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Abstract 
This paper gives very significant and up-to-date analytical and numerical results to the magnetohydrodynamic 

flow version of the classical Rayleigh problem including Hall effect. An exact solution of the MHD flow of 

incompressible, electrically conducting, viscous fluid past a uniformly accelerated and insulated infinite plate 

has been presented. Numerical values for the effects of the Hall parameter N and the Hartmann number M on 

the velocity components u and v are tabulated and their profiles are shown graphically. The numerical results 

show that the velocity component u increases with the increases of N and decreases with the increase of M, 

whereas, the velocity component v increases with the increase of both M and N. These numerical results have 

shown to be in a good agreement with the analytical solution. 
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 1. Introduction  
When the magnetic field diffuses easily through the conducting medium and when the frequency of collision of 

charge particles is large compared to their frequency of rotation about the magnetic field lines, the current in the 

medium is controlled by the resistance of the medium and in such a case the generalized Ohm's law is the 

appropriate law to apply . However, if these conditions are not fulfilled, additional terms will appear in the 

generalized Ohm's law. 

The MHD Stokes or Rayleigh problem was first solved by Rossow [11] without taking into account the induced 

magnetic field. With the induced magnetic field, it was solved by Nanda & Sundaram [8], Ludford [6], Chang & 

Yen [2], Rosciszewski [10], and Hashimoto [4]. In these papers, different aspects of the problem were 

considered. But in an ionized gas where the density is low and / or the magnetic field is very strong, the 

conductivity becomes a tensor. The conductivity normal to the magnetic field is reduced by the free spiraling of 

electrons and ions about the magnetic lines of force before they experience collisions, and a current, known as 

the Hall current is induced in a direction normal to both electric and magnetic fields. Steady state channels flows 

of ionized gases were studied by Sato [12], Yamanishi [17] and Sherman & Sutton [14]. The effects of Hall 

current on MHD Rayleigh's problem in ionized gas where studied by Mohanty [7]. Schlichting [13] has studied 

the unsteady flow due to an impulsive motion of an infinite plate in a fluid of an infinite extent. He showed that 

this simple problem admitting an exact solution for the Navier-Stokes equation. MHD flow past a uniformly 

accelerated plate under a transverse magnetic field was studied by Gupta [3], Pop [9] and Soundalgekar [15], 

neglecting induced magnetic field. Kinyanjui [5] studied the heat and the mass transfer in unsteady free 

convection flow with radiation absorption passed an impulsively started infinite vertical porous plate subjected 

to strong magnetic field including the Hall effect. Maleque and Sattar [1] investigated the steady laminar flow 

on a porous rotating disk with variable fluid properties taking Hall effect into account.  

The study of the MHD flow with Hall currents has important engineering applications in problems of MHD 

generators. Hall accelerators as well as in flight Magnetohydrodynamics. The rotating flow of an electrically 

conducting fluid in the presence of magnetic field is encountered in cosmical and geophysical fluid dynamics. It 

is also important in the solar physics involved in the sunspot development, the solar cycle and the structure of 

rotating magnetic stars.  

In this study we have considered the effect of the Hall current on the magnetohydrodynamics flow version of the 

classical Rayleigh problem. Thus, an exact solution of the MHD flow of incompressible, electrically conducting 

and insulated infinite plate has been presented. Numerical results for the effects of the Hall parameter N and the 

Hartmann number M on the velocity components u and v are tabulated and their profiles are shown graphically.     

 

2. Formulation of the problem    
 We consider the flow of an incompressible, electrically conducting, viscous fluid past an infinite and insulated 

flat plate occupying the plane y 0 . Let the positive direction of x-axis be chosen along the plate in the 

direction of the flow and the y-axis is normal to it. A uniform magnetic field 0H is applied in the direction of 

the y-axis.  The physical configuration and the nature of the flow suggest the following form of velocity 

vector q


, magnetic induction vector H


, electrostatic field E


and pressure P , thus: 

Magnetohydrodynamic Rayleigh Problem with Hall Effect 
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                       q  ( u, 0, v )


 

                                                    (2.1)                                                                                                                                                        

  x z  E  ( E , 0, E )


 

                                                                       P  constant  

 

The equations governing the unsteady flow and Maxwell's equations are: 

Equation of continuity: 

                                                                            . q  0                                                                                   (2.2) 

Equation of motion: 

                        
2     

 q 1 1
(q. ) q =  p  ν q  J  H 

 t ρ ρ


       


                                       (2.3) 

Equation for current: 

                                                                      H μ  J                                                                              (2.4) 

Faraday's Law: 

                                                                    
 H

   E   
  t


   


                                                              (2.5) 

                                                                   . H  0                                                                    (2.6)                                                                        

The generalized Ohm's law, neglecting ion-slip effect but taking Hall current is, 

                                             
. e

J (J  H)
 ( E  q    H )   

σ ne


   


                                                     (2.7)                                  

Where 

2
  e τ n

σ = 
m

(is the electrical conductivity). 

Here J is the current density, t is the time,ρ , ν , and μ  stand for the density, the kinematics viscosity, and the 

magnetic permeability, e  and m are the electric charge and the mass of an electron, n is the electron number 

density and τ  is the mean collision time. 

The Lorentz force per unit volume is given by: 

                                z 0 z x x z x 0J  H  [  J H , J H  J H , J H ]   
 

                                                       (2.8) 

Moreover: 

                               0 x z 0  q    H  [  vH , vH  uH , uH ]   
 

                                                       (2.9) 

where:                 x z J  [ J ,  0,  J  ] 


 

 with 

                    x x 0 z 02 2
   

 

σ
J  [ E vH  ωτ (E  uH ) ]

1  ω τ
   


                                             (2.10) 

 

                  z z 0 x 02 2
      

 

σ
J  [ E  uH  ωτ ( E  vH ) ]

1  ω τ
   


                                        (2.11) 

where 
0eH

ω  
m

  (is the electron Larmor frequency). 

The initial and boundary conditions are: 

                    t 0:    u = 0,       v = 0     for  y 0      

                0t 0:    u  U ,  v = 0     for  y=0   

                                                           u 0:  v  0       as  y                                                  (2.12) 

                           x y 0 zH 0  H H ,    H 0    as   y     

At infinity the magnetic induction is uniform with components  0, H ,0 , and hence the current density in 

(2.4) vanishes. And since the free stream is at rest, it follows from generalized Ohm’s low that E  0  as 

x 0 z  H  ( H , H , H )

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y  . Assuming small magnetic Reynolds number for the flow, the induced magnetic field is neglected in 

comparison to the applied constant field H0. 

On introducing the non-dimensional quantities: 

                            

2

0 0

0 0

* * * *  
  

U . y u U t
y  ,  u  ,  v  ,  t  

ν U U ν

v
                                        (2.13) 

then,  we can write  
* * *  u (y, t)  u (y ,t )  

2

0

* *
* *

* *
    

U u  u  u
( y, t )  ( y , t )   

 t ν t  t

  
 

  
   and     

22 2

0

2 2 2

*

*

  
  

Uu u
 

 y ν  y

 


 
 

in this case we obtain : 

z 0 (  )
1 1

J  H)   (J H
ρ ρ


   

or                          

2

0

2 2
 (

σ H1 1
J  H)    [  ( u + ωτv ) ]

ρ 1 + ω τ ρ
                                      (2.14) 

Likewise,  
* * * v ( y, t )  v ( y , t )                     yields  

2

0

*

*
  

v U v
 

t ν t

 


 
    and    

2 2 2

0

2 2

*

*

  
  

v U v
 

 y ν  y

 


 
 

Then we obtain: x 0 (  (  )
1 1

J  H)   J H
ρ ρ

   

  or             

2

0

2 2
 (

σ H1 1
J  H)    [  ( ωτu  v ) ]

ρ 1 + ω τ ρ
                                        (2.15) 

 Consequently, the equation of motion (2.3) in component term becomes   

(dropping the stars): 

                       

22

0

2 2 2 2 2

0 0

  
 

 σ H ν  u u
    ( u   ωτv )

 t  y ρ U   ρ U  ω τ

 
  

  
                        (2.16)                             

 

                       

22

0

2 2 2 2 2

0 0

  
 

 σ H ν  v v
     ( ωτv - v)

 t  y ρ U   ρ U  ω τ

 
 

  
                            (2.17)                            

 

Now let 

2
2 0

2

0

 σ H ν
M    

ρ U
  is the Hartmann number and N  ωτ  is the  

Hall parameter u and v are the velocity components in the x and y direction respectively. The initial and 

boundary conditions become: 

 

                                                    u( 0, y )  v( 0, y )  0   

                          u( t, 0 )  1, v( t, 0 )  0                                                             (2.18) 

         u( t, y )  and  v( t, y )  0  as  y   

 

Now, multiply both sides of equations (2.16) and (2.17) by 
-ste and integrate from 0 to   with respect to t  

we get: 

                          

2 2 2

2 2 2

 
 

d u M NM
  (   s ) u   v

d y 1  N 1  N


 

  
 

                                    (2.19)             

                        

2 2 2

 
2 2 2

 
 

d v M NM
  (   s ) v    u

d y 1  N 1  N



 

   
 

                                 (2.20) 
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where: 

                          

0

-st  u ( s,y )  L { u( t, y ) }   u( t, y ) e dt


    

                         
0

-st  v ( s, y )  L{ v( t, y ) }   v( t, y ) e dt


    

By introducing the complex function  q   u   iv
  

  , then equations  

(2.19) and (2.20) can be combined into the single equation: 

 

                  

2 2

2 2

 d q M
  {  ( 1  iN)  s } q   0

d y 1  N




   


                                          (2.21) 

 

3. Analytical Solution 

By introducing the complex function  q   u   iv
  

  , then equations (2.16) and (2.17) yield 

                             

2 2

2 2

 
  

 q q M
   ( ) ( 1  iN) q 

 t  y 1  N

 
  

  
                                      (3.1) 

 The initial and boundary conditions  take the form: 

                                            q( 0, y )  0,      q( t, 0)  1   

                                             q( t ,y )  0    as  y                                                   (3.2) 

 

Using the abbreviation   

2

2

M
 α    ( 1  iN )

1  N
  


, equation (3.1) can be written as: 

                                 

2

2

 
 

 q q
   α q     

 t  y

 
 

 
                                                                  (3.3) 

let:                                        

                               
-αt  Φ( t, y )  e q( t, y )                                                                    (3.4) 

 

and multiplying  equation (3.3) by ( 
-αte ) we get: 

                                                  

2

2

  Φ Φ
   

 t  y

 


 
                                                                (3.5) 

 

From equations (3.2) and (3.4) we conclude that: 

                                      
-α tΦ( 0, y )  0,    Φ( t, 0 )  e   

                                      Φ( t, y )    0   as   y                                                                          (3.6) 

 

To solve (3.5) subject to the initial and the boundary conditions (3.6) we apply the Laplace transform method.                  
2

2

 
 }  }

 Φ Φ
L{   L{  

 t  y

 


 
 

     

2

2

d Φ
sΦ( s, y )   

dy




                                                                                                                            (3.7) 

where: 

Φ( s, y )  L{ Φ(t ,y ) }


  

1
Φ( s, 0 )   

s  α





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y

 lim Φ( s, y )  0




                                                                                                        (3.8) 

The auxiliary equation for equation (3.7) can be written as: 

                           
2   s  0                                                                                                                        (3.9) 

hence, 

                        1 2

 s  y  s  yΦ( s, y )  C  e   C  e
                                                                     (3.10)   

We claim 2C   0  

Proof of claim: 

divide both sides of equation (3.10) by 
 s  ye  

1 2

 s  y 2  s  y
  e Φ  ( s, y )  C  e  C
    

Now ,taking the limit of both sides of the above  equation as y :  

2 10.0  C   C  . 0      2i.e. C 0   

Furthermore: 

                                                     1

- s  yΦ( s, y )  C  e  


                                                                    (3.11) 

Setting  y  0  in equation (3.11) and from equation (3.8), we obtain: 

 1

1
Φ(s, 0 )  C  . 1  

s  α



 


        i.e.  1

1
 C   

s  α



 

 

This gives  

                                   
- s  y

 
1

Φ( s, y )  e
s  α






                                                                             (3.12) 

Taking the inverse transform  

 We have  

         
1 1

 

s  y

    
s e

Φ(t, y )  L { Φ( s, y ) }  L { . }
s  α s

 
 

 


                                       (3.13) 

Now, we use the following fact (convolution theorem) about Laplace transformation: 

t

0

 L{  f( t τ ) g(τ) d(τ) }  L{ f(t) } . L{ g(t) }  f (s) g(s)
 

    

where: 

1 αtα
f(t)  L { 1   }  δ(t)  α e

s  α

    


 

                    
21

y

2 t

sy
u    

e y 2
g t   L { }  erfc ( )  e du

s 2 t π





     

thus,  
t 21

y0

2 τ

sy
α(t τ) u       

s e 2
Φ t, y L { . }   [ δ(t  τ)  α e ]  [ e du ] dτ

s α s π





       


             

 
t2 2

y y0

2 t 2 τ

 

αt
u ατ u    

2 2α e
Φ  t, y    e du   (e e du ) dτ

π π

 
                                      (3.14) 

Recall,  

αtq( t, y )  e  Φ( t, y )  

Then we get:  

                       
t

0

αt ατ   
y y

q  t, y   e  erfc ( )  α e erfc ( ) dτ
2 t 2 τ

                              (3.15) 

where 
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2

x

u e  
2

erfc(x)  1  erf(x)   du
π



     

Now, writing q( t, y ) as u  iv  

We have,  
t

0

at aτ   
τ

y y
q( t, y )  e cosbt  erfc( )   e  erfc( ) 

2  t 2  
    

 

 

 
t

0

aτ   
τ

y
  e  erfc( ) [a sin(bτ)  b cos(bτ)]] dτ

2  
                                                                  (3.16) 

where:    α  a  ib   

with                                  

2 2

2 2

M M N
a   ,    b  

1  N 1  N
  

 
. 

 

 

4. Numerical Solution for The Second Order BVP 
In order to get a clear understanding of the flow fluid we have carried out numerical calculations of equation 

(2.21). The boundary-value problem can be stated as: 

                                          

2

2

 
  

d q
 ω q  0

d y




                                                                                            (4.1) 

                                          
1

q( 0, s )  ,   q( , s)  0
s

 

                                                                   (4.2) 

where: 

                          

2 2

2 2
 

 M  N M
ω  (  s)  i 

1   N 1  N
  

 
. 

To ensure that the Laplace Transforms are well-defined, it should be assumed that s > 0.  This 

implies

2

2
 

M
Re(ω)   s  0

1  N
  


. Hence there exists η  in the complex number such that 

2  η  ω with Re(η)  0    

 

 

Furthermore, 

                                                 

ηye
q( y, s )  

s



                                                                                        (4.3) 

Satisfies the boundary value problem (4.1) -(4.2)       . 

For y = 0 we have:   

           
0 0

st st   
1

q( 0, s )    1 . e dt  (1 0i) e dt. 
s

 
       

Thus, 

u( 0, t )  1   and  v( 0, t )  0  for  all  t   

 

Recall that the inverse Laplace Transform is: 
γ i

γ i

st    
1

q( y, t )  q( y, s ) e ds
2πi

 

 



   

Where γ  > 0 is chosen so that all the singularities of q( y, s )


 are to the left of γ . The above integral is over 

the vertical line z = γ  in the complex plane. Since

ηye
q( y, s )  

s



 , we can choose γ  to be any positive 

at    
y

[a cos(bτ)  b sin(bτ)] dτ  i[ e sin(bt) erfc( ) 
2  t

 
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number. In the calculations below we choose γ  = 0.25. We will define q strictly as a function of t using 

Mathematics' NIntegrate command. We will approximate the integral above by integrating 

from 0.25  500 i  to  0.25  500 i  . 

We also define ω =

2 2

2 2
 

 M  N M
 (  s)  i 

1    N 1   N


 
, 

where 

2
2 0

2

0

 σ H ν
M    

ρ U
  is the Hartmann number,  and N  ωτ  is the Hall parameter. 

Next, we will define the range of t values as required in cases (1.a-4.a) 

 t = {0.4 , 0.8 , 1.2 , 1.6 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }. 

 

5. Numerical Results  
The effect of the Hall parameter N and the Hartmann number M in the velocity components u and v is 

illustrated in the following cases:  

 Case 1.a 
In this case, M= 1, N = 1/2, and y = 0. This case has already been eliminated since y=0. Hence this is the perfect 

opportunity to check the numerical method that will be employed in the other cases. 

Next, we obtain the value η  such that 
2  η  ω  with Re(η)  0 . 

t u(t) v(t) 

0.4 0.9992 0 

0.8 1.0005 0 

1.2 1.0007 0 

1.6 1.0003 0 

2 0.9997 0 

3 1 0 

4 1.0002 0 

5 0.9997 0 

6 1.0005 0 

7 0.9995 0 

8 1.0004 0 

9 0.9998 0 

Table (1): The velocity components u and v for different values of t 

 

 

 

As the above table indicates u( t )  Re( q( t ) )  1   and v( t ) Im ( q ( t ) )  0  for all t. this is 

consistent with the exact results that we obtained for the case y = 0.  

 

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

1.0004

1.0006

1.0008

0 0.4 0.8 1.2 1.6 2 3 4 5 6 7 8 9

t

u
(t

)

 

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2 3 4 5 6 7 8 9

t

v
(t

)

 

Fig 1: The velocity components for different values of t when M=1; N =1/2; y = 0 

 

We observe that the velocity component v(t) equals zero and the velocity component u(t) approaches to one at y 

=0 , this means that the fluid is filling the whole space between the two  plates  . 
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Case 2.a 

Define the variables: M 1;     N 1/2;    y 1;     

Next, we obtain the value η  such that 
2η   ω with Re(η)  0 . 

 

 

 

t u(t) v(t) 

0.4 0.1525 0.0467 

0.8 0.3621 0.0576 

1.2 0.4099 0.0628 

1.6 0.4251 0.0656 

2 0.4302 0.0671 

3 0.4303 0.0688 

4 0.4291 0.0693 

5 0.4285 0.0695 

6 0.4275 0.0696 

7 0.4283 0.0696 

8 0.4272 0.0696 

9 0.4281 0.0696 

Table (2): The velocity components u and v for different values of t 

 

0.043

0.048

0.053

0.058

0.063

0.068

0 0.8 1.6 3 5 7 9

t

v
(t

)

 
Fig 2: The velocity components for different values of t when M=1; N =1/2; y = 1 

 

Case 3.a 

Define the variables: 

 M 1;      N 1  ;  y 1;    

Next, we obtain the value η  such that 
2η   ω  with Re(η)  0 . 

t u(t) v(t) 

0.4 0.1517 0.0723 

0.8 0.4088 0.0879 

1.2 0.4726 0.0964 

1.6 0.4927 0.1016 

2 0.498 0.1049 

3 0.4922 0.1092 

4 0.4849 0.1108 

5 0.4804 0.1115 

6 0.4775 0.1118 

7 0.4774 0.1119 

8 0.4762 0.1119 

9 0.4771 0.1119 

Table (3): The velocity components u and v for different values of t  
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Fig 3: The velocity components for different values of t when M=1; N =1; y = 1 

 

 

 

Case 4.a 

Define the variables:  M 2  ;   N 1;    y 1;    

Next, we obtain the value η  such that 
2η   ω  with Re(η)  0 . 

t u(t) v(t) 

0.4 0.1561 0.1008 

0.8 0.2027 0.1185 

1.2 0.1896 0.1202 

1.6 0.1834 0.1201 

2 0.1823 0.1199 

3 0.1819 0.1199 

4 0.1821 0.1199 

5 0.1823 0.1199 

6 0.1818 0.1199 

7 0.1826 0.1199 

8 0.1816 0.1199 

9 0.1825 0.1199 

Table (4): The velocity components u and v for different values of t  

 

 

0.105

0.107

0.109

0.111

0.113

0.115

0.117

0.119

0.121

0 0.4 0.8 1.2 1.6 2 3 4 5 6 7 8 9

t

v
(t

)

 

Fig 4: The velocity components for different values of t when M=2; N =1; y = 1 

 

For the next table we'll redefine q as a function of y. 
γ i

γ i

st1
q( y, t )    q ( y, s ) e  ds

2πi

 

 


    and 

2 2

2 2

 M  N M
ω:  (   s) i

1    N 1  N
  

 
 

Case 1.b 

Define the variables:   M 1;     N 1/2;    t 1/2;    
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Next, we define ω  and obtain the value η  such that 
2η   ω  with Re(η)  0 . 

t u(t) v(t) 

0 1.9993 0 

0.4 0.6713 0.0398 

0.8 0.3791 0.0515 

1.2 0.1129 0.0458 

1.6 -0.1213 0.0301 

2 -0.2506 0.0113 

3 0.1163 -0.0079 

4 -0.1269 0.0017 

5 0.0937 0.0007 

6 0.1066 -0.0001 

7 0.0883 0 

8 0.0165 0.0003 

9 -0.0636 -0.0001 

Table (5): The velocity components u and v for different values of y 
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Fig 5: The velocity components for different values of t when M=1;N =1/2; t= 1/2 

 

Case 2.b 

Define the variables:  M 1;     N 1/2;    t 1;    

Next, we define ω  and obtain the value η  such that 
2η   ω  with Re(η)  0 . 

t u(t) v(t) 

0 2.0014 0 

0.4 0.7076 0.0428 

0.8 0.4862 0.059 

1.2 0.3116 0.0593 

1.6 0.1685 0.0504 

2 0.0528 0.0367 

3 -0.108 0.0009 

4 -0.0053 -0.0091 

5 0.0534 0.0034 

6 -0.0555 -0.0008 

7 0.46 0.0007 

8 -0.0224 -0.001 

9 -0.0215 0.0007 

Table (6): The velocity components u and v for different values of y 
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Fig 6: The velocity components for different values of t when M=1; N =1/2; t= 1 

 

 

Case 3.b 

Define the variables:  M 1;     N 1;    t 1/2;    

Next, we define ω  and obtain the value η  such that 
2η   ω  with Re(η)  0 . 

t u(t) v(t) 

0 1.9993 0 

0.4 0.708 0.0558 

0.8 0.4111 0.0766 

1.2 0.1076 0.0729 

1.6 -0.1789 0.053 

2 -0.3431 0.0259 

3 0.16 -0.0114 

4 -0.1691 -0.0003 

5 0.1272 0.0009 

6 0.1435 0 

7 -0.1195 0 

8 0.0224 0.0003 

9 -0.0859 -0.0001 

Table (7): The velocity components u and v for different values of y 
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Fig 7: The velocity components for different values of t when M=1;N =1; t= 1/2 

    

 

 

 

Case 4.b 

Define the variables: 

M 3 ;    N 1/2;    t 1/2;    

Next, we define ω  and obtain the value η  such that 
2η   ω  with Re(η)  0 . 
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t u(t) v(t) 

0 1.9993 0 

0.4 0.3273 0.0829 

0.8 0.0995 0.054 

1.2 0.0301 0.0257 

1.6 -0.0064 0.0103 

2 -0.0007 0.0031 

3 0.0013 -0.0008 

4 -0.0005 0.0002 

5 0 0 

6 0.0004 0 

7 0 0 

8 0.0002 0 

9 -0.0001 0 

Table (8): The velocity components u and v for different values of y 
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Fig 8: The velocity components for different values of t when M=3;N =1/2; t= 1/2 

 

 

6. Conclusions 
The set of equations describing the MHD flow of an incompressible electrically conducting fluid in the presence 

of Hall effect are a compensation of the Navier-Stokes equations of fluid dynamics and Maxwell's equations of 

electromagnetism. These differential equations have been solved analytically and numerically. It must be 

revealed that only in few special cases an exact solution can be obtained. One of these cases occurs when the 

compressibility effects of the medium are considered to be negligible. That is, the fluid is taken as in 

compressible and the other fluid properties such as viscosity, thermal conductivity and electrical conductivity 

are regarded as constants, for the numerical solution of the partial differential equations the velocity components 

u and v which are dependent on M and N have been calculated for different values of times t and heights y. The 

numerical results show the following observations: 

 

(i) The velocity component u increases with the increase of N at equal heights of y and    attains a steady state 

earlier with the increase of N. 

(ii) The velocity component u decreases with the increase of M.  

(iii) Attaining the steady state is delayed as N decreases. 

(iv) The velocity component v increases with the increase of M. 

(v)The velocity component v increases with the increase of parameter N. 

(vi) When y increases at different values of t, u decreases, while v increases for fixed values of M and N. 

Moreover the velocity component u gets unstable at different values of N, and y along with the increase of t. 

However, the velocity component v often increases as t increases. 

(vii) Finally, it can be stated that these new numerical results are in close agreement with the analytical solution 

that has been obtained by the method of Laplace transform. 
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