Improvements of the Tensile Properties of Recycled High Density Polyethylene (HDPE) by the Use of Carbonized Olive Solid Waste

POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING 49 (4): 387-393 2010

Recycling of plastic poses several concerns to manufacturers. The most important concern is the unpredictable of their mechanical properties (modulus of elasticity, tensile strength and ductility). Olive solid waste, an abundant material usually thrown into land causing harms to environment was mixed with HDPE plastic and used as a filling material. The mixture was fed to a house made extruder operating at different speed and temperature. Two carbon particle sizes range (less than 150 μm and 180-250 μm) were used. The effect of carbon contents from 0 to 10% wt/wt and operating conditions were tested on the mechanical properties of the recycled HDPE plastic. It was found that up to 5% wt/wt carbon of less than 150 μm resulted in a noticeable improvement of modulus of elasticity and tensile strength. The optimum value of modulus at carbon particle size 180-250 μm was found at 2.5 olive solid carbon content. Increasing screw speed was found to increase tensile modulus and strength of used plastic. This was related to melt viscosity and reduction in particle size. An increase in processing temperature was found to improve tensile properties up to certain point where degradation of polymeric matrix begins to occur and therefore tensile properties deteriorate.

Fecha: 10/01/2011
Enlace: Elaboración Propia