&
UMNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

FINE-GRAIN TRANSFORMATIONS FOR REFACTORING

By
EMMAD I. M. SAADEH

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Philosophiae Doctor (Computer Science) in the Faculty of
Engineering, Built Environment and Information Technology of the
University of Pretoria, 2009

Pretoria, South Africa

© University of Pretoria



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

N UNIVERSITEIT VAN PRETORIA

Qo

FINE-GRAIN TRANSFORMATIONS FOR REFACTORING

By: Emmad I. M. Saadeh
Supervisor: Prof. Derrick Kourie
Department: Computer Science
Degree: PhD (Computer Science)

ABSTRACT

This thesis proposes a new approach to formalize refactorings, principally at the UML class
diagram design level (but incorporating a limited amount of code-level information—basic
access-related information). A set of abstract and atomic fine-grain transformations (FGTs) is
defined as prototypical building blocks for constructing refactorings. The semantics of each
FGT is specified in terms of its pre- and postcondition conjuncts. Various logical relationships
between FGT pre- and postcondition conjuncts are fully catalogued. These include uni- and bi-
directional sequential dependency relationships; absorbing and cancelling reduction

relationships; and uni- and bi-directional conflict relationships.

The principle container for FGTs is an FGT-list in which the ordering of FGTs respects the
sequential relationships between them. Such a list is characterised by the set of FGT
precondition conjuncts (which a system should satisfy if the FGTs are to be sequentially
applied to the system) as well as the resulting postcondition conjuncts (that describe the effect
of applying the list). In the thesis, twenty-nine commonly used primitive refactorings are
specified as such FGT-lists, together with their associated FGT-enabling precondition
conjuncts. Refactoring-level pre- and postconditions are also identified for each primitive

refactoring FGT-list. These are, of course, required to guarantee behaviour preservation.

An alternative container for FGTs is defined, called an FGT-DAG. It is a directed acyclic
graph with FGTs as nodes, and with arcs that reflect the sequential dependency relationships
between constituent FGTs. An algorithm is provided to convert a list of FGTs into a
corresponding set of FGT-DAGs. Thus design level refactorings specified as FGT-lists can be
also be converted to corresponding sets of FGT-DAGs. The precondition for applying such a
refactoring to a given system is specified at two levels: the FGT-enabling precondition

conjuncts that apply to each FGT-DAG, and the refactoring-level precondition conjuncts.

The thesis provides various algorithms that operate on FGT-DAGs. These include an algorithm

to remove redundancies from an FGT-DAG. It also includes algorithms that operate on the



.é,_
=
_ UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
L~ 4

YUNIBESITHI YA PRETORIA

elements of a set of FGT-DAGs: to detect sequential dependencies between these elements, to
detect whether they are in deadlock, and to detect and possibly remove or modify FGTs
causing conflicts between them. In addition, an algorithm is provided to build composite
refactorings from primitive refactorings. It indicates how composite-level and FGT-enabling

precondition conjuncts can be derived and utilised to avoid the rollback problem.

A Prolog prototype FGT-based refactoring tool has been implemented. The tool stores all of
the above-mentioned catalogued information as Prolog rules and facts. This includes the
twenty-nine commonly used primitive refactorings (stored as Prolog FGT-lists) and their
associated refactoring-level pre- and postcondition conjuncts. The tool also implements all the

previously mentioned algorithms as Prolog procedures.

The thesis thus establishes the foundations for a tool in which end users can create (and apply
without rollback) not only composite refactorings, but also completely new refactorings whose
semantics is constrained only by the fine-grained semantics of FGTs, rather than by the more

course-grained semantics of primitive refactorings.

Furthermore, using FGTs as refactoring building blocks (i.e. instead of primitive refactorings)
means that redundancies and conflicts can be more accurately pin-pointed and removed; and
opportunities for parallel execution are exposed at a more fine-grained level. These advantages
come at the cost of having to carry out more computations because analysis has to take place at

the FGT-level rather than at the refactoring-level.



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

To my father, mother & my wife for their encouragement and support.



YUNIBESITHI YA PRETORIA

&
g UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe
Acknowledgments

First, I am thankful to God for having granted me the skills, power, patience, and
opportunities that made this possible in spite of all the other commitments and responsibilities

that I had.

I would like to thank my supervisor, Prof. Derrick Kourie, for his support, guidance and
patience along these years, and for providing constant direction. He has been a source of
encouragement and inspiration. I learned a lot from the feedback he gave me. I was amazed by
both his insights and his stamina. He invested his most valuable resource on my behalf: his

time.

I owe thanks to my colleagues in the Espresso Research Group and in the Computer Science
Department in University of Pretoria for all the encouragements during the different stages of

this work.

I thank my parents, brothers and sisters for their support. I especially appreciated my father's
words of encouragement. I thank my children Ibraheem, Marah, and Adam for many

encouraging times together. I owe them all the time I spent to accomplish this work.

I am especially thankful to my wife Hadeel for her love, support, and patient throughout this
entire process. I really thank her for all the responsibilities she took on behalf of me to give me
a chance to do my research. Without her, I never would have made it through the program. As
a wife and mother, she picked up the slack and encouraged me in an extraordinary way. She

deserves an award at least as valuable as my PhD.



i

i UNIVERSITEIT VAN PRETORIA
: UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

TABLE OF CONTENTS
Page
ABSTRACT i
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES X
LIST OF TABLES xii
LIST OF ALGORITHMS xiii
I Prologue
CHAPTER
1. INTRODUCTION 2
1.1 The Problem 2
1.2 The Proposed Formalism 7
1.3 Thesis Overview 9
2. REFACTORING—STATE OF THE ART 11
2.1 Software Evolution 11
2.2 Refactoring 12
2.2.1 Codes Level 13
2.2.1.1 Non-Object-Oriented Programming Languages 13
2.2.1.2 Object-Oriented Programming Languages 13
2.2.2 Design Level Models 14
2.2.3 Database Schemas Level 16
2.2.4 Software Architectural Level 16
2.2.5 Software Requirements Level 16
2.3 Formalisms 17
2.3.1 Graph Transformations 17
2.3.2 Pre- and Postcondition 17
2.3.3 Program Slicing 18
2.3.4 Formal Concept Analysis 18
IT The Approach
3. LOGIC-BASED REPRESENTATION 20
3.1 Introduction 20
3.2 Object Element Logic-Terms 23
3.3 Relation Element Logic-Terms 25
3.4 Example 27

3.5 Reflection on this Chapter 29



4. FGT-BASED APPROACH

4.1
4.2

4.3

4.4

4.5

5. PRIMITIVE REFACTORINGS AS FGT COLLECTIONS

5.1
52

53

&
i UMNIVERSITEIT VAN PRETORIA
< UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

Introduction

Fine-Grain Transformations (FGTs)

4.2.1 Object Element FGTs
4.2.1.1 addObject FGT

4.2.1.2 renameObject FGT
4.2.1.3 changeOAMode FGT

4.2.1.4 changeODefType FGT
4.2.1.5 deleteObject FGT

4.2.2 Relational Element FGTs

4.2.2.1 addRelation FGT

4.2.2.2 renameRelation FGT

4.2.2.3 deleteRelation FGT

FGT Sequential Dependency

4.3.1 Definition

4.3.2 Uni-Directional Sequential Dependencies

4.3.3 Bi-Directional Sequential Dependency
4.3.4 Mapping Feasible FGT-Lists to FGT-DAGs

FGTs for Primitive and Composite Refactorings

4.4.1 Definitions

4.4.2 FGT-Enabling Preconditions in an FGT-DAG

4.4.3 FGTs and Primitive Refactorings Preconditions
4.4.3 Applying Refactorings

Reflection on this Chapter

Introduction

Add Element Refactorings
5.2.1 addClass

5.2.2 addMethod

5.2.3 addAttribute

5.2.4 addParameter

5.2.5 addGetter

5.2.6 addSetter

Change Element Refactorings
5.3.1 Changing Characteristics

5.3.1.1 renameClass
5.3.1.2 renameMethod

5.3.1.3 renameAttribute

5.3.1.4 renameParameter

5.3.1.5 changeClassAccess

5.3.1.6 changeMethodAccess
5.3.1.7 changeAttributeAccess

5.3.1.8 changeMethodReturnType
5.3.1.9 changeAttributeDefType

5.3.1.10 changeParameterDefType
5.3.2 Change Structure (Restructuring)

Vi

30
30
30
36
36
40
42
46
48
51
51
57
57
59
60
61
62
63
67
67
69
70
72
72

73
73

76
76
76
76
76
76
78
80
80
80
80
80
80
80
80
81
81
81
81
81



&
i UMNIVERSITEIT VAN PRETORIA
< UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

5.3.2.1 changeSuper 81

5.3.2.2 moveMethod 82

5.3.2.3 moveAttribute 85

5.3.2.4 attributeReadsToMethodCall 87

5.3.2.5 attributeWritesToMethodCall 88

5.3.2.6 pullUpMethod 89

5.3.2.7 pushDownMethod 91

5.3.2.8 pullUpAttribute 92

5.3.2.9 pushDownAttribute 94

5.4 Delete Element Refactorings 95
5.4.1 deleteClass 95
5.4.2 deleteMethod 96
5.4.3 deleteAttribute 96
5.4.4 deleteParameter 96

5.5 Reflection on this Chapter 97
6. MOTIVATED EXAMPLE 98
6.1 LAN Simulation 98
6.2 Logic-Based Representation 100
6.3 encapsulateAttribute Refactoring 101
6.4 createClass Refactoring 104
6.5 pullUpMethod Refactoring 105
6.6 LAN after Refactorings 106

IIT Features Of The Approach

7. REDUNDANCY REMOVAL 111
7.1 Introduction 111
7.2 Absorbing Reduction 112
7.3 Cancelling Reduction 116
7.4 Advantages of Reduction Process 118
7.5 Reduction Algorithm 119
7.6 Example 121
7.7 Efficiency Considerations 123

8. DETECTING AND RESOLVING CONFLICTS 124

8.1 Introduction 124

8.2 Conlflicts in FGT-Based Approach 126

8.3 FGT's Conflicts-Pairs 130
8.3.1 Bi-Directional Conflict 130

8.3.2 Uni-Directional Conflict 136

8.4 Conflict Algorithm 138

8.5 LAN Motivated Example 142

8.6 Reflections on Conflicts 143

9. SEQUENTIAL DEPENDENCY BETWEEN REFACTORINGS - 144
9.1 Introduction 144

9.2 Sequential Dependency in Previous Approaches 145

vii



10

I1.

12.

. COMPOSITE REFACTORINGS

&
y UMNIVERSITEIT VAN PRETORIA
: UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

9.3 Sequential Dependency between FGT-Based Refactorings

9.4 Sequential Dependency Algorithm

9.5 Deadlock Problem

9.6 LAN Motivated Example

10.1 Introduction

10.2 FGT-based Composite Refactoring

10.3 Examples

10.3.1 encapsulateAttribute Composite Refactoring

10.3.2 enh-pullUpAttribute Composite Refactoring

10.4 Reflection on this Chapter

PARALLELIZING OPPORTUNITIES

11.1 Introduction

11.2 Parallelizing Opportunities
11.3 Reflection on Parallelization

NEW REFACTORINGS

12.1 Introduction

12.2 Example
12.3 New Refactorings in the FGT-Based Approach

12.4 Reflection on this Chapter

IV Epilogue

13.

v

A.

B.

CONCLUSIONS

13.1 Summary

13.2 Conclusions

13.3 Future Work

Appendix

FGT SEQUENTIAL DEPENDENCY

A.1 Uni-Directional Sequential Dependencies

A.2 Bi-Directional FGTs Sequential Dependencies

PRIMITIVE REFACTORINGS AS FGT SEQUENCES

B.1 Add Element Refactorings
B.1.1 addClass

B.1.2 addMethod

B.1.3 addAttribute

B.1.4 addParameter

B.2 Rename Element Refactorings

B.2.1 renameClass
B.2.2 renameMethod

B.2.3 renameAttribute
B.2.4 renameParameter

B.3 Change Characteristics Refactorings

viii

148
150
153
157

158
158
160
165
165
168
173

174
174
175
176

177
177
178
180
182

184
184
186
189

192
192
194

195
195
195
196
197
197
198
198
199
200
200
201



o

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

B.3.1 changeClassAccess 201
B.3.2 changeMethodAccess 202
B.3.3 changeAttributeAccess 202
B.3.4 changeMethodReturnType 203
B.3.5 changeAttributeDefType 204
B.3.6 changeParameterDefType 205
B.4 Delete Element Refactorings 205
B.4.1 deleteMethod 205
B.4.2 deleteAttribute 206
B.4.3 deleteParameter 207

BIBLIOGRAPHY 208




&
=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo

YUNIBESITHI YA PRETORIA

LIST OF FIGURES

Page
1.1 pullUpMethod Refactoring: (a) before refactoring, (b) after refactoring-———eees 3
1.2 Refactorings as black box 4
1.3 Refactorings as hard coded sequence of statements 5
1.4 Refactoring as a set of FGT-DAGs 7
1.5 Simplified UML meta-model 9
3.1 A simple UML class diagram of the SimpleSys 27
3.2 A code-level implementation of the SimpleSys 27
3.3 Underlying logic representations of the SimpleSys 29
4.1 Potential sequential dependencies between FGTs 61
4.2 FGT-DAGs of refactoring X 67
4.3 Primitive, composite refactorings and FGTs 69
4.4 Primitive refactoring different considerations 71
5.1 Class A before and after addGetter(A.x) 77
5.2 Class A before and after addSetter(A.x) 79
5.3 Class A & B before and after moveMethod(B.m, A, [int]) 83
5.4 Class A & B before and after moveAttribute(A.x, B) 85
6.1 A UML class diagram of the LAN simulation before refactoring 99
6.2 A code-level implementation of the LAN simulation before refactoring . 99
6.3 Underlying logic representations of the LAN simulation before refactoring 101
6.4 Packet & Workstation classes before and after encapsulateAttribute refactoring - 104
6.5 Underlying logic representations of the LAN simulation after refactorings 108
6.6 A UML class diagram of the LAN simulation after refactoring 109
6.7 A code-level implementation of the LAN simulation example after refactoring - 109
7.1 Part of the reduction facts as implemented in Prolog 118
7.2 Reduction inside refactoring 122
7.3 Refactoring X after reduction 123
8.1 Conflict between refactorings R; & Rj 125
8.2 Conflicts detection in FGT-based approach 126
8.3 Possible conflicts between FGTs 129
8.4 A Selection of fgtConflict facts as implemented in Prolog 129
8.5 A simplified UML class diagram of a college system 130
8.6 Conflict detection & resolving algorithm 140
8.7 Conflicts between refactorings moveMethod & pullUpMethod 143
9.1 Sequential dependency between refactorings R; & R; 145
9.2 Ambiguous sequential dependency 147
9.3 Sequential dependency in FGT-based approach 149
9.4 Refactoring Directed Acyclic Graphs (REF-DAGs) 151
9.5 Deadlock problem 154
9.6 Sequential dependency between refactorings createClass & pullUpMethod - 157
10.1 Straightforward approach 159

10.2 Composite refactoring in composite preconditions approaches 160




10.3
10.4
10.5
10.6
10.7
10.8
12.1
12.2

o

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Composite refactoring in FGT approach
A simplified UML class diagram of a college system
encapsulateAttribute composite refactoring

encapsulateAttribute composite refactoring in FGT approach
A simplified UML class diagram. (a) before and (b) after refactoring———————
enh-pullUpAttribute composite refactoring
Part of the LAN system's class diagram
Part of the LAN system's class diagram after enh-pullUpMethod

Xi

164
165
166
168
169
172
178
181



UMNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

LIST Of TABLES

Page
4.1 Primitive refactorings 68
6.1 encapsulateAttribute refactoring 103
6.2 createClass refactoring 105
6.3 pullUpMethod refactoring 106
7.1 Absorbing reduction 114
7.2 Cancelling reduction 117
8.1 Bi-directional FGT conflict-pairs 131
8.2 Uni-directional FGT conflict-pairs 136
10.1 encapsulateAttribute refactoring 167
10.2 enh-pullUpAttribute refactoring 170

13.1 A comparison between FGTs-based and alternative formalisms 188

Xii



o

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

LIST OF ALGORITHMS

Page
4.1 Building FGT-DAGs algorithm 65
7.1 Reduction algorithm 120
8.1 Conflict detection & resolving algorithm 139
9.1 Sequential dependency algorithm 152

9.2 Deadlock detection algorithm 156

xiii



	FRONT
	Title page
	Abstract
	Dedication
	Acknowledgments
	Table of contents
	List of figures
	List of tables
	List of algorithms

	Part 1
	Part 2
	Part 3
	Part 4
	Part 5



