exact valdes.
R (bohn - e%s" b — 5%5” ¢ fills 1so d 51,5{17’1S”e [
0.40 0.38656  —0.02230  0.52945 —0.58315 09r ]
0.386 57 —0.022 29 0.529 60 —0.583 17 F
0.60 0.312 05 —0.017 50 0.44898 —0.339 32 z I
0.312 08 —0.017 44 0.44910 —-0.33937 £.40L ]
0.80 0.249 18 —0.005 93 0.367 98 —0.160 36 = L
0.249 21 —0.005 86 0.36811  —0.160 37 g F
1.00 0.199 27 0.005 97 0.29388 —0.044 58 i
0.199 31 0.005 99 0.29400 —0.044 60 A1 K ]
1.20 0.160 29 0.01508 0.229 98 0.022 67 L
0.160 33 0.015 17 0.230 08 0.022 68
2.00 0.070 19 0.023 14 0.075 03 0.068 73
0.070 25 0.023 25 0.075 09 0.068 74 ol ]
3.00 0.025 67 0.011 02 0.015 36 0.032 972 : 1.0 15 20 25 3.0 35
0.025 69 0.011 07 0.015 39 0.032974
4.00 0.009 769 0.003 59 0.002 81 0.013 910 R
0.009 774 0.003 61 0.002 82 0.013911

FIG. 1. Energy for H; (A) Eq; (©) E,; (O) Ez; (x) E, 5 (O) variational

@ ach first entry below corresponds to the present results. results of Ref. 15.

PThe second entry in this column corresponds to the results of Ref. 12.
‘The second entry in this column corresponds to the results of Ref. 13.
9The second entry in this column corresponds to the results of Ref. 4
€These results are f&=180°, the second entry in this column correspond-

ing to the results of Ref. 14. ergies by less than about four decimal places, the discrep-

ancy can be attributed to the truncation of the perturbation

culating the potential energy surfaces presented in the ﬁgs_,enes.

ures. For each value d®gz, R, the energies for al® of
interest are calculated together. Since all coefficients that do
not depend or® are not recalculated, less than 10 s of cpu
time is required for each point. Additional savings in com-
putational time are possible wheneWRs= R so that many
of the multiperturbation coefficients are identical.

V. RESULTS AND DISCUSSION

Although the main focus of this work is the calculation

of polyatomic molecular energies, a brief examination of re-
In Table | we compare exact vallés® of 57 and &% polyaton ) gies, .
sults for diatomic molecules will illustrate the behavior of

. . i . <o '
with those thalned Wlt.h.OUI’ approximatg®” and find that the multiperturbation series in the present method.
the approximate coefficients are accurate to at least four

decimal places over the entire range of internuclear distance’s Diatomic molecules: H
considered here. The simple wave function utilized here for A comparison of the present perturbation results with

'S yields values forel S and 1" which agree with accu-  accurate variational calculatioigor the ground state of the
rate values of these coefficients to three decimal places. Ip|2 molecule is presented in Fig. 1. In this figure, the conver-
Talble | we also compare calculated and exact valuwés gence of the perturbation results can be gauged by examining
ei,f*lsg. Here the results obtained with the “atomic” first- the behavior of successive truncated perturbation sums, the
order wave function are accurate to four decimal places, exE,, of Eq. (21), for the total energy of the molecule. These
cept forR=<1, where they are in error by roughly one unit in results indicate that the variational energy,, obtained with
the fourth decimal place(These are obtained with greater the first-order wave function is consistently less accurate
accuracy if calculated with%’.) Comparing exact values of than the corresponding truncated third-order energy &y,
e}?f’ls" (Ref. 149 with those calculated with the approximate obtained with the same wave function. This is not unex-
first-order “molecular” wave function shows that the latter pected, as variational expressions based on perturbation
agree with the exact values to four or five decimal placeswave functions such as that of E@2) seem to consistently
Not surprisingly, the approximate one-electron “molecular” yield poorer results than the corresponding truncated pertur-
first-order wave functions are more accurate than the twobation series. In fact, in this instance at ledsy, is less
electron “atomic” wave functions, but between them, they accurate thaik,. It is also interesting to note thé&t, is quite
appear capable of calculating the “mixed” perturbation en-similar to the Hartree—Fock restfiffor this molecule.
ergy coefficients to roughly four decimal places for the range  The present calculations have been carried out in suffi-
of R considered here. Note that, in calculating the total encient detail to verify that all thé&, andE, have a minimum
ergies, only exact values of these coefficients have been uséd the potential energy close to the equilibrium internuclear
where they are available. Hence, the total energies presenteistance for this moleculeE; yields the best result at
in the tables cannot be expected to agree with accurate vari&=1.36 bohr, within 0.04 bohr of the correct value of 1.40
tional energies to more than four decimal places. Converselygohr. Figure 2 displays differences between the “exact”
if the present calculations agree with accurate variational envariational results and the perturbation results,

J. Chem. Phys., Vol. 102, No. 12, 22 March 1995
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0.4
A A 2.75
A N -
0.3 4 :
-2.80
5
o
02 £-2.85
Sl R
w ﬁ \‘
a -2.90 [
0.1
-2.95 |
0 [ 1 c 1 1 L 1]

cdaa et e len b by b Ve by
10 15 20 25 30 35 40 45 50
R

FIG. 3. Energy for HeH; (A) E; () E,; (O) Eg; (%) E, ; (O) variational

FIG. 2. Truncation errord,, for Hy; (A) Ag; (O) A,; (O) Az; (%) E, . results of Ref. 17.

An=En—Eexact at the equilibrium distance. Indedfl; does not yield quite as
rgood an equilibrium distance as eitftey or E, ; R=1.41 as
compared tdR=1.50 and 1.43, respectively. All however lie
within 0.05 bohr of the correct value &=1.463(Ref. 17.

In contrast to the other systems studied hé&g,s consis-
tently better than botk, and the Hartree—Fock enerf§yor
R=2. Again, as in the case of HE, and the Hartree—Fock

showing that the perturbation results are most accurate in t
vicinity of the energy minimum. For example, the smallest
error in E; occurs atR=1.2 bohr where it is 0.006 a.u., or
0.5%. For largerR, all the perturbation results become in-
creasingly less accurate, so thatRy 3 the error is approxi-
mately 0.1 a.u. ByR=5 the error forE,, E;, andE, has N . ; .
growr?lto ~0.25 a.):JR., a relative error o? jusgt over 2%%. The EN€ray are ql_“te similar faR=2, beyc_md which poink, IS
present method fails to give accurate results for ldRger a S_'gn'f'ca”F Improvement ovef, . Since th_e perturl_)atlon
this molecule since the zero-order wave function tends to afic" ¢> for this mo_lecule converges more rapidly, the Improve-
incorrect separated-atom linfil~+H*). H, is, of course, a ment thatE; provides ovelE, is not as large here as in the
particularly difficult case for th& ! expansion. Neverthe- case of H. Neverthelessz; generally reduces the error rela-

less, the convergence of the perturbation expansion for thilve to accurate var|at|or!al resffso less than _half what_ I
particular molecule is quite satisfactory. For this systepis was forE,. Overghe entlre range @, the relatlye_ errorin
negative for the entire range & presented in the table ex- Es LS less than 1% for this molecule. Indeed, it is less than
cept for the smallesR and it provides a considerable im- 0.5% for 1.0=R=2.5.

provement over the second-order results of Chisholm and
Lodge? reducing the error in the energy by almost an order
of magnitude. In fact, the present results show that the rela-
tive error forE; remains under 1% fortR=<2 bohr. 0.25 \

In general, use of similar zero-order wave functions in ' 2
homonuclear molecules should produce perturbation series A
which converge most rapidly for intermediate values of the
internuclear distance, but become suspect for larger values A
of R. 0.15 A

B. Diatomic molecules: HeH *

Figures 3 and 4 present results for Hek a form simi-
lar to those for H. For this molecular ion, all perturbation
parameters are equal foand a more rapid convergence of
the perturbation series can be expected. Moreover, unlike the
case of H, the zero-order wave function does represent the
separated-atom limit correctly. Thus, for laBethe pertur-
bation results are very well converged exceptEqr where 1 2 3 4 5
the discrepancy is primarily due to the absencejzcl)fs. For R

this system, we find that, andE, give slightly better results
at both larger and smaller internuclear distances rather thamG. 4. Truncation errord,,, for HeH™; (A) A;; (¢) A; (0) Ag; (%) E, .

0.05
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TABLE Il. Total energies(in a.u) for the H; molecule; the first-order variational enerdy, , and truncated energy sunis, , compared with variational
energies.

D3, Symmetry

R (bohn E, E, E, E, E(variationa)?

1.137 —0.913 —0.481 —1.265 —1.230 —1.23378

1.250 —-1.015 —0.584 —1.282 —1.304 —1.286 40

1.277 —1.033 —0.603 —1.283 —-1.317 —1.295 48

1.414 —1.105 —0.678 —1.280 —1.365 —1.327 44

1.549 —1.145 —0.724 -1.265 -1.387 ~1.34124

1.644 ~1.159 —0.743 —1.249 -1.391 —1.34379

1.650 -1.160 —0.744 -1.248 -1.301 -1.34383

1.656 -1.161 —0.745 —1.247 -1.391 —1.34378

1.819 -1.166 -0.762 -1.215 -1.381 -1.33833

1.900 -1.163 —0.765 -1.197 -1.370 -1.33139

2.050 —1.150 —0.764 -1.163 -1.343 -1.31913

2.094 —1.145 -0.763 -1.153 -1.334 ~1.31456

2.200 ~1.130 -0.758 -1.128 -1.310 -1.3015%

2.235 -1.125 -0.756 -1.120 -1.302 -1.298 63

2.750 -1.032 -0.716 -1.009 -1.166 -1.23412

3.052 -0.975 -0.691 ~0.954 -1.088 -1.198 43

3.350 -0.923 —0.667 -0.907 -1.018 —1.166 32

4.500 -0.776 -0.597 -0.787 -0.831 -1.076 52

5.500 —0.706 —0.557 ~0.730 —0.746 ~1.036 26

7.000 —0.649 -0.518 —0.681 ~0.682 -1.0112%

C,, Symmetry

R (bohp (€] E, E, E, Es E(variationa)?
1.130 124.141 —-1.041 —-0.857 —-1.307 —-1.131 —1.238 38
1.257 117.047 —-1.117 —-0.918 —-1.313 —1.205 —1.27881
1.431 114.447 —-1.174 —0.969 —1.298 —1.254 —1.301 07
1.435 109.417 —-1.174 —0.957 —1.305 —-1.262 —1.305 22
1.438 132.515 —1.180 —1.004 —-1.270 —1.239 —1.289 43
1.452 99.513 —1.175 —0.931 —-1.315 —-1.282 —1.314 26
1.462 95.863 —-1.176 —0.920 —-1.317 —-1.291 —-1.31779
1.507 82.960 -1.179 -0.875 —-1.316 —-1.328 —1.330 28
1.509 157.418 —-1.195 —1.037 —1.235 —1.237 —1.281 33
1.537 76.835 —-1.179 —0.847 —1.309 —1.348 —1.33563
1.571 70.958 —-1.176 —-0.817 —1.295 —1.365 —1.33992
1.609 65.344 —-1.170 —0.783 —-1.275 —1.380 —1.342 76
1.619 103.498 —-1.194 —0.963 —1.283 —1.285 —1.309 96
1.695 54.929 —1.165 —0.764 —1.262 —1.385 —1.342 62
1.743 50.129 —1.166 -0.781 —-1.273 -1.375 —1.33881
1.756 20.043 —0.353 0.310 —0.320 —0.784 —0.889 35
1.756 99.957 —1.193 —0.955 —1.261 —1.287 —1.304 81
1.794 45.594 —1.164 —0.795 —1.281 —1.361 —1.33183
1.848 41.316 —1.156 —0.805 —1.284 —-1.341 —1.321 02
1.894 23.069 -0.872 —0.606 —1.150 —-1.029 —1.086 63
1.962 33.488 —-1.122 —-0.807 —1.274 —1.283 —1.284 03
1.995 31.510 —-1.107 —0.802 —1.266 —1.263 —1.269 23
2.085 26.551 —1.050 —-0.771 —1.230 —1.193 —1.21580
2.154 68.199 —-1.175 —0.828 —1.229 —1.343 —-1.316 90
2.277 29.448 —1.130 —0.840 —1.244 —1.265 —1.267 52
2.419 31.275 —1.153 —0.859 —1.234 —1.285 —1.280 59
3.092 75.964 —1.138 -0.870 -1.175 —1.243 —1.2459%
4.067 79.588 —-1.114 —-0.877 —1.143 —-1.195 —1.201 2%
5.054 81.637 -1.104 -0.878 -1.129 —-1.177 -1.182 2%
6.044 83.063 —1.102 —-0.878 —-1.123 -1.170 -1.176 28
8.031 84.928 —1.102 —0.880 —1.122 —-1.167 —1.174 02

10.025 85.939 —-1.101 —0.880 -1.121 —1.166 -1.17348

@Unless otherwise noted, these are all from Feyel., Ref. 19.
PTalbi and Saxon, Ref. 20.

C. Triatomic molecules: H 3 the separated-atom limit noted for, HTable Il presents re-

As in the case of K, this molecule presents a severe testSUlts for H in Dy, (equilateral trianglpand C,, (isosceles

for the method. In addition to slow convergence, the calcuifiangle symmetry. In addition, Figs. 5, 6, and 7 present
lated ground state energies also have the same difficulties Bptential energy surfaces based By, E,, andE; for C,,
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FIG. 5. E; potential energy surface forjH contours are 0.05 a.u. apart FIG. 7. E; potential energy surface forH contours are 0.05 a.u. apart
starting at—1.19 a.u. starting at—1.39 a.u.

minimum in the potential energy very close to the correct
equilibrium separation but slightly too low i®. The poten-
tial energy surface of Fig. 7 shows a minimum energy at
R=1.66 and®=54". In contrast, the potential produced by
eEU and displayed in Fig. 8 shows a long trough with a shal-
low secondary minimum at its head ne@=90° and the
minimum at its base a®=180°. Of course the energy for
this minimum lies well above those &, andE;.

symmetry. In Fig. 5, we see th&t; does not reproduce the
correct equilibrium separation fdD,, symmetry. Surpris-
ingly, however, it does yield an equilibrium distance of
R=1.62 at the minimum of its potential energy surface, clos
to the correct value oR=1.65, but this occurs for a linear
geometry. Note that thenly dependence 06 at this order is
through the nuclear potentialZgZ-/Rg:. Adding the
second-order energy introduces the fidsstlependent contri-

. . A number of variational calculations hav n carri
bution to the electronic energy. The overall second-order co- umber of variational calculations have been carried

efficient is everywhere negative and becomes more so fqput to an accuracy of a few thousandths a.u. or bgztter for this
smallR and®. This places the minimum of the potential in molecule. Notable among these are the calculations of Frye

Fig. 6 atR=1.20,0=90°, shifting the minimum in the right et al,'”® who obtain very accurate results over a range of
diréction but .by,too mu<,:h iR and not enough i®. The internuclear separations and geometries. Total energies for

third-order energy coefficient itself has a minimum Veryl;lrgerzgn_lt_irnuclear d'St??;es caln tljet found |n_tTaIb| and
close to the correct equilibrium distance for the molecule axon. € accuracy ot these calculations permit an unam-

but at®@=0°. As a consequence, this coefficient produces £)|guous assessm.ent of the convergence of the perturbation
results. A comparison of these results g, andC,, sym-

180 180
160 | 160 |-
140 | 140 -
120 ol
o100} 100 _
80 %0
60 col
a0l ol
201 20l
R R

FIG. 6. E, potential energy surface forjH contours are 0.05 a.u. apart FIG. 8. E, potential energy surface forgH contours are 0.05 a.u. apart
starting at—1.21 a.u. starting at—1.19 a.u.
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FIG. 10. Energy for equilateral (A) E;; (¢) E,; (O) Eg; (x) E, 5 (O)

FIG. 9. Truncation errordg, for H3 ; (A) ©<50°; (¢) 50°<0<70°; (O) variational results. Ref. 17

70°<@<90°; ([J) 90°<@<120°; (x)@>120°.

metries is presented in Table Il. Figure 9 displays the differsteadily for increasingR, reaching 5% in the vicinity of
ences between the variational values dhyg grouped ac- R~2.7 and 10% byR~3. However, for XxR<2.5, the rela-
cording to the value 0. In the vicinity of the equilibrium tive error is always less than 3.5%. Bdij andE, (but not
distance, most points fall in the range ©D.05 a.u., a rela- E») predict a minimum in the potential energy for this sym-
tive error of about 3.5%. Exceptions to this occur for thosemetry at the correct internuclear distance to withi0.01
points with both the largest and the smallest value®gate.,  bohr. Surprisingly,E; is more negative than the “exact”

all those with ®>120° and two points belonging to the Vvariational values for 1.28R<2.5, reaching its greatest dis-
group with®<50° that actually have the smallest values ofcrepancy in the vicinity of the equilibrium position. How-
O(~20°). These all have relative errors ranging from 5% to€ver, as in the case of,iithese results show a satisfactory
10%. At larger internuclear distances, points wiii=60°  convergence and a significant improvement in the total en-
show an error which increases wil while points which ~ ergy over the second-order results.

correspond to®~90° have an error which remains fairly For nonsymmetric geometries of this molecule, compari-
constant at about 0.006 a.u. It is clear that much of thison to the results of Ref. 19 shows that the truncation error is
behavior is determined by the initial charge distribution im-generally about 0.02—0.05 a.u. for the internuclear distances
posed by the zero-order function. Thus, those points witftonsidered there, with the range from largest to smallest be-
R>3 and ®~90°, all of which have geometries with one ing from 0.006 to 0.09 a.u.

internuclear distance held close to the equilibrium separation

for H,,2° have errors which are quite close to that of the H

molecule at equilibrium, the perturbation coefficients involv- 0.8
ing large internuclear separations contributing little to the A
total energy. Conversely, those points at laRjeorrespond- A
ing to an equilateral geometry all have errors which increase 06 Ap
with R in a manner similar to the results for, Ht largeR.

D. Equilateral H ¥ 0.4

For the equilateral geometry, a comparison toisluse- 4q *
ful throughout the entire range d®. Figures 10 and 11 ** @ ® ®
present the results for equilateraf Hh a manner similar to 0.2
Figs. 1 and 2 for H. Comparison of Figs. 2 and 11 indicates R
that, in this case, the errors f&;, in H3 behave very much <&
like the corresponding errors in,Halthough these are, in
general, considerably smaller for, HFor example, foRR in
the range 1.2 R<1.8, errors in H are roughly 2 to 5 times o1 1.5 2 25 3 3.5
larger than those found for Hat similar internuclear dis- R
tances. Ultimately, and again as in the case of Bs R
increases these results converge more slowly and to thgg. 11. Truncation erro,, for equilateral H ; (A) Ay; (¢) Ay; (O) Ag:
wrong limiting value. Thus, the relative error iy increases () E, .

(=}

20,0]

B>
o}
o)
]
d

B
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TABLE III. Total energieg(in a.u) for the linear, symmetric HeHH" molecule; the first-order variational energy,
E, ., and truncated energy sunts,, compared with the variational results.

R (bohn E, E, E, E; E(variationa)?
1.00 —2.188 —2.030 —-2.181 —-2.197 —2.15591
1.50 —2.552 —2.390 —2.554 —2.564 —2.52773
2.00 —2.653 —2.497 —2.660 —2.664 —2.625 87
2.50 —2.700 —2.550 —2.710 —2.710 —2.663 36
3.00 —-2.730 —2.583 —-2.742 —-2.739 —2.683 70
3.50 —2.753 —2.607 —2.765 —2.762 —2.698 66
4.00 —-2.770 —2.625 —2.783 —-2.779 —2.711 56
4.50 —2.784 —2.639 —2.797 —-2.792 —2.722 94
5.00 —2.795 —2.650 —2.808 —2.803 —2.73274

aZetik and Poshusta, Ref. 21.

E. Triatomic molecules: HeH 32 perturbations, as appear in polyatomic systems, are quite

Comprehensive variational calculations for this unstableSmall for largeR. In fact, the only significant contribution to
system over a range of internuclear distances can be found #is in this range oRR is from €3 °. In this context, it should
Zetik and Poshustawho examined the potential energy sur- be remembered that mternuclear distances are scaled by the
face for a linear geometry. These results are compared wituclear chargeZ, , so that these energy coefficients are ac-
the present calculations in Table Il and Fig. 12 for the linearually calculated with values dR that are twice their nomi-
symmetric molecule. This comparison shows tkat E;, ~ hal value in bohr. _
andE, all lie below this variational calculation by roughly Similar improvements in convergence can be expected
0.05 a.u. Sincé, is itself an upper bound to the exact en- for molecules containing heavier atoms than those appearing
ergy, it is clear that all of these results represent an improvell these two-electron systems. This should be particularly
ment over the variational result. Note that b&handE; lie ~ true for heteronuclear molecules, especially those with a
lower in energy tharE, for R=1, with E, being the more single heavy ion. For homonuclear molecules, where the
negative forR>2.5. The absolute accuracy of these results ignultiperturbation parametexy =1, the relative error(in
difficult to judge in the absence of more accurate variationafharge-scaled atomic unjtzan actually increase witz
calculations. Recalling the comparable behavior of the peralong a particular isoelectronic sequence, while the absolute
turbation series for K and H, noted earlier, a corresponding €'Tor remains roughly constant. htlnonscqledatom!c units,
similarity between the Hejl" and HeH series might be the absolute error increases Eéfnfl- This error is easily
expected. Indeed, thE, of Table Il do suggest a rapid corrected, however, by simply adding the “missing” portion
convergence of the perturbation series for HéH In par-  Of the electronic energy of the appropriate states of the one-
ticular, e; for this system is virtually identical te, for HeH"  €lectron diatomic molecule.
once R exceeds about 2 bohr, indicating that contributions
from multiperturbation coefficients with two “molecular” v/, syMMARY

In Z-dependent perturbation theory, the lowest-order
wave functions for a polyatomic molecule are not only inde-

-2.50 pendent of the nuclear charges, but are also independent of
. the total number of nuclear centers and electrons in the mol-
-2.55 1 ecule. The complexity of the problem is then determined by
i the highest order of the calculation. With the present choice
2.60 | of Hy, the first-order wave function for any polyatomic mol-
= i ecule is described completely in terms of two-electron, one-
_2_2_55 center (atomig and one-electron, two-centgmoleculay
e _ first-order wave functions. These are separately obtained
Yook from calculations on He-like and Hlike systems. Atnth-
i order the wave function for a polyatomic molecule decouples
275 0 into a sum over thenth-order wave functions of all
i p-electron,g-center subsystem${ q=n+2) that are con-
I tained within the molecule of interest.
-2.80 We have illustrated the application of this method with
1.5 20 25 30 35 40 45 50 some results, complete through third order in the energy, for
R H3 -like molecules. In applying this method, we have chosen

to describe the system by a zero-order wave function that
FIG. 12. Energy for linear, symmetric HgH; (A) E,; (0) E,; (O) E,;  Minimizes the complexity of the calculations. The perturba-
(%) E, ; (O) variational results of Ref. 21. tion series calculated through third order essentially yield the
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correct equilibrium internuclear distance and geometry, even eT"(Ra)zzés"( R,)+ ei"’( R,).

in the case of K. For this molecule, the perturbation series s

is best converged in the vicinity of the equilibrium distance.Here theef "L are the first-order corrections to the singlet
For largerR, the truncation error remains small if one of the and triplet 25 and 2P states of the two-electron atom, while
internuclear distances is held near the equilibrium distance.

However, if all internuclear distances are increased, the trung2lo(g j— _ < 21(r)
cation error increases as a consequence of the incorrect
separated-atom limit of the zero-order wave function. In the

case of HeH ™, the convergence of the perturbation series ISe259(R) =
significantly improved, particularly in the vicinity of the
separated-atom limit.

The present calculations can be improved without sig-Efpﬂ(R):
nificant complication of the method by introducing a
screened nuclear charge for the unperturbed Hamiltéhan
by repositioning the unperturbed, single-center Hamiltonian -
away from the physical chargé<Calculations incorporating
these improvements and extending this initial study toThe off-diagonal matrix element, V=2Zgv, 5,(Rg)
higher-order are currently underway. +Zcv s 2p(Re), with

For all diatomic and polyatomic systems examined here,

2|(f)>,

o

1
R 2R (LHRTIR*+RI)e R,

R IR

3 1
B (1+R)+ IR (7+ 2R+ 3R2+ 1IR3 (e R

the perturbation energy summ'ed through third Qro!er gener- ., on(R)= —<Zs(r) il 2p(r)>
ally yields results comparable in accuracy to variational cal- o
culations of moderate size and complexity. Given the sim- 3
plicity and efficiency of the method, these results for simple =— W‘F IRz (1+R)

systems are very encouraging. Since, through a given order
in the perturbation, the computations are of a fixed degree of
complexity regardless of the size of the molecule, application +3(3+R+3R?)
to larger systems with high&t seems promising.

e R

The complete first-order wave function is then given by

‘/flzcs‘/’i"_cpl/’%" 7‘//6'

_ where
The zero-order wave function for the three-electron,

. . _ S
three-center molecule is degenerate, while a more complex, %o=—Cp# 5+ Cs §

permutational symmetry not present in the ground state of .
. appears as an admixture of the other degenerate, zero-order

the corresponding two-electron molecule also appears here; . . S
; . X Wave function(without, however, contributing to the second-
Expressions for the first-order wave function and second-
) . . order energy: Also,

order energy of this system are obtained here to illustrate

how these affect the multiperturbation expansion. The )= y®'+Zz ™ (Rg)+Zcy™ (Re),
doubly-degenerate zero-order wave function for this system

APPENDIX: THREE-ELECTRON MOLECULES

is where they?' are the first-order wave functions for the
< ground and lowestP-state of three-electron atoms. These

o=Csihgt CpllfB' can be expressed completely in terms of the first-order wave

where functions of two-electron atonts,
_ _ 1 _

Yp=2"2(1-P13)1s(r1)1s(r,)21(r) Y'=2" M2 (1=Pg){y7 Xry.rp)20(rg) +27 12

for |=s or p. The coefficientsg, , are the eigenvectors of the A 23L
r,,rz)ls(rq)+ ro,rz)1s(r
perturbation matrix formed with these degenerate wave func- L3 (12 ra)Ls(ra) ¢ H(rz.fo) 1s(ry)
. . . . . 3
tions. The eigenvalues are just the first-order energies, + (1, ra)1s(rp) 1}
s p s__p 2 . .

. _ate e—€ 1— 2V The y™(R,) can be constructed entirely from first-order,

2 T2 e—¢€l) "’ H -like wave functions,
where T (R =2~ (1=P1g)[¢1%(Ry,r1)18(r2) 21 (rs)

I _ _al m,| m,|

=€l +Zeer(Re) +Zeer (Re), +YI¥(R, o) 1s(r1)21(ra)
with T

+ 97 (Ry,T3) 18(r1) 18(r2)],
1 3
= lisy > 2ty > L where y4'“ are solutions to the degenerate, first-order, per-
turbation differential equation for thel 2zero-order wave

and function® e.g.,
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1 a,2(s,p)o 2 S,2po 21 P 2so
Go¥3™ (R a,r>—(r_+fis(’>28<r>—025,2p<Ra>2p<r>=o. LR = LT R+ e (Ra)]

+3 23s,2po R )+ 23P,25<r R,
This first-order wave function then yields the second-order Aer ™ (Ro)+ €™ (Ra)]

energy coefficient, and

_ 1?2, 2.5, .2 s,
€Er= €5 +0562+Cpfg+cscp62p, Gisg'ZpU(RB,Rc,(’)):_2[<¢§SU(RB,I‘)
S

1
o 2p(r)
whereel is given by Eq.(18), the second-order energy for

the ground state of an FHlike molecule,

— ZS(r)H.
= &'+ 233 "(Ra) + Z¢€5 "(Re) + Zgel 1 "(Rg)

s 3L 200 62(5 p)o
17 2|o’ RA) -+ ZoZ 2|0' 20R. R~ © One approach to evaluating tle@?, 1 , and
cer1"(Re)+ZgZcer 1" (Rg,Re . 0) coefficients can be found in Ref. 10.

+<¢ip"(RB,r>

and
P=Z2€5°P7(Rg) + 2265 ’(Re)

+Zger TP 7(Rg) + Zcer 1P 7(Re)
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