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Moh’d Abu-Jafara) and Frank C. Sanders
Department of Physics and Molecular Science Program, Southern Illinois University at Carbondale,
Carbondale, Illinois 62901-4401
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In Z-dependent perturbation theory, the lowest-order wave functions for a polyatomic molecule are
not only independent of the nuclear charges, but also of the total number of nuclear centers and
electrons in the molecule. The complexity of the problem is then determined by the highest order
retained in the calculation. Choosing the simplest possible unperturbed Hamiltonian, we describe an
n-electron,m-center polyatomic molecule asn ‘‘hydrogenic’’ electrons on a single center perturbed
by electron–electron and electron–nucleus Coulomb interactions. With thisH0, the first-order wave
function for any polyatomic molecule will be a sum of products of hydrogenic orbitals with either
two-electron, one-center or one-electron, two-center first-order wave functions. These first-order
wave functions are obtained from calculations on He-like and H2

1-like systems. Similarly, the
nth-order wave function decouples so that the most complex terms are just thenth-order wave
functions of all thep-electron,q-center subsystems (p1q5n12) contained in the molecule. We
illustrate applications of this method with some results, complete through third order in the energy,
for H3

1-like molecules. These are compared with accurate variational results available in the
literature. We conclude that, through this order, this perturbation approach is capable of yielding
results comparable in accuracy to variational calculations of moderate complexity. The ease and
efficiency with which such results can be obtained suggests that this method would be useful for
generating detailed potential energy surfaces for polyatomic molecules. ©1995 American Institute
of Physics.
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I. INTRODUCTION

Z-dependent perturbation theory~ZDPT! has long been a
powerful computational tool for atomic systems. Little com
parable work has been done, however, in molecular syste
Examples include the work of Goodisman1 and of Matcha
and Byers Brown2 ~on diatomic systems! based on an unper
turbed Hamiltonian taken as the sum of one-electron,
atomic ~H2

1-like! Hamiltonians, and the work of Dvora´cek
and Horák3 ~on the hydrogen molecule!, of Chisholm and
Lodge,4 ~on two-electron diatomic systems!, and of Mont-
gomery, Bruner, and Knight5 ~on ten-electron hydrides!, all
of which utilize single-center, hydrogenic Hamiltonians
describe the unperturbed system. These approaches illus
one characteristic of the application of ZDPT to molecules
is possible to construct a variety of unperturbed Hamil
nians and still retain the essential features of the theory.

The advantages of ZDPT and a multiperturbation
proach for atomic systems are discussed in Sanders.6 The
present paper extends this earlier work to polyatomic s
tems. One of the advantages of ZDPT is its ability to prov
results for an entire isoelectronic sequence from a single
culation. While this is less significant for polyatomic sy
tems, where few molecular isoelectronic sequences h
more than one or two physically interesting examples,

a!Present address: Department of Physics, An Najah University, P.O. Bo
Nablus, West Bank via Israel.
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method retains some important advantages for molecu
systems. As usual, the inverse nuclear charge appears a
natural perturbation parameter of the method. In addition, th
ratio of the nuclear charges also appears as a natural cho
of expansion parameter in a multiple perturbation theor
These ensure a rapid convergence of the multiperturbati
series for molecules possessing at least one heavy atom.
greater importance, with these perturbation parameters
individual multiperturbation wave functions and energy co
efficients are independent of the nuclear charges as well as
the total number of electrons and the overall electronic co
figuration of the system. Consequently, results obtained f
small systems can be transferred without modification
larger systems which contain the electron configuration
the smaller system as a subconfiguration. It is these char
teristics of the method that suggest that ZDPT can be
accurate and efficient method for studying potential energ
surfaces of polyatomic systems.

Chisholm and Lodge4 studied the ground state of two-
electron diatomic systems~specifically H2 and HeH1!
through second-order in the energy. The present paper
tends these calculations to third order in the energy. The
results are then incorporated into a study of the H3

1 , HeH2
12

sequence as the simplest prototype of a polyatomic molecu
As in Refs. 3–5, we place all the unperturbed~hydrogenic!
orbitals on the same nuclear charge. Of the various possi
choices of a zero-order Hamiltonian, this produces the sim
plest form for the higher-order perturbation coefficients.

x 7,
4919)/4919/12/$6.00 © 1995 American Institute of Physics
ct. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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4920 Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
also means that contributions of the interelectron interacti
can be obtained directly from ZDPT calculations for atom
The complete, first-order wave function of any molecule ca
then be constructed from the first-order, atomic~He-like! pair
functions of all two-electron configurations present in th
zero-order wave function, together with the first-order, on
electron diatomic~H2

1-like! wave functions of all the orbitals
in the zero-order wave function. Similarly, the second-ord
correction to the energy consists entirely of one-center thre
electron, two-center two-electron, and three-center on
electron contributions, no matter how complex the molecu
Continuing to higher-order, the maximum degree of com
plexity of the calculation increases in a predictable mann
with each additional order of the calculation introducing e
ther an additional electron or an additional center to the e
pansion coefficients.

Despite its simplicity, this zero-order Hamiltonian is
clearly not the best choice for many polyatomic molecule
particularly homonuclear molecules. Nevertheless, it w
serve here to illustrate the general structure of the multipe
turbation expansion and the general characteristics of
method. A more natural choice of zero-order Hamiltonia
would distribute the electrons for the system among th
nuclear centers. This would significantly improve the initia
unperturbed electron density and hence also improve
convergence of the perturbation series, particularly as o
approaches the separated-atom limit. Of course, this wo
also increase the complexity of the calculation at each ord
of the perturbation by precisely the number of addition
centers that have been introduced into the zero-order Ham
tonian. Such generalizations of the method are straightf
ward and will be examined in more detail in a later paper.

II. THEORY

We describe an unperturbedN-electron,M -center poly-
atomic molecule asN ‘‘hydrogenic’’ electrons on a single
center of chargeZA . In charge-scaled atomic units,7 this
Hamiltonian is written asH5H01H1 , where

H05(
i51

N S 2
1

2
D i2

1

r iA
D , ~1!

H15(
i51

N S (
j. i

N

l i j H1
i j1 (

a5B

M

l iaH1
iaD ,

~2!

H1
i j5

1

r i j
, H1

ia52
1

r ia
,

wherel i j5ZA
21 andl ia5ZaZA

21; theZa being the charges
of the other atoms in the molecule. The perturbation expa
sion coefficients are then independent of the nuclear char
and completely transferable from one system to another. T
choice of zero-order Hamiltonian also reduces to a minimu
the number of nuclear centers that can appear at any part
lar order. Note that the ratio of the nuclear charges appears
these perturbation expansions in addition to the usual inve
of the nuclear charge. Obviously,ZA should be chosen as the
largest of the nuclear charges in the molecule, if possible.
J. Chem. Phys., Vol. 102,
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any case, it is clear that the convergence of portions of th
multiperturbation series will be slower than might be antici-
pated based on the size ofZA alone.

Treating each term in Eq.~2! as a separate perturbation,
we obtain the multiperturbation differential equations.6

Through second order, these are

G0c050, ~3!

G0c1
i j1G1

i jc050, ~4!

G0c1
ia1G1

iac050, ~5!

G0c2
i j1G1

i jc1
i j2e2

i jc050, ~6!

G0c2
ia1G1

iac1
ia2e2

iac050, ~7!

G0c1,1
i j , jk1G1

i jc1
jk1G1

jkc1
i j2e1,1

i j , jkc050, ~8!

G0c1,1
i j ,ia1G1

i jc1
ia1G1

iac1
i j2e11

i j ,iac050, ~9!

G0c1,1
ia,ib1G1

iac1
ib1G1

ibc1
ia2e1,1

ia,ibc050, ~10!

whereG05H02e0 , andG1
a5H1

a2e1
a. Equations~4! and~6!

reduce to two-electron, one-center equations, while Eqs.~5!
and~7! simplify to one-electron, two-center equations. Equa
tions ~8!, ~9!, and ~10! are three-electron one-center, two-
electron two-center, and one-electron three-center equatio
respectively. From these perturbation differential equation
one can obtain all corrections to the energy through fifth
order.8 Expressions for the third-order energy coefficients ar
presented below. In these expressions,a, b, andc represent
any one of the perturbationsi j or ia, with the restriction that
all perturbations appearing in a coefficient must be differen

e1
a5^c0uH1

auc0&,

e2
a5^c1

auG1
auc0&,

e1,1
a,b52^c1

auG1
buc0&,

e3
a5^c1

auG1
auc1

a&22e2
a^c1

auc0&, ~11!

e2,1
a,b52^c1

auG1
auc1

b&1^c1
auG1

buc1
a&22e2

a^c1
buc0&

22e1,1
a,b^c1

auc0&,

e1,1,1
a,b,c52~^c1

auG1
buc1

c&1^c1
buG1

auc1
c&1^c1

auG1
cuc1

b&

2e1,1
a,b^c1

cuc0&2e1,1
a,c^c1

buc0&2e1,1
b,c^c1

auc0&!.

Extensions to higher order are straightforward, and exampl
can be found in Ref. 6.

It can be shown that all ‘‘unlinked’’ wave functions de-
couple into simple products of their ‘‘linked’’ components,
e.g.,

c1,1
12,345c1

12c1
34,

c1,1
1a,2a5c1

1ac1
2a , ~12!

c1,1,1
12,23,4a5c1,1

12,23c1
4a .

From this it follows that all such ‘‘unlinked’’ energy coeffi-
cients disappear, e.g.,e1,1

12,3a50. These results ensure that at
nth order the wave functions and energy coefficients cann
involve more thanp electrons andq centers, wherep1q5n
No. 12, 22 March 1995
t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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4921Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
12. This in turn means that annth order perturbation cor
rection can involve no more thann11 coupled electrons
while the greatest number of nuclear centers involved innth
order is alson11.

A. Charge-scaling in molecules

In contrast to the corresponding expressions for ato
the multiperturbation expansions for a molecule have a m
more complex behavior with respect to the nuclear charg
The multiperturbation expansion for the electronic energy
a heteronuclear diatomic molecule serves to illustrate
behavior. In charge-scaled atomic units, this is

E5e01 (
n51

lB
nen

M1ZA
21S e1

A1 (
n51

lB
ne1,n

A,M D
1ZA

22S e2
A1 (

n51

lB
ne2,n

A,M D 1ZA
23S e3

A1 (
n51

lB
ne3,n

A,M D
1••• , ~13!

wherelB5ZBZA
21. A comparable expression for the ener

of a polyatomic molecule requires a simple and obvious
tension of this form and introduces no new behavior w
respect to charge-scaling. The notation in Eq.~13! has been
simplified so that each ‘‘molecular’’ coefficient,en

M, each
‘‘atomic’’ coefficient, en

A, and all ‘‘mixed’’ coefficients have
implicit in them sums over allN electrons of the molecule
The first two terms in this expression represent the sum
the energies of all states of those one-electron diatomic m
ecules which are subsystems of the molecule, while the
over all the first~‘‘atomic’’ ! coefficients in each of the brack
eted terms represents the energy of the atom which is a
system of the diatomic molecule.

SincelB>ZA
21, the convergence of those parts of t

series involvinglB can be slower than that of the pure
‘‘atomic’’ contributions. An obvious exception to this occu
for the hydrides, where all the multiperturbation expans
parameters are identicallyZA

21, and the multiperturbation ex
pansion simply becomes a formal device for identifying t
contributions from subsystems of the molecule. Perturba
energies and other properties of hydrides will thus ha
simple charge-scaling behavior. At the other extreme are
homonuclear molecules, for which alllB51. Here, the re-
sults obtained via perturbation theory can be seriously
fected by a premature truncation of the perturbation ser
Note in particular that the entire portion of the energy aris
from purely one-electron diatomic energy coefficients is
the same order~in terms of the nuclear charges! as the zero-
order term. Similarly, terms of a particular order inZA

21 will
contain contributions from multiperturbation coefficients
much higher nominal order. Hence, for homonuclear m
ecules, truncating the perturbation sum at some order
yield a relative error which actually increases asZA in-
creases. The convergence of the energy can be impro
considerably, however, by including the higher-order coe
cients of one-electron diatomics. This is effectively what w
done in the work of Joulakian9 on isoelectronic homonuclea
diatomics.
J. Chem. Phys., Vol. 102
Downloaded 20 Aug 2013 to 212.14.233.38. This article is copyrighted as indicated in the abstra
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Finally, it must be kept in mind that all lengths, includ
ing internuclear separations, have been scaled byZA . Hence,
energies calculated at a particularscaled internuclear dis-
tance will actually correspond to different internuclear sep
rations for different members of an isoelectronic molecul
sequence according to the relationR~bohr!5ZA

213R~scaled
a.u.!.

B. Degeneracy

In degenerate multiple perturbation theory, the multipe
turbation expansion becomes algebraically more comple8

Nevertheless, the multiperturbation expansion coefficien
can still be constructed from the corresponding coefficien
of smaller subsystems of the molecule. Chisholm an
Lodge10 have described one approach to this problem, de
onstrating how these perturbation coefficients can be co
structed.

For the ground state of two-electron molecules, the zer
order wave function is a product of hydrogenic 1s orbitals
and is not degenerate. Thus, in what follows, this system w
serve to illustrate the structure of the method most clea
and simply. The single-center, zero-order wave functions f
excited states of these systems and for the ground state
three-electron molecules will be degenerate, however. To
lustrate the application of the method to these more compl
often degenerate systems, a brief discussion of the multip
turbation expressions for H3-like molecules is presented in
the Appendix.

III. APPLICATION TO H3
1-LIKE MOLECULES

For two-electron, three-center molecules, the comple
perturbation is

H15
1

ZA
F 1r 122ZBS 1

r 1B
1

1

r 2B
D2ZcS 1

r 1C
1

1

r 2C
D G . ~14!

For ZC50, this becomes the perturbation for H2-like mol-
ecules. Hence, in what follows, all expressions are writte
for H3

1-like systems, expressions for two-electron diatomic
being obtained by simply settingZC equal to zero. The com-
plete, first-order energy coefficient for the ground state of t
molecule is

e15e1
11S12ZBe1

1ss~RB!12ZCe1
1ss~RC!. ~15!

Heree1
11S 5 5

8 is the first-order correction to the ground stat
energy of a two-electron atom~and corresponds to ane1

i j !
while

e1
1ss~R!52

1

R
1S 11

1

RDe22R ~16!

is the first-order correction to the ground state energy of
one-electron diatomic molecule with internuclear distanceR
~and corresponds to ane1

ia!. RB andRC are the internuclear
distances between the chargeZA and the two perturbing
charges,ZB and ZC . The angle subtended by these tw
charges is denoted byQ.
, No. 12, 22 March 1995
ct. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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4922 Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
Each term in the perturbation, Eq.~3!, yields a corre-
sponding term in the complete first-order wave function

c15c1
11S~r1 ,r2!1ZB@c1

1ss~RB ,r1!1s~r2!

11s~r1!c1
1ss~RB ,r2!#1ZC@c1

1ss~RC ,r1!1s~r2!

11s~r1!c1
1ss~RC ,r2!#. ~17!

c1
11S can be obtained accurately from variational perturbati

calculations11 while c1
1ss can be expressed in closed form i

confocal elliptic coordinates,12 but is here also obtained from
a variational perturbation calculation.

With this wave function, the second- and third-order e
ergy coefficients can be calculated. The second-order ene
is given by
J. Chem. Phys., Vol. 102,
Downloaded 20 Aug 2013 to 212.14.233.38. This article is copyrighted as indicated in the abstrac
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e25e2
11S12ZB

2e2
1ss~RB!12ZC

2 e2
1ss~RC!

1ZBe1,1
11S,1ss~RB!1ZCe1,1

11S,1ss~RC!

12ZBZCe1,1
1ss,1ss~RB ,RC ,Q!, ~18!

where e2
11S 5 20.157 666 4,11 e2

1ss is known exactly,12

ande1,1
11S,1ss is given in Ref. 4. Note that the dependence o

the electronicenergy on the angleQ makes its first appear-
ance at this order through the three-center term,

e1,1
1ss,1ss52K c1

1ss~RB ,r1!U2 1

r 1C
U1s~r1!L . ~19!

The third-order energy is given by
e35e3
11S12ZB

3e3
1ss~RB!12ZC

3 e3
1ss~RC!1ZBe2,1

11S,1ss~RB!1ZCe2,1
11S,1ss~RC!1ZB

2e1,2
11S,1ss~RB!1ZC

2 e1,2
11S,1ss~RC!

12ZB
2ZCe2,1

1ss,1ss~RB ,RC ,Q!12ZBZC
2 e1,2

1ss,1ss~RB ,RC ,Q!1ZBZCe1,1,1
11S,1ss,1ss~RB ,RC ,Q!. ~20!
d

r-

s
r

u-

r
u-
0
-

All of the singly-subscripted coefficients above are eithe
known exactly13 or are known to high precision from varia-
tional perturbation calculations.11 The remaining multipertur-
bation coefficients can be computed, via Eqs.~11!, from the
appropriate components of the first-order wave function.

The total energy throughnth order, in atomic units, is
given by

En~RB ,RC ,Q!5ZA
2 (
p50

n

ZA
2pep1

ZAZB
RB

1
ZAZC
RC

1
ZBZC
RBC

. ~21!

The total wave function, truncated through first order, ca
also be used to obtain a variational bound on the energy

Ev5ZA
2e01ZAe11

e21e3 /ZA
11ZA

22^c1uc1&
1
ZAZB
RB

1
ZAZC
RC

1
ZBZC
RBC

. ~22!

Results for both the third-order perturbation sums and th
variational energy for H3

1-like systems are presented in the
tables, where they are compared with accurate, variationa
obtained energies.

IV. METHOD

The first-order wave functions required by the metho
have been obtained variationally. To simplify the calculatio
of the multicenter integrals that appear in the energy expa
sion coefficients, we have used single-center basis sets for
wave functions. Hence,
t.
r

n

is

lly

d
n
n-
all

c1
11S~r1 ,r2!5~11P12!(

nml

cnmlr 1
nr 2

mPl~cosu12!

3exp@2b l~r 11r 2!#, ~23!

c1
1ss~R,r i !5(

nl

cnlr i
nPl~cosu i !exp~2b l8r i !. ~24!

For the ‘‘atomic’’ wave function, Eq.~23!, all terms with
l<16 andn1m12l<20 were included for a total of 501
terms. For the ‘‘molecular’’ wave function, Eq.~24!, all 221
terms withl<16 andl1n<20 were utilized. For both wave
functions, the nonlinear parameters,bl , of each partial wave
were separately optimized. Once obtained, the optimize
‘‘atomic’’ wave function is stored. The nonlinear parameters
for the ‘‘molecular’’ wave function, however, must be opti-
mized for each value of the internuclear distance,R. For the
sake of efficiency, these parameters were obtained at inte
vals of 0.10 bohr~and at smaller intervals near the equilib-
rium distances!. These were then used to interpolate for the
parameters at other values ofR. Since the calculation of
these one-electron, ‘‘molecular’’ wave functions is extremely
rapid, it costs little in efficiency to simply recalculate them as
needed. Hence, none of these ‘‘molecular’’ wave function
were stored and only the interpolation table for the nonlinea
parameters was saved.

With these wave functions in hand, it only remains to
calculate the energy expansion coefficients for each partic
lar choice ofRB , RC , andQ. These can be calculated very
efficiently; for each such point, the entire calculation of the
energy through third order for all values ofZ of interest
consumes about 20 s of cpu time on an IBM 9021 vecto
processor with 2 cpu’s. Hence, to calculate all the data act
ally presented in the tables to follow requires less than 2
min of cpu time. Even greater efficiency is possible in cal
No. 12, 22 March 1995
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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4923Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
culating the potential energy surfaces presented in the
ures. For each value ofRB , RC , the energies for allQ of
interest are calculated together. Since all coefficients that
not depend onQ are not recalculated, less than 10 s of c
time is required for each point. Additional savings in com
putational time are possible wheneverRB5RC so that many
of the multiperturbation coefficients are identical.

In Table I we compare exact values12,13of e2
1ss ande3

1ss

with those obtained with our approximatec1
1ss and find that

the approximate coefficients are accurate to at least f
decimal places over the entire range of internuclear distan
considered here. The simple wave function utilized here

c1
11S yields values fore2

11S ande3
11S which agree with accu-

rate values of these coefficients to three decimal places
Table I we also compare calculated and exact values4 of

e1,1
11S,1ss . Here the results obtained with the ‘‘atomic’’ first
order wave function are accurate to four decimal places,
cept forR<1, where they are in error by roughly one unit i
the fourth decimal place.~These are obtained with greate
accuracy if calculated withc1

1ss.! Comparing exact values o
e1,1
1ss,1ss ~Ref. 14! with those calculated with the approximat
first-order ‘‘molecular’’ wave function shows that the latte
agree with the exact values to four or five decimal plac
Not surprisingly, the approximate one-electron ‘‘molecula
first-order wave functions are more accurate than the tw
electron ‘‘atomic’’ wave functions, but between them, the
appear capable of calculating the ‘‘mixed’’ perturbation e
ergy coefficients to roughly four decimal places for the ran
of R considered here. Note that, in calculating the total e
ergies, only exact values of these coefficients have been u
where they are available. Hence, the total energies prese
in the tables cannot be expected to agree with accurate va
tional energies to more than four decimal places. Convers
if the present calculations agree with accurate variational

TABLE I. Some perturbation energy coefficients~in a.u.!; a comparison of
the present results with exact values.a

R ~bohr! 2e2
1ss b 2e3

1ss c
e1,1
11S,1ss d e1,1

1ss,1sse

0.40 0.386 56 20.022 30 0.529 45 20.583 15
0.386 57 20.022 29 0.529 60 20.583 17

0.60 0.312 05 20.017 50 0.448 98 20.339 32
0.312 08 20.017 44 0.449 10 20.339 37

0.80 0.249 18 20.005 93 0.367 98 20.160 36
0.249 21 20.005 86 0.368 11 20.160 37

1.00 0.199 27 0.005 97 0.293 88 20.044 58
0.199 31 0.005 99 0.294 00 20.044 60

1.20 0.160 29 0.015 08 0.229 98 0.022 67
0.160 33 0.015 17 0.230 08 0.022 68

2.00 0.070 19 0.023 14 0.075 03 0.068 73
0.070 25 0.023 25 0.075 09 0.068 74

3.00 0.025 67 0.011 02 0.015 36 0.032 972
0.025 69 0.011 07 0.015 39 0.032 974

4.00 0.009 769 0.003 59 0.002 81 0.013 910
0.009 774 0.003 61 0.002 82 0.013 911

aEach first entry below corresponds to the present results.
bThe second entry in this column corresponds to the results of Ref. 12.
cThe second entry in this column corresponds to the results of Ref. 13.
dThe second entry in this column corresponds to the results of Ref. 4~b!.
eThese results are forQ5180°, the second entry in this column correspon
ing to the results of Ref. 14.
J. Chem. Phys., Vol. 102,
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ergies by less than about four decimal places, the discre
ancy can be attributed to the truncation of the perturbatio
series.

V. RESULTS AND DISCUSSION

Although the main focus of this work is the calculation
of polyatomic molecular energies, a brief examination of re
sults for diatomic molecules will illustrate the behavior o
the multiperturbation series in the present method.

A. Diatomic molecules: H 2

A comparison of the present perturbation results wit
accurate variational calculations15 for the ground state of the
H2 molecule is presented in Fig. 1. In this figure, the conve
gence of the perturbation results can be gauged by examin
the behavior of successive truncated perturbation sums,
En of Eq. ~21!, for the total energy of the molecule. These
results indicate that the variational energy,Ev , obtained with
the first-order wave function is consistently less accura
than the corresponding truncated third-order energy sum,E3,
obtained with the same wave function. This is not unex
pected, as variational expressions based on perturbat
wave functions such as that of Eq.~22! seem to consistently
yield poorer results than the corresponding truncated pertu
bation series. In fact, in this instance at least,Ev is less
accurate thanE2. It is also interesting to note thatE2 is quite
similar to the Hartree–Fock result16 for this molecule.

The present calculations have been carried out in suf
cient detail to verify that all theEn andEv have a minimum
in the potential energy close to the equilibrium internuclea
distance for this molecule.E3 yields the best result at
R51.36 bohr, within 0.04 bohr of the correct value of 1.40
bohr. Figure 2 displays differences between the ‘‘exact
variational results and the perturbation results,

FIG. 1. Energy for H2; ~n! E1; ~L! E2; ~h! E3; ~!! Ev ; ~s! variational
results of Ref. 15.

-
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4924 Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
Dn5En2Eexact,

showing that the perturbation results are most accurate in
vicinity of the energy minimum. For example, the smalles
error in E3 occurs atR51.2 bohr where it is 0.006 a.u., or
0.5%. For largerR, all the perturbation results become in
creasingly less accurate, so that byR53 the error is approxi-
mately 0.1 a.u. ByR55 the error forE2, E3, andEv has
grown to'0.25 a.u., a relative error of just over 25%. Th
present method fails to give accurate results for largeR for
this molecule since the zero-order wave function tends to
incorrect separated-atom limit~H21H1!. H2 is, of course, a
particularly difficult case for theZ21 expansion. Neverthe-
less, the convergence of the perturbation expansion for t
particular molecule is quite satisfactory. For this system,e3 is
negative for the entire range ofR presented in the table ex-
cept for the smallestR and it provides a considerable im-
provement over the second-order results of Chisholm a
Lodge,4 reducing the error in the energy by almost an ord
of magnitude. In fact, the present results show that the re
tive error forE3 remains under 1% for 1&R&2 bohr.

In general, use of similar zero-order wave functions i
homonuclear molecules should produce perturbation ser
which converge most rapidly for intermediate values of th
internuclear distance, but become suspect for larger valu
of R.

B. Diatomic molecules: HeH 1

Figures 3 and 4 present results for HeH1 in a form simi-
lar to those for H2. For this molecular ion, all perturbation
parameters are equal to12 and a more rapid convergence o
the perturbation series can be expected. Moreover, unlike
case of H2, the zero-order wave function does represent th
separated-atom limit correctly. Thus, for largeR, the pertur-
bation results are very well converged except forE1, where

the discrepancy is primarily due to the absence ofe2
11S . For

this system, we find thatE2 andE3 give slightly better results
at both larger and smaller internuclear distances rather th

FIG. 2. Truncation error,Dn , for H2; ~n! D1; ~L! D2; ~h! D3; ~!! Ev .
J. Chem. Phys., Vol. 102,
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at the equilibrium distance. Indeed,E3 does not yield quite as
good an equilibrium distance as eitherE2 or Ev ; R51.41 as
compared toR51.50 and 1.43, respectively. All however lie
within 0.05 bohr of the correct value ofR51.463~Ref. 17!.
In contrast to the other systems studied here,Ev is consis-
tently better than bothE2 and the Hartree–Fock energy

18 for
R&2. Again, as in the case of H2, E2 and the Hartree–Fock
energy are quite similar forR&2, beyond which pointE2 is
a significant improvement overEv . Since the perturbation
series for this molecule converges more rapidly, the improv
ment thatE3 provides overE2 is not as large here as in the
case of H2. Nevertheless,E3 generally reduces the error rela-
tive to accurate variational results17 to less than half what it
was forE2. Over the entire range ofR, the relative error in
E3 is less than 1% for this molecule. Indeed, it is less tha
0.5% for 1.0*R*2.5.

FIG. 3. Energy for HeH1; ~n! E1; ~L! E2; ~h! E3; ~!! Ev ; ~s! variational
results of Ref. 17.

FIG. 4. Truncation error,Dn , for HeH
1; ~n! D1; ~L! D2; ~h! D3; ~!! Ev .
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4925Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
TABLE II. Total energies~in a.u.! for the H3
1 molecule; the first-order variational energy,Ev , and truncated energy sums,En , compared with variational

energies.

D3h Symmetry
R ~bohr! Ev E1 E2 E3 E~variational!a

1.137 20.913 20.481 21.265 21.230 21.233 78
1.250 21.015 20.584 21.282 21.304 21.286 40
1.277 21.033 20.603 21.283 21.317 21.295 48
1.414 21.105 20.678 21.280 21.365 21.327 44
1.549 21.145 20.724 21.265 21.387 21.341 24
1.644 21.159 20.743 21.249 21.391 21.343 79
1.650 21.160 20.744 21.248 21.391 21.343 83
1.656 21.161 20.745 21.247 21.391 21.343 78
1.819 21.166 20.762 21.215 21.381 21.338 33
1.900 21.163 20.765 21.197 21.370 21.331 39b

2.050 21.150 20.764 21.163 21.343 21.319 13
2.094 21.145 20.763 21.153 21.334 21.314 56
2.200 21.130 20.758 21.128 21.310 21.301 51b

2.235 21.125 20.756 21.120 21.302 21.298 63
2.750 21.032 20.716 21.009 21.166 21.234 12b

3.052 20.975 20.691 20.954 21.088 21.198 43b

3.350 20.923 20.667 20.907 21.018 21.166 32b

4.500 20.776 20.597 20.787 20.831 21.076 51b

5.500 20.706 20.557 20.730 20.746 21.036 26b

7.000 20.649 20.518 20.681 20.682 21.011 21b

C2v Symmetry
R ~bohr! Q Ev E1 E2 E3 E~variational!a

1.130 124.141 21.041 20.857 21.307 21.131 21.238 38
1.257 117.047 21.117 20.918 21.313 21.205 21.278 81
1.431 114.447 21.174 20.969 21.298 21.254 21.301 07
1.435 109.417 21.174 20.957 21.305 21.262 21.305 22
1.438 132.515 21.180 21.004 21.270 21.239 21.289 43
1.452 99.513 21.175 20.931 21.315 21.282 21.314 26
1.462 95.863 21.176 20.920 21.317 21.291 21.317 79
1.507 82.960 21.179 20.875 21.316 21.328 21.330 28
1.509 157.418 21.195 21.037 21.235 21.237 21.281 33
1.537 76.835 21.179 20.847 21.309 21.348 21.335 63
1.571 70.958 21.176 20.817 21.295 21.365 21.339 92
1.609 65.344 21.170 20.783 21.275 21.380 21.342 76
1.619 103.498 21.194 20.963 21.283 21.285 21.309 96
1.695 54.929 21.165 20.764 21.262 21.385 21.342 62
1.743 50.129 21.166 20.781 21.273 21.375 21.338 81
1.756 20.043 20.353 0.310 20.320 20.784 20.889 35
1.756 99.957 21.193 20.955 21.261 21.287 21.304 81
1.794 45.594 21.164 20.795 21.281 21.361 21.331 83
1.848 41.316 21.156 20.805 21.284 21.341 21.321 02
1.894 23.069 20.872 20.606 21.150 21.029 21.086 63
1.962 33.488 21.122 20.807 21.274 21.283 21.284 03
1.995 31.510 21.107 20.802 21.266 21.263 21.269 23
2.085 26.551 21.050 20.771 21.230 21.193 21.215 80
2.154 68.199 21.175 20.828 21.229 21.343 21.316 90b

2.277 29.448 21.130 20.840 21.244 21.265 21.267 52
2.419 31.275 21.153 20.859 21.234 21.285 21.280 59
3.092 75.964 21.138 20.870 21.175 21.243 21.245 92b

4.067 79.588 21.114 20.877 21.143 21.195 21.201 25b

5.054 81.637 21.104 20.878 21.129 21.177 21.182 25b

6.044 83.063 21.102 20.878 21.123 21.170 21.176 28b

8.031 84.928 21.102 20.880 21.122 21.167 21.174 04b

10.025 85.939 21.101 20.880 21.121 21.166 21.173 45b

aUnless otherwise noted, these are all from Fryeet al., Ref. 19.
bTalbi and Saxon, Ref. 20.
s

C. Triatomic molecules: H 3
1

As in the case of H2, this molecule presents a severe te
for the method. In addition to slow convergence, the calc
lated ground state energies also have the same difficultie
J. Chem. Phys., Vol. 102,
Downloaded 20 Aug 2013 to 212.14.233.38. This article is copyrighted as indicated in the abstrac
st
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the separated-atom limit noted for H2. Table II presents re-
sults for H3

1 in D3h ~equilateral triangle! andC2v ~isosceles
triangle! symmetry. In addition, Figs. 5, 6, and 7 present
potential energy surfaces based onE1, E2, andE3 for C2v
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t. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



s
r

c
f
n

ry
le
s

t

t

-

is
e
f
for
d
-
on

t

t

4926 Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
symmetry. In Fig. 5, we see thatE1 does not reproduce the
correct equilibrium separation forD3h symmetry. Surpris-
ingly, however, it does yield an equilibrium distance o
R51.62 at the minimum of its potential energy surface, clo
to the correct value ofR51.65, but this occurs for a linea
geometry. Note that theonlydependence onQ at this order is
through the nuclear potential,ZBZC/RBC . Adding the
second-order energy introduces the firstQ-dependent contri-
bution to the electronic energy. The overall second-order
efficient is everywhere negative and becomes more so
smallR andQ. This places the minimum of the potential i
Fig. 6 atR51.20,Q590°, shifting the minimum in the right
direction but by too much inR and not enough inQ. The
third-order energy coefficient itself has a minimum ve
close to the correct equilibrium distance for the molecu
but atQ50°. As a consequence, this coefficient produce

FIG. 5. E1 potential energy surface for H3
1 ; contours are 0.05 a.u. apar

starting at21.19 a.u.

FIG. 6. E2 potential energy surface for H3
1 ; contours are 0.05 a.u. apar

starting at21.21 a.u.
J. Chem. Phys., Vol. 102,
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minimum in the potential energy very close to the correc
equilibrium separation but slightly too low inQ. The poten-
tial energy surface of Fig. 7 shows a minimum energy a
R51.66 andQ554°. In contrast, the potential produced by
Ev and displayed in Fig. 8 shows a long trough with a shal
low secondary minimum at its head nearQ590° and the
minimum at its base atQ5180°. Of course the energy for
this minimum lies well above those ofE2 andE3.

A number of variational calculations have been carried
out to an accuracy of a few thousandths a.u. or better for th
molecule. Notable among these are the calculations of Fry
et al.,19 who obtain very accurate results over a range o
internuclear separations and geometries. Total energies
larger internuclear distances can be found in Talbi an
Saxon.20 The accuracy of these calculations permit an unam
biguous assessment of the convergence of the perturbati
results. A comparison of these results forD3h andC2v sym-

FIG. 7. E3 potential energy surface for H3
1 ; contours are 0.05 a.u. apart

starting at21.39 a.u.

FIG. 8. Ev potential energy surface for H3
1 ; contours are 0.05 a.u. apart

starting at21.19 a.u.
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4927Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
metries is presented in Table II. Figure 9 displays the diffe
ences between the variational values andE3, grouped ac-
cording to the value ofQ. In the vicinity of the equilibrium
distance, most points fall in the range of60.05 a.u., a rela-
tive error of about 3.5%. Exceptions to this occur for thos
points with both the largest and the smallest values ofQ; i.e.,
all those withQ.120° and two points belonging to the
group withQ,50° that actually have the smallest values o
Q~'20°!. These all have relative errors ranging from 5% t
10%. At larger internuclear distances, points withQ560°
show an error which increases withR, while points which
correspond toQ'90° have an error which remains fairly
constant at about 0.006 a.u. It is clear that much of th
behavior is determined by the initial charge distribution im
posed by the zero-order function. Thus, those points w
R.3 andQ'90°, all of which have geometries with one
internuclear distance held close to the equilibrium separati
for H2,

20 have errors which are quite close to that of the H2
molecule at equilibrium, the perturbation coefficients involv
ing large internuclear separations contributing little to th
total energy. Conversely, those points at largeR correspond-
ing to an equilateral geometry all have errors which increa
with R in a manner similar to the results for H2 at largeR.

D. Equilateral H 3
1

For the equilateral geometry, a comparison to H2 is use-
ful throughout the entire range ofR. Figures 10 and 11
present the results for equilateral H3

1 in a manner similar to
Figs. 1 and 2 for H2. Comparison of Figs. 2 and 11 indicate
that, in this case, the errors forEn in H3

1 behave very much
like the corresponding errors in H2, although these are, in
general, considerably smaller for H2. For example, forR in
the range 1.2,R,1.8, errors in H3

1 are roughly 2 to 5 times
larger than those found for H2 at similar internuclear dis-
tances. Ultimately, and again as in the case of H2, as R
increases these results converge more slowly and to
wrong limiting value. Thus, the relative error inE3 increases

FIG. 9. Truncation error,D3, for H3
1 ; ~n! Q,50°; ~L! 50°,Q,70°; ~s!

70°,Q,90°; ~h! 90°,Q,120°; ~!!Q.120°.
J. Chem. Phys., Vol. 102,
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steadily for increasingR, reaching 5% in the vicinity of
R'2.7 and 10% byR'3. However, for 1,R,2.5, the rela-
tive error is always less than 3.5%. BothE3 andEv ~but not
E2! predict a minimum in the potential energy for this sym
metry at the correct internuclear distance to within60.01
bohr. Surprisingly,E3 is more negative than the ‘‘exact’’
variational values for 1.25,R,2.5, reaching its greatest dis-
crepancy in the vicinity of the equilibrium position. How-
ever, as in the case of H2, these results show a satisfactory
convergence and a significant improvement in the total e
ergy over the second-order results.

For nonsymmetric geometries of this molecule, compar
son to the results of Ref. 19 shows that the truncation error
generally about 0.02–0.05 a.u. for the internuclear distanc
considered there, with the range from largest to smallest b
ing from 0.006 to 0.09 a.u.

FIG. 10. Energy for equilateral H3
1 ; ~n! E1; ~L! E2; ~h! E3; ~!! Ev ; ~s!

variational results, Ref. 17.

FIG. 11. Truncation error,Dn, for equilateral H3
1 ; ~n! D1; ~L! D2; ~h! D3;

~!! Ev .
No. 12, 22 March 1995
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4928 Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
TABLE III. Total energies~in a.u.! for the linear, symmetric HeH2
11 molecule; the first-order variational energy,

Ev , and truncated energy sums,En , compared with the variational results.

R ~bohr! Ev E1 E2 E3 E~variational!a

1.00 22.188 22.030 22.181 22.197 22.155 91
1.50 22.552 22.390 22.554 22.564 22.527 73
2.00 22.653 22.497 22.660 22.664 22.625 87
2.50 22.700 22.550 22.710 22.710 22.663 36
3.00 22.730 22.583 22.742 22.739 22.683 70
3.50 22.753 22.607 22.765 22.762 22.698 66
4.00 22.770 22.625 22.783 22.779 22.711 56
4.50 22.784 22.639 22.797 22.792 22.722 94
5.00 22.795 22.650 22.808 22.803 22.732 74

aZetik and Poshusta, Ref. 21.
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E. Triatomic molecules: HeH 2
12

Comprehensive variational calculations for this unstab
system over a range of internuclear distances can be found
Zetik and Poshusta21 who examined the potential energy sur
face for a linear geometry. These results are compared w
the present calculations in Table III and Fig. 12 for the linea
symmetric molecule. This comparison shows thatE2, E3,
andEv all lie below this variational calculation by roughly
0.05 a.u. SinceEv is itself an upper bound to the exact en
ergy, it is clear that all of these results represent an improv
ment over the variational result. Note that bothE2 andE3 lie
lower in energy thanEv for R>1, with E2 being the more
negative forR.2.5. The absolute accuracy of these results
difficult to judge in the absence of more accurate variation
calculations. Recalling the comparable behavior of the pe
turbation series for H3

1 and H2 noted earlier, a corresponding
similarity between the HeH2

11 and HeH1 series might be
expected. Indeed, theEn of Table III do suggest a rapid
convergence of the perturbation series for HeH2

11 . In par-
ticular,e3 for this system is virtually identical toe3 for HeH

1

onceR exceeds about 2 bohr, indicating that contribution
from multiperturbation coefficients with two ‘‘molecular’’

FIG. 12. Energy for linear, symmetric HeH2
11 ; ~n! E1; ~L! E2; ~h! E3;

~!! Ev ; ~s! variational results of Ref. 21.
J. Chem. Phys., Vol. 102,
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perturbations, as appear in polyatomic systems, are qu
small for largeR. In fact, the only significant contribution to

e3 in this range ofR is from e3
11S . In this context, it should

be remembered that internuclear distances are scaled by
nuclear charge,ZA , so that these energy coefficients are a
tually calculated with values ofR that are twice their nomi-
nal value in bohr.

Similar improvements in convergence can be expect
for molecules containing heavier atoms than those appear
in these two-electron systems. This should be particula
true for heteronuclear molecules, especially those with
single heavy ion. For homonuclear molecules, where t
multiperturbation parameterlM51, the relative error~in
charge-scaled atomic units! can actually increase withZ
along a particular isoelectronic sequence, while the absol
error remains roughly constant. Innonscaledatomic units,
the absolute error increases asZA

2en11
M . This error is easily

corrected, however, by simply adding the ‘‘missing’’ portion
of the electronic energy of the appropriate states of the on
electron diatomic molecule.

VI. SUMMARY

In Z-dependent perturbation theory, the lowest-ord
wave functions for a polyatomic molecule are not only inde
pendent of the nuclear charges, but are also independen
the total number of nuclear centers and electrons in the m
ecule. The complexity of the problem is then determined b
the highest order of the calculation. With the present choi
of H0, the first-order wave function for any polyatomic mol
ecule is described completely in terms of two-electron, on
center ~atomic! and one-electron, two-center~molecular!
first-order wave functions. These are separately obtain
from calculations on He-like and H2

1-like systems. Atnth-
order the wave function for a polyatomic molecule decoupl
into a sum over thenth-order wave functions of all
p-electron,q-center subsystems (p1q5n12) that are con-
tained within the molecule of interest.

We have illustrated the application of this method wit
some results, complete through third order in the energy,
H3

1-like molecules. In applying this method, we have chose
to describe the system by a zero-order wave function th
minimizes the complexity of the calculations. The perturb
tion series calculated through third order essentially yield t
No. 12, 22 March 1995
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4929Galvan, Abu-Jafar, and Sanders: Potential energy surfaces for polyatomic molecules
correct equilibrium internuclear distance and geometry, ev
in the case of H3

1 . For this molecule, the perturbation serie
is best converged in the vicinity of the equilibrium distanc
For largerR, the truncation error remains small if one of th
internuclear distances is held near the equilibrium distan
However, if all internuclear distances are increased, the tr
cation error increases as a consequence of the incor
separated-atom limit of the zero-order wave function. In t
case of HeH2

11 , the convergence of the perturbation series
significantly improved, particularly in the vicinity of the
separated-atom limit.

The present calculations can be improved without s
nificant complication of the method by introducing
screened nuclear charge for the unperturbed Hamiltonian22 or
by repositioning the unperturbed, single-center Hamilton
away from the physical charges.3 Calculations incorporating
these improvements and extending this initial study
higher-order are currently underway.

For all diatomic and polyatomic systems examined he
the perturbation energy summed through third order gen
ally yields results comparable in accuracy to variational c
culations of moderate size and complexity. Given the si
plicity and efficiency of the method, these results for simp
systems are very encouraging. Since, through a given o
in the perturbation, the computations are of a fixed degree
complexity regardless of the size of the molecule, applicat
to larger systems with higherZ seems promising.

APPENDIX: THREE-ELECTRON MOLECULES

The zero-order wave function for the three-electro
three-center molecule is degenerate, while a more comp
permutational symmetry not present in the ground state
the corresponding two-electron molecule also appears h
Expressions for the first-order wave function and secon
order energy of this system are obtained here to illustr
how these affect the multiperturbation expansion. T
doubly-degenerate zero-order wave function for this syst
is

c05csc0
s1cpc 0

p ,

where

c0
l 522~1/2!~12P13!1s~r1!1s~r2!2l ~r3!

for l5s or p. The coefficients,cl , are the eigenvectors of the
perturbation matrix formed with these degenerate wave fu
tions. The eigenvalues are just the first-order energies,

e15
e1
s1e1

p

2
6

e1
s2e1

p

2
A12S 2V

e1
s2e1

pD 2,
where

e1
l 5e1

a,l1ZBe1
m,l~RB!1ZCe1

m,l~RC!,

with

e1
a,l5e1

11S1
1

2
e1
21L1

3

2
e1
23L ,

and
J. Chem. Phys., Vol. 102,
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of
n

,
ex,
of
re.
d-
te
e
m

c-

e1
m,l~Ra!52e1

1ss~Ra!1e1
2ls~Ra!.

Here thee1
21,3L are the first-order corrections to the singlet

and triplet 2S and 2P states of the two-electron atom, while

e1
2ls~Ra!52 K 2l ~r !U 1

r a
U2l ~r !L ,

e1
2ss~R!5

1

4R
2

1

4R
~11 3

4R1 1
4R

21 1
8R

3!e2R,

e1
2ps~R!5

3

R3 1
1

4R

2F 3R3 ~11R!1
1

4R
~71 11

4R1 3
4R

21 1
8R

3!Ge2R.

The off-diagonal matrix element, V5ZBv2s,2p(RB)
1ZCv2s,2p(RC), with

v2s,2p~R!52 K 2s~r !U 1

r a
U2p~r !L

52
3

4R2 1F 3

4R2 ~11R!

1 1
8~31R1 1

4R
2!Ge2R.

The complete first-order wave function is then given by

c15csc 1
s1cpc1

p1gc08 ,

where

c0852cpc 0
s1csc 0

p

appears as an admixture of the other degenerate, zero-or
wave function~without, however, contributing to the second-
order energy!. Also,

c1
l 5c1

a,l1ZBc1
m,l~RB!1ZCc1

m,l~RC!,

where thec1
a,l are the first-order wave functions for the

ground and lowest2P-state of three-electron atoms. These
can be expressed completely in terms of the first-order wav
functions of two-electron atoms,23

c1
a,l522~1/2!~12P13!$c1

11S~r1 ,r2!2l ~r3!122~1/2!

3@c1
21L~r2 ,r3!1s~r1!1c1

23L~r2 ,r3!1s~r1!

1c1
23L~r1 ,r3!1s~r2!#%.

The c1
m,l(Ra) can be constructed entirely from first-order,

H2
1-like wave functions,

c1
m,l~Ra!522~1/2!~12P13!@c1

1ss~Ra ,r1!1s~r2!2l ~r3!

1c1
1ss~Ra ,r2!1s~r1!2l ~r3!

1c1
2ls~Ra ,r3!1s~r1!1s~r2!#,

wherec1
2ls are solutions to the degenerate, first-order, pe

turbation differential equation for the 2l zero-order wave
function,10 e.g.,
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G0c1
2ss~Ra ,r !2S 1r a

1e1
2ssD2s~r !2v2s,2p~Ra!2p~r !50.

This first-order wave function then yields the second-ord
energy coefficient,

e25e2
1s21cs

2e2
s1cp

2e2
p1cscpe2

s,p ,

wheree2
1s2 is given by Eq.~18!, the second-order energy fo

the ground state of an H3
1-like molecule,

e2
l 5e2

a,l1ZB
2e2

2ls~RB!1ZC
2 e2

2ls~RC!1ZBe1,1
a,2ls~RB!

1ZCe1,1
a,2ls~RC!1ZBZCe1,1

2ls,2ls~RB ,RC ,Q!,

and

e2
s,p5ZB

2e2
2~s,p!s~RB!1ZC

2 e2
2~s,p!s~RC!

1ZBe1,1
a,2~s,p!s~RB!1ZCe1,1

a,2~s,p!s~RC!

1ZBZCe1,1
2ss,2ps~RB ,RC ,Q!.

The multiperturbation coefficients appearing in th
second-order energy coefficient are given by

e2
a,l5 1

2e2
21L1 3

2e2
23L1d2

l ,

where d 2
l is the three-electron contribution to the secon

order energy of a three-electron atom,23

e2
2ls~Ra!52 K c1

2ls~Ra ,r !U 1

r a
U2l ~r !L ,

e1,1
a,2ls~Ra!5 1

2e1,1
21L,2ls~Ra!1 3

2e1,1
23L,2ls~Ra!

with

e1,1
21,3L,2ls~Ra!5221/2K c1

21,3L~r1 ,r2!U 1

r 1a

1
1

r 2a
U1s~r1!2l ~r2!62l ~r1!1s~r2!L ,

e1,1
2ls,2ls~RB ,RC ,Q!522K c1

2ls~RB ,r !U 1r C U2l ~r !L ,
e2
2~s,p!s~Ra!522K c1

2ss~Ra ,r !U 1

r a
U2p~r !L ,
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e1,1
a,2~s,p!s~Ra!5 1

2@e1,1
21S,2ps~Ra!1e1,1

21P,2ss~Ra!#

1 3
2@e1,1

23S,2ps~Ra!1e1,1
23P,2ss~Ra!#,

and

e1,1
2ss,2ps~RB ,RC ,Q!522F K c1

2ss~RB ,r !U 1

r C
U2p~r !L

1 K c1
2ps~RB ,r !U 1

r C
U2s~r !L G .

One approach to evaluating thee2
2ls, e1,1

21,3L,2ls , ande2
2(s,p)s

coefficients can be found in Ref. 10.
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