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ABSTRACT

Detecting genetic signatures of selection is of great interest for many research issues. Common
approaches to separate selective from neutral processes focus on the variance of FST across loci, as does the
original Lewontin and Krakauer (LK) test. Modern developments aim to minimize the false positive rate
and to increase the power, by accounting for complex demographic structures. Another stimulating goal
is to develop straightforward parametric and computationally tractable tests to deal with massive SNP data
sets. Here, we propose an extension of the original LK statistic (TLK), named TF–LK, that uses a phylogenetic
estimation of the population’s kinship (F) matrix, thus accounting for historical branching and het-
erogeneity of genetic drift. Using forward simulations of single-nucleotide polymorphisms (SNPs) data
under neutrality and selection, we confirm the relative robustness of the LK statistic (TLK) to complex
demographic history but we show that TF–LK is more powerful in most cases. This new statistic outperforms
also a multinomial-Dirichlet-based model [estimation with Markov chain Monte Carlo (MCMC)], when
historical branching occurs. Overall, TF–LK detects 15–35% more selected SNPs than TLK for low type I errors
(P , 0.001). Also, simulations show that TLK and TF–LK follow a chi-square distribution provided the
ancestral allele frequencies are not too extreme, suggesting the possible use of the chi-square distribution
for evaluating significance. The empirical distribution of TF–LK can be derived using simulations con-
ditioned on the estimated F matrix. We apply this new test to pig breeds SNP data and pinpoint outliers
using TF–LK, otherwise undetected using the less powerful TLK statistic. This new test represents one solution
for compromise between advanced SNP genetic data acquisition and outlier analyses.

THE development of methods aiming at detecting
molecular signatures of selection is one of the

major concerns of modern population genetics. Broadly,
such methods can be classified into four groups: meth-
ods focusing on (i) the interspecific comparison of gene
substitution patterns, (ii) the frequency spectrum and
models of selective sweeps, (iii) linkage disequilibrium
(LD) and haplotype structure, and (iv) patterns of ge-
netic differentiation among populations (for a review
see Nielsen 2005). Tests based on the comparison of
polymorphism and divergence at the species level inform
on mostly ancient selective processes. Population-based
approaches, however, are designed to pinpoint modern
processes of local adaptation and speciation occurring
among populations within a species. Such approaches
also become crucial in the fields of agronomical and

biomedical sciences, for instance, to pinpoint possible
interesting (QTL) regions and disease susceptibility
genes. Especially, human, livestock, and cultivated plants
genetics may benefit from such methods while whole-
genome single-nucleotide polymorphisms (SNPs) geno-
typing technologies are becoming routinely available
(e.g., Barreiro et al. 2008; Flori et al. 2009).

In the population genomic era (Luikart et al. 2003),
identifying genes under selection or neutral markers
influenced by nearby selected genes is a task in itself for
quantifying the role of selection in the evolutionary
history of species. Conversely, the accurate inference of
demographic parameters such as effective population
sizes, migration rates, and divergence times between
populations relies on the use of neutral marker data
sets. One approach of detecting loci under selection
(outliers) with population genetic data is based on the
genetic differentiation between loci influenced only by
neutral processes (genetic drift, mutation, migration)
and loci influenced by selection.

Lewontin and Krakauer’s (LK) test for the heteroge-
neity of the inbreeding coefficient (F) across loci was the
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first to be developed with regard to this concept
(Lewontin and Krakauer 1973). The LK test was imme-
diately subject to criticisms (Nei and Maruyama 1975;
Lewontin and Krakauer 1975; Robertson, 1975a,b;
Tsakas and Krimbas 1976; Nei and Chakravarti

1977; Nei et al. 1977). Indeed, its assumptions are likely
to be violated due to loci with high mutation rate, variation
of F due to unequal effective population size (Ne) among
demes, and correlation of allele frequencies among
demes due to historical branching. The robustness of
the LK test to the effects of demography was tested
through coalescent simulations by Beaumont and
Nichols (1996). They tested the influence of different
models of population structure on the joint distribution
of FST (i.e., the inbreeding coefficient F) and heterozy-
gosity (He). The FST distribution under an infinite-
island model is inflated for low He values under both the
infinite-allele model (IAM) and the stepwise mutation
model (SMM) (Beaumont and Nichols 1996). This
tendency becomes, however, more marked when strong
differences in effective size Ne and gene flow among
demes occur, that is, when allele frequencies are corre-
lated among local demes. This suggests an excess of false
significant loci when one assumes an infinite-island
model as a null hypothesis, while correlations of gene
frequencies substantially occur. However, the FST dis-
tribution shows robustness properties for high He val-
ues (typical from microsatellite markers). Therefore,
Beaumont and Nichols (1996) suggested the possi-
bility of detecting outliers by using the distribution of
neutral FST conditionally on He under the infinite-
island model of symmetric migration, with mutation.

The problem of accounting for correlations of allele
frequencies among subpopulations was discussed by
Robertson (1975a), who showed how these correla-
tions inflated the variance of the LK test. Different
approaches were taken to cope with the problem. It was,
for instance, proposed to restrict the analysis to pairwise
comparisons (Tsakas and Krimbas 1976; Vitalis et al.
2001). However, as pointed out by Beaumont (2005),
reducing the number of populations to be compared
to many pairwise comparisons raises the problem of
nonindependence in multiple testing and may reduce
the power to detect outliers. Another way was to assume
that subpopulation allele frequencies are correlated
through a common migrant gene pool, that is, the an-
cestral population in a star-like population divergence.
In this case, subpopulations evolve with an unequal num-
ber of migrants coming from the migrant pool and/or
to different amounts of genetic drift. This demographic
scenario can be explicitly modeled using the multinomial-
Dirichlet likelihood approach (Balding 2003). This
multinomial-Dirichlet likelihood (or Beta-binomial for
biallelic markers such as SNPs) was implemented by
Beaumont and Balding (2004) and subsequently by
Foll and Gaggiotti (2008), Gautier et al. (2009),
Guo et al. (2009), and Riebler et al. (2010), in a Bayesian

hierarchical model in which the FST is decomposed
into two components: a locus-specific (a) effect and a
population-specific (b) effect. This Bayesian statistical
model together with prior assumptions on a and b was
implemented in a Markov chain Monte Carlo (MCMC)
algorithm. A substantial improvement made by Foll

and Gaggiotti (2008) was to use a reverse-jumping
(RJ)-MCMC to simultaneously estimate the posterior
distribution of a model with selection (with a and b)
and of a model without selection (with b only). More
recently, Excoffier et al. (2009) addressed the issue of
accounting for ‘‘heterogeneous affinities between sam-
pled populations’’—in other words, accounting for
migrant genes that do not necessarily originate from
the same pool—by using a hierarchically structured
population model. They showed by simulations that
the false positive rate is lower under a hierarchically
structured population model than under a simple
island model, for the IAM and the SMM applicable to
microsatellite markers and for a SNP mutation model.
Excoffier et al.(2009) thus proposed to extend the
Beaumont and Nichols (1996) method to a hierarchi-
cally structured population model.

Nowadays, a computational challenge is to analyze
data sets with increasing numbers of markers and pop-
ulations, under complex demographic histories, in a rea-
sonable amount of time. This is especially the case in
agronomical and biomedical sciences with the increas-
ingly used biallelic SNP markers. A question arises as to
whether FST-based methods would be sufficiently power-
ful to detect outliers with SNP markers. Indeed, for low
He values, the inflation of the FST distribution under
the infinite-island model accentuates dramatically when
assuming a mutation model typical for SNPs (simulations
of Eveno et al. 2008). Excoffier et al. (2009) corrobo-
rated these results and also indicated that the FST

distribution is generally broader under a model of
hierarchically structured populations when using SNP
markers. In addition, as the authors pinpoint, although
the hierarchical island model is more conservative than
the island model, an excess of false positives can be
obtained ‘‘if the underlying genetic structure is more
complex . . . , for instance in case of complex demo-
graphic histories, involving population splits, range
expansion, bottleneck or admixture events’’ (Excoffier

et al. 2009, p. 12). The Bayesian hierarchical models
developed by Beaumont and Balding (2004) and Foll

and Gaggiotti (2008) effectively account for strong
effective size and migration rate variation among sub-
populations, but they still impose a star-like demographic
model in which the current populations share a common
migrant pool and are not supposed to have undergone
historical branching. More practically, MCMC-based
methods might suffer from a computational time re-
quirement when analyzing large marker data sets such
as SNP chips data sets. Therefore, the development of
simple parametric tests potentially dealing with a summary
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of the population tree, including historical branching as
well as population size variation, remains an alternative
solution to achieve a good compromise between advanced
genetic data acquisition and outlier analyses.

In this article, we describe an extension of the original
parametric LK test for biallelic markers that deals with
complex population trees through a statistic that takes
into account the kinship (or coancestry) matrix F
between populations, under pure drift with no migra-
tion. The statistics of the classical test (TLK) and its
extension (TF–LK) are expected to follow a chi-square
distribution with (n – 1) d.f., where n is the number of
populations studied. Through forward simulations of
neutral SNPs data under increasingly complex demogra-
phic histories, we obtained the empirical distribution of
both statistics and showed that they follow a chi-square
distribution provided the ancestral allele frequencies
are not too extreme. These results also emphasize the
robustness of these statistics to variation in demogra-
phic histories. Forward simulations of the same demogra-
phic models but including selection in one population
allowed us to evaluate the power of both statistics to
detect selection. We show that the extension of the LK
test is more powerful at detecting outliers than the
classical LK test for complex demographic histories.
A comparison with one of the MCMC methods for
multinomial-Dirichlet models (Foll and Gaggiotti

2008) also revealed substantial additional power. We
apply this new statistical test to a data set of SNP markers
in known genes of the pig genome, taking advantage of
the availability of microsatellite markers for the estima-
tion of the kinship matrix. This new parametric test can
help to screen large marker data sets and large numbers
of populations for outliers in a reasonable amount of
time, although we recommend to simulate the empiri-
cal distribution of the TF–LK statistics conditionally on
the estimated kinship matrix.

POPULATION MODEL AND NOTATIONS

We consider a set of n populations derived from a
common ancestor and the frequencies (p1, p2, . . . , pn) of

one allele at a neutral biallelic locus. We assume their
phylogeny is described by a tree (Figure 1), in which
each branch is characterized by some amount of drift.

The kinship matrix: Due to drift and coancestries,
frequencies pi’s are correlated, so that

Covðpi ; pjÞ¼ f ij p0ð1� p0Þ ð1Þ

VarðpiÞ¼ f iip0ð1� p0Þ; ð2Þ

where p0 is the frequency of the allele in the ancestor
population, fii is the mean expected inbreeding co-
efficient of the ith population, and fij the kinship
coefficient between populations i and j equal to the
inbreeding coefficient of the most recent ancestor
population common to i and j.

In Figure 1, for example, the calculations proceed as
follows. Let dUV be the fixation index corresponding to
the branch from U (an internal node or the root of the
tree) to V (an internal node or a leaf of the tree, i.e., one
of the n populations). If the branch UV corresponds to
t generations in a population of effective size N, dUV ’
1� expð�t=2N Þ provided mutations are ignored. The
tree of Figure 1 includes the root (O), the internal node
(X), and the three populations 1, 2, and 3. Setting f00 ¼
0, we have

f 11 ¼ F 1 ¼ 1� ð1� dX 1Þð1� d0X Þ ð3Þ

f 22 ¼ F 2 ¼ 1� ð1� dX 2Þð1� d0X Þ ð4Þ

f 33 ¼ F 3 ¼ d03 ð5Þ

f 12 ¼ d0X ð6Þ

f 13 ¼ 0 ð7Þ

f 23 ¼ 0: ð8Þ

In the following,F stands for the matrix of the fij. For
simplicity, diagonal elements fii are simply denoted as Fi.
Under pure drift (without mutation) it can be demon-
strated that F is invertible and positive definite.

Estimation: Let us consider L biallelic loci indexed by
‘, whose first allele frequency in population i is pi,‘. A

Figure 1.—Example of tree-like evo-
lution: construction of the kinship ma-
trix.
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sample of genotyped individuals in each population
provides an empirical estimate p̂i;‘ of this allele fre-
quency by simple counting.

We propose to make use of the neighbor-joining (NJ)
tree (Saitou and Nei 1987) built from the Reynolds’
genetic distances between pairs of populations (Reynolds

et al. 1983), adding an outgroup so that the tree linking
the n populations can be rooted. Then branch lengths
of the NJ tree are estimates of the d’s and provide
estimates of the elements of the F matrix. Since we
assume in the following that frequency distributions are
approximately Gaussian, an alternative approach could
be to estimate d-values by a likelihood approach as sug-
gested by Weir and Hill (2002). However, these
authors considered only the case where F is diagonal.
Accounting for a general tree structure would make
their approach more complicated and probably not
needed since we did not find any strong difference
between results obtained using true or estimated values.

Loci used to estimate F must be neutral. When
genome-wide genotyping is available, one can consider
that only a small fraction of genomic regions and hence
of genotyped markers is or has been a target of selection,
so that averaging over all loci will provide a good es-
timate of F . We used this approach in our simulation-
based study, where F was estimated from the simulated
SNPs to be tested. Another possibility is to make use of a
subset of markers (supposed neutral) to estimateF and
then use it for testing departures from neutrality of
another subset of markers. We used this approach to test
for signature of selection in a real data set from pig
populations. We took advantage of the availability of
microsatellite markers for estimating F , to test SNP
markers in candidate genes.

TESTS OF SELECTION: LEWONTIN AND
KRAKAUER AND EXTENSIONS

Distribution of the LK test: Consider L biallelic loci
genotyped for a large set of individuals structured in n
populations. Lewontin and Krakauer (1973) focused
on the distribution of the FST statistic per locus and
proposed a test statistic denoted here by TLK. To simplify
notations, the subscript ‘ per locus is omitted in the
following. Note that the allele frequencies and the
corresponding statistics depend on the current locus,
while the kinship matrixF does not. Let p ¼ (p1, . . . ,pj,
. . . ,pn)9 be the n-vector of allelic frequencies of the first
allele (say) in the n populations. The quantity FST is
defined as

F ST ¼
s2

p

�pð1� �pÞ ¼
�
ð1=ðn � 1Þ

�P
n
i¼1ðpi � �pÞ2

�pð1� �pÞ ; ð9Þ

where �p and s2
P are the sampling estimates of the mean

and variance, respectively, of the vector p. The test
statistic is equal to

T LK ¼
n � 1

�F ST
F ST; ð10Þ

where �F ST is the average of FST in (9) over the L loci.
Under the reference conditions considered by Lewontin
and Krakauer (equal branch lengths, Fi¼ fii¼ F, and no
correlations, fij¼ 0 for i 6¼ j), this test was shown to follow
approximately a x2-distribution with n – 1 d.f.

In the following, we propose a new calculation of the
first two moments of the FST statistic, in the case of a
tree-like history of the n populations. Under genetic
drift, the first two moments of p are

EðpÞ ¼ p01n ð11Þ

VðpÞ ¼ Fp0ð1� p0Þ; ð12Þ

where p0 is the founder allele frequency, 1n is the n-vector
of 1’s, andF is the kinship (or coancestry) (n 3 n) matrix
linking the n populations.

It can be shown (see appendix a) that

EðF STÞ ’ �F � �f ; ð13Þ

provided the number of populations is large enough,
that

EðT LKÞ ’ ðn � 1Þ; ð14Þ

and that, approximating frequency distributions by the
normal if F values are small,

VðT LKÞ’ 2

P
i

P
j f 2

ij�ð2=nÞ
P

i

�P
j f ij

�2
1ð1=n2Þ

�P
i

P
j f ij

�2

ð �F � �f Þ2 ;

ð15Þ

with

�F ¼ 1

n

X
i

F i ¼
1

n

X
i

f ii ð16Þ

and

�f ¼ 1

nðn � 1Þ
X

i

X
j 6¼i

f ij : ð17Þ

With a star-like evolution (the nondiagonal elements
inF ¼ 0, �f ¼ 0) and with equal branch lengths ( �F i ¼ F
for all i as in Lewontin and Krakauer 1973), the pi’s are
assumed to be independent, identically distributed, and
normal, so that TLK follows the distribution of a chi
square with (n � 1) d.f. This is the basic version of the
test. In other cases, the test can be adapted, either
recalculating its moments or defining another statistic
to test the fit of data with the null hypothesis.

As shown in appendix a, the general expression (15)
takes simpler forms in special cases of departure from
the basic situation:
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The phylogenetic tree of populations is structured
but branch lengths are equal (Fi ¼ fii ¼ F for all i).
Then Robertson (1975b) showed that

VðT LKÞ ’ 2ðn � 1Þð1 1 nV r 9Þ; ð18Þ

where Vr 9 stands for the variance of correlation coef-
ficients between gene frequencies (see appendix a for
the correspondence with the present notations). This
result suggests that such correlations may imply a strong
increase of the expected variance of the test.

Populations are independent (i.e., the tree representing
the phylogeny of populations has the structure of a star)
but F values are heterogeneous. In that case one has

VðT LKÞ ’ 2ðn � 1Þ
 

1 1

 
1� 2

n

!
VðF Þ

�F 2

!
; ð19Þ

where VðF Þ is the variance of Fi values.
Provided the departure from normality is not too

strong, we propose an extension of the LK test to take
account of any structuration on the moments of allele
frequency distributions.

An extension of the LK test when the populations are
structured—use of the F matrix: The previous calcu-
lation allows one to obtain the correct variance of the
test. However, the chi-square distribution of the test is
anyway only approximate, even assuming normality,
because (i) the Fi’s are heterogeneous, which implies
that TLK is a sum of squared random variables with
different variances, and (ii) the denominator in (9)
depends on the allele frequencies.

Assuming normality the joint distribution of allele
frequencies is fully characterized by the initial frequen-
cies p0 and by the F matrix.

Let

p̂0 ¼
19nF�1p

19nF�11n
ð20Þ

be the unbiased linear estimate of p0 with minimum
variance, with 1n denoting the n-vector made of 1’s. It
may be noted that this estimate of p0 is not the
maximum-likelihood estimate, even under the normal
assumption. When the n populations diverge from the
founder in a star-like manner, but with different coancestry
coefficients, then p̂0 ¼

�P
n
j¼1 pj=F j

�
=
�P

1=F j

�
. Further,

when the populations have the same size, as in the
Lewontin and Krakauer test, then this estimator is the
sample mean

�
p̂0 ¼ �p

�
.

Let us note p̂0 ¼ w9p, with w the n-vector

w ¼ F
�11n

19nF�11n
: ð21Þ

Then the first two moments of the estimator p̂0 of p0

can be calculated:

Eðp̂0Þ ¼ w9EðpÞ ¼ p0

Vðp̂0Þ ¼ w9VðpÞw

¼ p0ð1� p0Þ
19nF�11n

:

It follows that

Eðp̂0ð1� p̂0ÞÞ ¼ p0ð1� p0Þ 1� 1

19nF�11n

� �
: ð22Þ

If the ancestral allele frequencies p0 were known, then
the most interesting quadratic form in p would be

T F�LKðp0Þ ¼ ðp� p01nÞ9VðpÞ�1ðp� p01nÞ; ð23Þ

which follows a chi-square distribution with n d.f.
However, since p0 is unknown, it is replaced by its
estimator p̂0, suggesting to define the test as

T F�LK ¼ ðp�p̂01nÞ9VðpÞ�1ðp�p̂01nÞ¼
Q

p̂0ð1� p̂0Þ
: ð24Þ

In practice, the above expression of TF–LK is multi-
plied by the bias correction term ð1� 1=ð19nF�11nÞÞ
(see Equation 22), which is omitted in the following, for
the sake of simplicity. When F ¼ F In , the only differ-
ence between TLK and TF–LK, apart from the bias
correction term, resides in the estimation of F, either
with �F ST or with the estimation method proposed in this
article (Estimation section).

The quadratic form

Q ¼ ðp� p̂01nÞ9F�1ðp� p̂01nÞ ð25Þ

can be written as p9M p, where

M ¼ F�1 � F
�11n19nF�1

19nF�11n
: ð26Þ

Its first moment can be calculated as

EðQ Þ ¼ EðpÞ9MEðpÞ1 trðMVðpÞÞ
¼ p2

019nM1n 1 p0ð1� p0ÞtrðMF Þ
¼ ðn � 1Þp0ð1� p0Þ:

The second moment of Q is

VðQ Þ ¼ 4EðpÞ9MVðpÞMEðpÞ1 2tr
�
MVðpÞMVðpÞ

�
¼ 2ðn � 1Þp2

0ð1� p0Þ2:

Then TF–LK has approximate expectation
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EðT F�LKÞ �
EðQ Þ

E½p̂0ð1� p̂0Þ�
¼ n � 1 ð27Þ

and approximate variance

VðT F�LKÞ �
VðQ Þ

E2½p̂0ð1� p̂0Þ�
¼ 2ðn � 1Þ; ð28Þ

so that TF–LK follows approximately a x2
n�1-distribution

under genetic drift. The case of a multiallelic locus is
derived in appendix b, but is not investigated further in
this article.

SIMULATIONS

Simulation settings: We simulated haplotype samples
of partially linked loci, under neutrality (H0) and direc-
tional selection on one locus in one population (H1).
The choice of simulating partially linked loci was tech-
nically relevant because most SNPs data sets nowadays
come from dense whole-genome scans. In all simulated
scenarios of population divergence, the populations
originate from an equilibrium ancestral population of
constant size.

Neutral haplotype samples from this ancestral pop-
ulation were obtained by coalescent simulations using
the MS software (Hudson 2002). The generated hap-
lotypes consisted of 1000 SNPs (or biallelic segregating
sites) randomly distributed along a 100-Mb chromo-
some, resulting in a 100-kb distance between two SNPs,
on average. Assuming a recombination rate of 1 cM/Mb,
the recombination rate between two SNPs was fixed at
0.1 cM.

To simulate the evolution of the populations from the
ancestral one in the same way for both neutrality and
selection, we used forward simulations of the Wright–

Fisher diploid model, further assuming stepwise
changes in population size, population dichotomy, no
mutations, and a uniform recombination rate. Different
sorts of demographic models were simulated to explore
the influence of demographic history on the statistical
properties of both the classical LK statistic and the
extension we propose. The first demographic model is a
model of star-like population divergence with equal
branch lengths (EBL) among populations, in which all
populations evolve spontaneously from a common
ancestor, independently from each other with the same
inbreeding coefficient F. The second model is also a
star-like divergence scenario but with unequal branch
lengths (UBL) among populations. The third model is a
model of populations structured by common ancestries
with variation of branch length (UBL struc) (see Figure
2 and Table 1 for population schemes and the de-
mographic parameters used).

Selection was modeled as follows: (i) selection occurs
on a single locus (SNP) of the haplotype, (ii) selection
occurs on the less frequent allele of the SNP (‘‘0’’ and
‘‘1’’ are the ancestral and derived states, respectively),
(iii) the allelic fitness k is linked to the selection
coefficient s by k ¼ 1 1 s, leading to the genotypic
fitness scheme

Note that in this case it is the derived allele that is
under selection. Hence, the probability of drawing a
given parental genotype to generate the next genera-
tion depends on the genotype frequency, which changes
at each generation according to this selection scheme.
In UBL models, we chose to simulate separately selec-
tion on ‘‘large’’ and ‘‘small’’ populations to better
account for the heterogeneity of F among populations

Figure 2.—Models of population divergence simulated in this study. This schematic illustrates three sorts of demographic mod-
els simulated in this study: EBL, UBL, and UBL struc. Populations highlighted in red are those in which directional selection
occurs. For the UBL models, we simulated selection in a large (big Ne) and a small (little Ne) population, in separate simulations.
For the EBL model we simulated two scenarios, one with large and one with small populations, in which one population is se-
lected.
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when selection acts (Table 1). Selection was simulated
for two intensities, s ¼ 0.05 and s ¼ 0.20.

We performed 10,000 simulations in each demo-
graphic scenario to cover small type I error. For each
simulation, a matrix of unbiased Reynolds’ genetics
distances was computed from frequency data of the
1000 partially linked SNPs simulated. TheF matrix was
then estimated from branch lengths of a neighbor-
joining tree (see Estimation section). The ancestral allele
frequency p0 was estimated using �p for TLK and using p̂0

(Equation 20) for TF–LK. Then the TLK and TF–LK

statistics were calculated for each SNP, excluding the
cases of complete fixation of any of the two alleles in the
whole population set. To construct the H1 distribution
of both statistics, we recorded the TLK and TF–LK values
for the SNP under selection for each simulation. To
construct the H0 distribution, we drew at random one
SNP position and recorded its associated TLK and TF–LK

values for each simulation under neutrality.
To allow an unbiased comparison of the empirical

distributions to the theoretical distribution, we consid-
ered the ideal situation in which the true F matrix and
ancestral allele frequency p0 are known. In each
simulation, we recorded the value of the ancestral allele
frequency p0 for each SNP, and we calculated TLK(p0)
and TF–LK(p0) accordingly (refer to Equations 9 and 10,
where �p is replaced by p0, and Equation 23). The
calculation of TF–LK(p0) included the true F matrix.

The different empirical H0 distributions of TLK and
TF–LK were compared to their theoretical expectations
(i.e., chi-square distribution with n or n � 1 d.f., de-
pending on whether parameters had to be estimated or
not). The power of each statistic to detect selected SNPs
was evaluated as follows: first, we determined the 0.9,
0.95, 0.98, 0.99, and 0.999 quantiles of the empirical
null distribution of each test from the simulations under
neutrality. Then, the power of the tests was determined
as the proportion of simulations for which the statistic
was greater than a given quantile of the null. This allows
power to be recorded as a function of the empirical type
I error.

To compare the LK-based tests to the method of Foll

and Gaggiotti (2008), we used their Bayes factor for
selection of the selected SNP as a test statistic. As an
implementation of the Foll and Gaggiotti (2008)
method, we used the BAYESCAN software run with the
default parameters. As this method requires a rather
long computation time, comparisons were performed
on 1000 simulations only, under UBL and UBL struc
models for two selection intensities (0.05, 0.20). The
power of this method and of the LK-based tests was
evaluated as explained above.

Simulation results: The empirical distributions of TLK

and TF–LK under neutrality, and the chi-square distribution:
The empirical distributions of TLK(p0) and TF–LK(p0)
have similar shapes in each demographic model (EBL,
UBL, and UBL struc), with the same number of

populations (i.e., eight populations were simulated).
We illustrate this under the more complex UBL struc
model, with Q–Q plots that compare the empirical
distribution of TLK(p0) and TF–LK(p0) with the theoret-
ical chi-square distribution (Figure 3). For each statistic,
however, the right tail of the distribution varies slightly
depending on the demographic model (Figure 3 for
UBL struc and supporting information, Figure S1 and
Figure S2 for EBL and UBL models). Overall, the
empirical distributions of TLK(p0) and TF–LK(p0) under
neutrality appear relatively robust to increasingly com-
plex demographies, whatever the range of ancestral
allele frequencies (Figure 3, Figure S1, and Figure S2).
In addition, we observed that the shape of the empirical
distributions of TLK(p0) and TF–LK(p0) appears to de-
pend on p0. When all simulated ancestral frequencies
are included (0 , p0 , 1), they do not fit the right tail of
the chi-square distribution (Figure 3). Extreme p0 values
represented a high proportion of the simulations
(Figure 3a). When accounting for less extreme p0 values
(i.e., 0.2 , p0 , 0.8), the empirical distribution fit the
chi-square distribution (Figure 3, b and c).

In the real situation of parameter estimation (see
Estimation in population model and notations for
the estimation of p0 and theF matrix), both estimators of
p0 (�p and p̂0 in Equation 20) approximate well the true p0

values (Figure S3). Moreover, the empirical distribution
of TF–LK values based on various F -matrix estimates is
highly similar to the one calculated with the trueF matrix
(not shown). These results indicate that for both statistics
the departure from the theoretical chi-square distribution
under neutrality is mainly due to extreme p0 values rather
than problems related to parameter estimations.

Power comparison of the TLK and TF–LK statistics: Power
was calculated using the empirical distributions of the
statistics, on the basis of simulations under neutrality
and selection (see Simulation settings section). Some power
properties common to both TLK and TF–LK arise from
this simulation study. First, the population size of the
selected population has a major impact on the power to
detect selected loci. For a given selection coefficient and
whatever the type I error, we found that the power to
detect selection is higher in a large population than in a
small population (Figure 4), for both TLK and TF–LK.
This was expected because the strength of a selection
event is mainly determined by the product Nes. The
explanation is, however, more complex, since the
population sizes also intervene in the weights TF–LK puts
on each population. Second, the selection coefficient
has a differential impact on the power, depending on
the underlying demographic model. A larger selection
coefficient does not result in a higher level of power
in EBL and UBL models. However, a larger selection
coefficient has a positive impact for detecting selected
SNPs in UBL struc models. This can be explained by the
fact that complete fixation was reached in some models
but not in all of them.
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Substantial differences in power occur between TLK

and TF–LK. We first consider the case in which selection
acts on a large population relative to other populations.
In UBL and UBL struc models, the detection power of
TF–LK is .20% greater than that of TLK (Figure 4). In an
EBL model, TF–LK and TLK have similar detection power,
from 60 to 85% for 0.001 , a , 0.1. If selection acts on a

small population relative to other populations, however,
TLK is more powerful than TF–LK but it should be noted
that the absolute power of both statistics is small in that
case, especially at low type I errors. Restricting the win-
dow of possible p0 values, for instance to 0.2 , p0 , 0.8,
has a general negative effect on the power of the TLK

statistic, whatever the size of the population under

Figure 3.—Fit of TLK and TF–LK empirical distributions to a x2-distribution under the UBL struc scenario with eight populations,
and dependency on p0. (a–c) Left column, distribution of ancestral allele frequencies; center (resp. right) column, Q–Q plots of
the empirical distribution of TLK (resp. TF–LK) under neutrality (H0) against the x2(8) distribution. For unbiased comparison of
the empirical and theoretical distributions, we illustrate the ideal case in which p0 and F are known.
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selection (not shown). However, in complex UBL models
when selection acts on a large population, the power of
TF–LK seems to benefit from intermediate ancestral
frequencies (0.2 , p0 , 0.8) for low type I error (a ,

0.001). We also investigated the impact of the population
sampling on power properties. For a given population
tree, the power to detect selected SNPs with TF–LK is
increased by sampling more populations (Figure 5). This
is not the case with TLK for which the signal of selection
seems masked by an increasing number of populations
sampled.

We investigated the effect of estimating the F matrix
on power. Selection may introduce a bias in the

estimation of the F matrix, resulting in a loss of power
for the tests based on TF–LK. Indeed, in EBL, UBL, and
UBL struc models, the detection power obtained when
estimating F (Figure 4) was reduced compared to that
obtained when F is known (Figure S4), especially for
small type I errors, i.e., 0.001 , a , 0.01. In addition, for
tests based on the TF–LK statistic, the phylogenetic
reconstruction may lead to the emergence of small
internal branches and hence to small extradiagonal ( f )
values in the estimated F matrix. In the UBL models
simulated, cutting small branch lengths had a positive
effect on the power of TF–LK (Figure 6a, cutoff values ¼
0.005). Indeed, the branch-cutting procedure trans-

Figure 4.—(a–f) Power of TLK and
TF–LK to detect selection in a large (a,
c, and e) or small (b, d, and f) popula-
tion, for different type I error values.
Results are shown for different demo-
graphic models with eight populations
and two selection coefficients (s ¼
0.05 and 0.20). The F matrix and p0

are set to their estimated values.
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formed some trees inferred as (falsely) ‘‘structured’’
into ‘‘star-like’’ trees closer to the population trees
simulated. In UBL struc models, however, cutting small
branch lengths had a slightly negative effect on the
power of TF–LK (Figure 6b, cutoff value ¼ 0.001). In
some simulations, indeed, small branch lengths were
neglected whereas they truly described the population
tree and hence led to a decrease of power.

Finally, we compared the TLK and TF–LK tests with the
MCMC method of Foll and Gaggiotti (2008) under
UBL and UBL struc scenarios. We found that under a
UBL scenario, the method of Foll and Gaggiotti

(2008) had more detection power than TLK, but not as
much as TF–LK whether one assumes the number of
simulations was not enough for low type I errors
(,0.001) (Figure 7, left). Under a UBL struc scenario,

Figure 5.—Influence of population
sampling on the power of TF–LK when
eight populations are simulated under
a UBL struc model and the power is cal-
culated on the basis of samples of four
or eight populations. Each population
sampling contains the selected popula-
tion. The F matrices calculated on the
basis of both kinds of population sam-
pling do not have the same dimension
but reflect similar amounts of genetic
drift.

Figure 6.—Influence of
a branch-cutting procedure
on the power of TF–LK. This
illustrates the effect on the
power of TF–LK of estimat-
ing the F matrix and of
cutting small branch lengths
in the phylogenetic tree.
Branch lengths are cut as
they correspond to f (extra
diagonal) values ,0.005
and ,0.001, in (a) UBL
and (b) UBL struc models,
respectively.
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however, TF–LK clearly outperformed the MCMC
method for a wide range of type I errors (Figure 7,
right). Indeed, TF–LK detected 20–50% more selected
SNPs than the MCMC method for type I errors ranging
from 0.001 to 0.05. Similar results are obtained for s ¼
0.20 under both demographic scenarios (Figure S5).
This difference in power under UBL struc scenarios may
stem from the fact that the method of Foll and
Gaggiotti (2008) does not account for the hierarchical
structure of populations, while TF–LK does.

APPLICATION TO PIG SNPS DATA

One SNP data set was tested as an illustrative example
for signature of selection: 34 SNPs located in candidate
genes (Blott et al. 2003; A. Day, G. Evans, and S. Blott,
unpublished data). The associated commercially impor-
tant phenotypes concern reproductive performance,
growth and fatness, meat quality, and disease resistance.
Samples of four major European pig breeds were
genotyped: the Landrace (LR) (LR01), the Large White
(LW) (LW05), the Piétrain (PI) (PI03), and the Duroc
(DU) (DU02). To estimate the F matrix for calculating
the TF–LK statistic, we made use of 50 genome-wide
distributed microsatellite markers previously studied
on the same samples in a previous project (PigBioDiv,
see http://www.projects.roslin.ac.uk/pigbiodiv/ and
Sancristobal et al. 2006). We used an Asian breed, the
Meishan (MS01), as outgroup. We first explored the fit
of the empirical distributions of TLK and TF–LK to the
chi-square distribution. The empirical distributions
were generated by simulating population history con-
ditional on the previously estimated F matrix. To do
so, we used forward simulations with parameterizations
of Ne and split times that led to the estimatedF matrix.
Then, we simulated selection on one SNP in one
population under the same conditions, to assess the
power to detect selection in a real case. The empirical
H0 distribution of TLK and TF–LK in this case has a
slightly shorter right tail than the chi-square distribu-
tion, (Figure 8). Moreover, TF–LK was more powerful

than TLK (Figure 8). We performed single tests on the
basis of the empirical distribution of TLK and TF–LK, on
each SNP, and we accounted for multiple testing using
the Benjamini–Hochberg (BH) correction, which
controls the false discovery rate (Benjamini and
Hochberg 1995). The threshold for significance was
set at 0.05. We also performed tests on the basis of the
chi-square distribution (as in tests of selection

section).
Single tests performed using TLK, with either its

empirical distribution or the chi-square distribution,
pinpointed three outliers, ESR, MQ30, and GHRHR
(Table 2). After correction for multiple tests (BH), there
was no significant outlier. Single tests performed using
TF–LK with its empirical distribution pinpointed seven
outliers (NRAMP, HAL, ESR, REN, MQ30, MX1, and
GHRHR). Using the chi-square distribution, four out-
liers were detected (HAL, ESR, REN, and MQ30). After
correction for multiple tests, only ESR and MQ30 were
significant. Overall, after correction for multiple tests,
results of the chi-square test were similar to those
obtained using the empirical distributions, but P-values
were higher (Table 2), as expected since the chi-square dis-
tribution was more conservative in this case (Figure 8).
Population SNP allele frequencies allowed us to identify
the population(s) in which selection occurred. In our
case, directional selection seems to have occurred in the
Large White breed for a gene involved in reproductive
performance (ESR) and for another gene MQ30 (Figure
9). In addition, we confirmed that directional selection
had occurred at the Halothane gene (HAL) in the
Piétrain breed (Figure 9).

Figure 10 shows the neutral distribution of TLK and
TF–LK conditional on heterozygosity (following the work
of Beaumont and Nichols 1996), for the four pig
breeds studied. TLK and TF–LK have similar shapes
although TLK has a slightly broader distribution for
heterozygosity values .0.2. The SNPs ESR, HAL, and
MQ30 lie beyond the 0.999 quantile of the TF–LK neutral
envelope, with similarity to the single-test P-values we
obtained (Table 2).

Figure 7.—Detection
power obtained with TLK

(black), TF–LK (red), and
the method of Foll and
Gaggiotti (2008) (green)
under a UBL (left) and a
UBL struc scenario (right),
for a selection coefficient
of 0.05.
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DISCUSSION

WeproposedanextensionofLewontinandKrakauer’s
(1973) method to detect signatures of selection in spe-
cies with complex population trees, under pure genetic
drift. We focused here on SNP data, but the method can
also be applied to multiallelic loci. Using simulations of
various population trees with or without selection, we
compared the robustness and power of the original LK
test, based on the TLK statistic, and of the extension we
proposed, based on the TF–LK statistic. In some simula-
tion scenarios, comparisons with a model-based MCMC
method (Foll and Gaggiotti 2008) were also performed.

Empirical distributions of TLK and TF–LK under
neutrality: Simulations under neutrality indicate that
the empirical distributions of TLK and TF–LK are similar.
They both do not fit the right-tail side of the chi-square
distribution when including extreme p0 values (0 , p0 ,

1), while they fit the chi-square distribution when con-
sidering only intermediate p0 values (i.e., 0.2 , p0 , 0.8).
These observations hold whatever the demographic
history of the populations (EBL, UBL, or UBL struc)
and whether the parameters p0 and F are estimated or
not. The long right tail of the test distributions in the
presence of extreme p0 values results in an excess of false
positives if the chi-square distribution is used as the null
distribution for the test. Therefore, it is recommended
rather to use the empirical distribution of the tests,
which we did when evaluating the power of the meth-
ods. Alternatively, p0 estimates at each tested SNP could
be used as a proxy for choosing which distribution
(empirical or theoretical) should be preferred to
perform tests based on TLK and TF–LK.

The lack of fit of the TLK and TF–LK distributions to the
chi-square distribution in the case of extreme p0 values
can be explained as follows. First, these statistics are
ratios (see Equations 9 and 24) and our derivations of
their expected values and variances imply a first-order
approximation of these ratios. When p0 tends to zero or

one, the denominators of the statistics become very
large and this approximation is less accurate. Second,
our derivations assume that the allele frequencies are
normally distributed, which is also violated for extreme
p0 values.

Focusing on intermediate allele frequencies makes
our derivations more accurate, and the good fit of the
TF–LK distribution with the chi-square distribution is
thus natural. More surprising is the equally good fit for
UBL scenarios of the TLK distribution with the chi-
square distribution in this case. We note, however, that
this result is consistent with the ones obtained by
Beaumont and Nichols (1996), who showed that the
FST distribution is robust to variations in the population
structure for intermediate heterozygosity values. In the
case of the UBL models, one likely explanation for the
robustness of TLK is that restricting to intermediate p0

values effectively conditions on allele frequency trajec-
tories that are compatible with the EBL hypothesis,
therefore reducing the effect of population size differ-
ences. In the case of more complex structured models,
this explanation alone may not be sufficient. But, as
pointed out by Beaumont (2005), we can advocate the
separation-of-timescales approximation (Nordborg 1997;
Wakeley 1999, 2001; Wakeley and Aliacar 2001), which
implies that in a wide range of structured population
models, the allele frequencies can be approximated by the
ones of a UBL model where several populations evolve
independently from a common ancestral pool.

Another interesting issue is that the use of SNP data
satisfies in principle one assumption underlying LK
tests, i.e., that mutations occur only in the ancestral
population (the collecting phase of the separation-of-
timescales approximation). Indeed, one criterion of the
SNP ascertainment phase is that both alleles at a SNP
marker must segregate in several of the populations
studied, implying that the mutated allele is relatively
ancient. Therefore, LK tests with SNP data can be
applied to recently bifurcating populations (i.e., live-

Figure 8.—Fit to the x2-distribution and power analysis of TLK and TF–LK for a scenario mimicking the pig data set. TheF matrix
was estimated using data on 50 microsatellites. Forward simulations were parameterized conditionally on the F matrix.
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stock, recently colonizing or invasive populations), but
also in principle to deeply divergent populations, pro-
vided the selected SNPs segregate in several of the
populations studied. In contrast, the use of multiallelic
loci (i.e., microsatellites) should be handled with
caution because they can potentially have mutated more
recently (in the scattering phase of the separation-of-
timescales approximation). This can affect the distribu-
tion of FST (Flint et al. 1999; Storz et al. 2004) and
therefore the results of LK tests.

Power of TLK and TF–LK: If selection acts on a large
population, TF–LK is more powerful than TLK. This
difference of power is remarkable at low type I errors.
In UBL and UBL struc models TF–LK detects 20% and

15–35% more selected SNPs than TLK, respectively.
However, if selection acts on a small population, TLK

may be more powerful than TF–LK for UBL models,
although this trend disappears for low type I errors. To
interpret these observations, let us consider the simpler
case of a UBL model where the F matrix is known. In
this case, TF–LK is proportional to

P
n
i¼1ð1=F iÞðpi � p0Þ2,

so that populations with a large Fi (i.e., a small
population size) have little influence on the distribution
of the statistic. Thus, the relative size of the population
where selection occurs has a strong impact on the power
of the test. On the other hand, TLK is proportional toP

n
i¼1ðpi � p0Þ2, so that all populations have the same

weight and the size of the population where selection

TABLE 2

Nominal and corrected P-values on a 34-SNPs data set from PigBioDiv2, based on the empirical distribution
of T and TF–LK and on the theoretical x2-distribution

Empirical test Chi-square test

TLK TF–LK TLK TF–LK

SNP name P-value BH P-value BH P-value BH P-value BH

9CP-DGAT2 0.9584 1.0000 0.9339 1.0000 0.9523 1.0000 0.9314 1.0000
23CP-TNFa 0.8150 1.0000 0.7344 1.0000 0.7934 1.0000 0.7323 1.0000
32CP-NRAMP-H1 0.6540 1.0000 0.5565 1.0000 0.6337 1.0000 0.5652 1.0000
41CP-NRAMP-A1 0.7213 1.0000 0.6128 1.0000 0.6967 1.0000 0.6185 1.0000
42CP-NRAMP-H2 0.5562 1.0000 0.4985 1.0000 0.5424 1.0000 0.5094 1.0000
43CP-NRAMP-A2 0.1313 0.6377 0.0333 0.1887 0.1361 0.6612 0.5090 0.3345
66CP-HAL 0.0521 0.4428 0.0048 0.0544 0.0583 0.4954 0.0168 0.1907
68CP-CC12-Smal 0.9833 1.0000 0.9751 1.0000 0.9803 1.0000 0.9707 1.0000
67CP-CC12-Msel 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
69CP-MQ52 0.8420 1.0000 0.7756 1.0000 0.8236 1.0000 0.7717 1.0000
105CP-ESR 0.0074 0.1513 0.0005 0.0085 0.0129 0.2465 0.0022 0.0447
106CP-UNI 0.7148 1.0000 0.5689 1.0000 0.6907 1.0000 0.5760 1.0000
107CP-ObHinF1 0.8841 1.0000 0.8544 1.0000 0.8681 1.0000 0.8454 1.0000
108CP-MQ2 0.4934 1.0000 0.3838 1.0000 0.4775 1.0000 0.4040 1.0000
109CP-REN 0.0792 0.5385 0.0204 0.1734 0.0846 0.5754 0.0427 0.3345
110CP-LS19 0.8117 1.0000 0.7115 1.0000 0.7901 1.0000 0.7086 1.0000
111CP-AMI 0.8985 1.0000 0.9049 1.0000 0.8839 1.0000 0.8996 1.0000
112CP-NAS 0.7641 1.0000 0.7703 1.0000 0.7409 1.0000 0.7661 1.0000
113CP-MQ30 0.0089 0.1513 0.0005 0.0085 0.0145 0.2465 0.0026 0.0447
8CP-FABP4D 0.4267 1.0000 0.5327 1.0000 0.4105 1.0000 0.5415 1.0000
100CP-PGK2-2 0.9993 1.0000 0.9985 1.0000 0.9983 1.0000 0.9969 1.0000
104CP-MQ50 0.7092 1.0000 0.5852 1.0000 0.6862 1.0000 0.5913 1.0000
219CP-MX1 0.0991 0.5615 0.0291 0.1887 0.1054 0.5970 0.0541 0.3345
220CP-CCK2 0.8598 1.0000 0.8877 1.0000 0.8426 1.0000 0.8824 1.0000
228CP-GHRHR 0.0171 0.1938 0.0468 0.2273 0.0225 0.2555 0.0731 0.3551
229CP-PITI 0.7637 1.0000 0.7041 1.0000 0.7402 1.0000 0.7006 1.0000
230CP-GHR 0.2283 0.8998 0.1555 0.5874 0.2260 0.8888 0.1860 0.7025
231CP-AGRP 0.8873 1.0000 0.8219 1.0000 0.8713 1.0000 0.8160 1.0000
232CP-FOS 0.3783 1.0000 0.3247 1.0000 0.3637 1.0000 0.3439 1.0000
233CP-GH 0.3426 1.0000 0.1914 0.6507 0.3307 1.0000 0.2182 0.7419
234CP-P2-IL12R2 0.8972 1.0000 0.8613 1.0000 0.8821 1.0000 0.8525 1.0000
235CP-P1-SLA-40 0.7084 1.0000 0.5956 1.0000 0.6856 1.0000 0.6025 1.0000
236CP-P2-CXCL12 0.5138 1.0000 0.5993 1.0000 0.4987 1.0000 0.6053 1.0000
237CP-P2-IL10 0.2382 0.8998 0.1211 0.5146 0.2353 0.8888 0.1521 0.6463

P-value is for a single test. BH is P-value corrected for multiple testing, according to the Benjamini–Hochberg method (con-
trolled for false discovery rate). P-values considered as significant at the 5% level are in boldface type, showing outlier SNPs most
likely under directional selection. Four populations are studied: DU02, LW05, PI03, and LR01.
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occurs does not directly matter. In fact, the disadvantage
of TLK compared to TF–LK is its larger variance, due to
the fact that it does not account for the Fi’s. For large
type I errors, the power of the test is essentially de-
termined by the difference between the expected value
of the statistic under selection and under neutrality, so
the larger variance of TLK is not an important problem.
However, for very small type I errors, this problem of
variance has a clear negative impact on TLK’s power. It is
important to note here that the small type I errors are
the most relevant in practical applications, because
genomic scans for selection have to deal with an
important multiple-testing issue.

In practice, the F matrix is unknown and the power
of TF–LK will depend on how well it can be estimated. In
our simulations, only a small percentage of SNPs were
influenced by selection due to hitchhiking. Conse-
quently, F was in general well estimated and the power
of TF–LK with an estimatedF was almost as good as with a

known F . However, it is advisable to be cautious when
testing dense SNP genotyping data in only a few
genomic regions. In our application to pig SNP data,
we avoided this bias by estimating the F matrix with an
independent data set of microsatellite loci. Remarkably,
the power of TF–LK depends on a comprehensive pop-
ulation sampling in a given population tree, because the
estimation of the F matrix is less biased when the pop-
ulation in which selection occurs is ‘‘diluted’’ among a
high number of populations.

When lots of populations are tested and nearly
neutral multilocus genotypes are available, the phylo-
genetic framework is perhaps the most convenient way
of estimating theF matrix, as was proposed in this work.
However, when the population number is not too large,
alternative methods such as approximate Bayesian
computation (ABC) methods (Beaumont et al. 2002;
Marjoram et al. 2003) could be considered, as they
potentially deal with more summary statistics than only

Figure 9.—Allelic frequencies of 34 SNPs in four major pig breeds of the PigBioDiv2 project. Arrows pinpoint the outlier SNPs,
black in populations where no selection occurs, red in populations where selection occurs.
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one distance to infer the population tree necessary to
calculate the F matrix.

The ancestral allele frequency p0 of the selected allele
has a complex influence on the detection power of TLK

and TF–LK. On one hand, extreme p0 values induce a
long right tail of the statistic distributions under
neutrality, which reduces the power. On the other hand,
the evidence of selection is stronger if the selected allele
was initially at low frequency (saying it differently, the
difference between the expected value of the statistics
under selection and under neutrality is larger for small
p0 values). The combination of these two antagonistic
effects implies that conditioning on intermediate p0

values may lead to either an increase or a decrease of
power, depending on the evolution scenario and on the
test. As already outlined above, the size of the popula-
tion where selection occurs will have more effect on the
results obtained with TF–LK than on those obtained
with TLK. Indeed, conditioning on intermediate p0

values will increase the power of TF–LK if selection acts
in a large population, but decrease it if selection acts in
a small population. These observations may be impor-
tant to understand the influence of SNP ascertain-
ment, which typically favors alleles with intermediate
ancestral frequencies, on the detection power of the
tests.

Software: A general workflow for the application of
the test to a real data set is presented in Figure 11. We
implemented R and python codes that (i) compute the
matrix of Reynolds’ genetic distances (Laval et al. 2002)
between populations from a matrix of SNP genotype
frequencies, (ii) compute a NJ tree from this Reynolds’
matrix (or another Reynolds’ matrix if provided), (iii)
build an estimate of theF matrix from the output of the
NJ tree, (iv) compute the test statistics, and (v) compute
the x2-approximated P-values, the empirical distribution
of the test statistics under the null (conditioned on F),
and the null envelope conditioned on heterozygosity.
The codes and the pig data files are available at http://
qgp.jouy.inra.fr/flk or as File S1 and File S1 cont.

Methodological perspectives: Some methodological
issues arise from these observations. First, the FST

distribution (analogous to the TLK statistic) was shown
to be sensitive to complex patterns of migration and
sharp differences in the migration rate among popula-
tions [island models, hierarchically structured models
(Beaumont and Nichols 1996; Excoffier et al. 2009)].
The sensitivity of TF–LK to correlations of allele frequen-
cies among populations due to migration events should
also be considered with regard to robustness and power.
Although gene flow among closely related populations
should not in principle bias the estimation of the
population tree—the bias would concern only branch
lengths after the split—gene flow among distantly re-
lated populations is expected to mask the true popula-
tion tree. Second, a simulation study of the robustness
and power of TF–LK when testing multiallelic loci with a
high mutation rate, such as microsatellite loci or
haplotypes, would be interesting.

CONCLUSION

A practical motivation for the development of an
extension of the LK test was to provide a powerful and
rapid parametric statistical test for detecting the sig-
nature of selection in somewhat complex population
trees with large marker data sets in many populations.
Beaumont and Balding (2004) and Foll and Gaggiotti

(2008) developed Bayesian hierarchical models on the
basis of a multinomial-Dirichlet likelihood that arises
naturally under the separation-of-timescales approxi-
mation. These methods explicitly model population-
specific (b-) effects that actually correspond to variation
of the inbreeding coefficient F (or FST) among popula-
tions. The fact that these methods implement robust
statistical modeling, including likelihood expression
and estimation using MCMC, makes them computa-
tionally prohibitive for large marker data sets and large
numbers of populations. On the other hand, methods

Figure 10.—Distributions
of TLK and TF–LK conditional
on heterozygosity and test
for outliers with 34 SNPs
(candidate genes) of the Pig-
BioDiv2 project. Top, mid-
dle, and bottom solid lines
delineate the neutral enve-
lope containing 98% of the
values, with the mean values.
Top and bottom dotted lines
delineate the 99.8% enve-
lope.
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based on an island model (Beaumont and Nichols

1996) or a hierarchically structured model (Excoffier

et al. 2009) are computationally convenient and quite
conservative, but may tend to omit more complex
demographic histories involving Ne variation among
populations and historical branching. To help in
screening large marker data sets for outliers in
relatively complex population trees, we propose an
additional method that accounts for Ne variation
among populations and historical branching, assum-
ing pure genetic drift and no migration in its current
state. The statistical test based on either the empirical
distribution of the TF–LK statistic or the theoretical
chi-square distribution is generally more powerful
than a classical LK test based on TLK. In scenarios
where the populations are hierarchically structured, it
is also more powerful than the MCMC method of Foll

and Gaggiotti (2008). This extended LK test thus
represents a quick and powerful tool in the context of
genomic scans for selection using population data.
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APPENDIX A: DISTRIBUTION OF LEWONTIN AND KRAKAUER’S TEST IN A STRUCTURED POPULATION

In the following, we derive the first two moments of the basic test (Equation 10).
We first write the sum of the numerator in Equation 9, in matrix product,X

i

ðpi � �pÞ2 ¼ p9 �MLK � p; ðA1Þ

where p is the n-vector of pi’s, MLK is the n 3 n matrix equal to I�(1/n)E, I is the n 3 n identity matrix, and E is the
n 3 n matrix made up of 1’s. The expectation can be written as

E
�X

i

ðpi � �pÞ2
�
¼ Eðp9Þ �MLK � EðpÞ1 traceðMLK � GÞ; ðA2Þ

where G ¼ p0ð1� p0ÞF is the variance–covariance matrix of frequencies. The first term is 0 since all pi’s have the
same expectation p0 (hence MLK � E(p)¼0). Further,

traceðMLK �GÞ ¼ p0ð1� p0ÞðtraceðF Þ � 1

n
traceðE �F ÞÞ ðA3Þ

¼ p0ð1� p0Þ
X

i

f ii �
1

n

X
i

X
j

f ij

 !
: ðA4Þ

Denoting by �F and �f the mean value of fixation indexes Fi and the mean value of the fixation indexes fij attached to
ancestral populations common to all pairs of observed populations (Equations 16 and 17), one gets

E
�X

i

ðpi � �pÞ2
�
¼ ðn � 1Þð �F � �f Þp0ð1� p0Þ; ðA5Þ

hence

Eðs2
pÞ ¼ ð �F � �f Þp0ð1� p0Þ: ðA6Þ

Similarly, we have

Eð�pð1� �pÞÞ ¼ p0ð1� p0Þ � p0ð1� p0Þ �f 1
1

n
ð �F � �f Þ

� �
; ðA7Þ

where the second term is equal to minus the variance of �p. In fact the expression �f 1 ð1=nÞð �F � �f Þ can be shown to be
small, in general smaller than the reciprocal of the number n of populations.

Turning to the expectation of FST, the error made when replacing the expectation of the ratio by the ratio of
expectations is of the same order of magnitude (,1:n), so that we can write
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EðF STÞ ’ �F � �f : ðA8Þ

Assuming normality, the sum of squares (Equation A1) has a variance equal to

V

 X
i

ðpi � �pÞ2
!
¼ 2 traceðMLK �G �MLK �GÞ: ðA9Þ

We have

MLK �G �MLK �G ¼ p2
0ð1� p0Þ2

�
I� 1

n
E
�
�F �

�
I� 1

n
E
�
�F ; ðA10Þ

hence

traceðMLK �G �MLK �GÞ ¼ p2
0ð1� p0Þ2

�
traceðF 2Þ � 2

n
traceðF � E �F Þ1 1

n2 traceðE �F � E �F Þ
�

ðA11Þ

since the trace operator is commutative. Denoting by a dot the summation over indexes
P

i f ij ¼ f :j ;
P

i

P
j f ij ¼ f ::

� �
,

we have

traceðF 2Þ ¼
X

i

X
j

f 2
ij ðA12Þ

traceðF � E �F Þ ¼
X

i

f 2
i: ðA13Þ

traceðE �F � E �F Þ ¼ f 2
::: ðA14Þ

As before, we assume that the number of populations is large enough for the variance of FST to be approximated by the
ratio of the variance of the numerator, as calculated above, to the square of the expectation of �pð1� �pÞ (Equation A7).

Assuming that the number of loci is large enough for the variance of �F ST (Equation 10) to be neglected, the previous
expressions allow the first two moments of the test to be derived for any coancestry structure (matrix F) of the
populations, Equations 13 and 15.

Robertson (1975a) considered the case of a structured history causing correlations between allele frequencies
(nonzero fij values, with equal branch lengths (Fi¼ fii¼ F ). With these conditions expressions (A12), (A13), and (A14)
become

traceðF 2Þ ¼ nF 2 1
X

i

X
j 6¼i

f 2
ij

¼ nF 2 1 nðn � 1Þ �f 2 1
X

i

X
j 6¼i

ð f ij � �f Þ2

traceðF � E �F Þ ¼
X

i

ðF 1
X
j 6¼i

f ijÞ2

¼ nF 2 1 2nðn � 1ÞF �f 1
X

i

�X
j 6¼i

f ij

�2

¼ nF 2 1 2nðn � 1ÞF �f 1
X

i

�X
j 6¼i

ð f ij � �f Þ1 ðn � 1Þ �f
�2

¼ nF 2 1 2nðn � 1ÞF �f 1 nðn � 1Þ2 �f 2 1
X

i

�X
j 6¼i

ðf ij � �f Þ
�2

traceðE �F � E �F Þ ¼ ðnF 1 nðn � 1Þ �f Þ2

¼ n2ðF 2 1 2ðn � 1ÞF �f 1 ðn � 1Þ2 �f 2Þ:

Setting
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v1 ¼
P

i

P
j 6¼iðf ij � �f Þ2

nðn � 1Þ

and

v2 ¼
P

i

�P
j 6¼iðf ij � �f Þ

�2

nðn � 1Þ2 ;

the sum

traceðF 2Þ � 2

n
traceðF � E �F Þ1 1

n2 traceðE �F � E �F Þ

in Equation A11 becomes equal to

ðn � 1ÞððF � �f Þ2 1 nv1 � 2ðn � 1Þv2Þ:

Comparing with Robertson’s notations (Robertson 1975a, p. 785), his dij is

dij ¼
f ij � �f

F
;

v1¼ ðF � �f Þ2 times his Vr 9 term, which is the variance of ‘‘internal’’ correlation coefficients between gene frequencies
in different populations defined as

r 9ij ¼
f ij � �f
�F � �f

;

and v2 corresponds to a second term he found small with respect to the first one, to get Equation 18.
In the case of independence between populations (the tree has a star structure), but heterogeneous Fi values (the

populations show different heterozygosities), we get another simplified expression. Assuming no correlation between
allele frequencies ( �f ¼ 0), the expectation is not changed,

EðF STÞ ¼ �F ; ðA15Þ

and the previous expressions for the variance become

traceðF 2Þ ¼
X

i

F 2
i ðA16Þ

traceðF � E �F Þ ¼
X

i

F 2
i ðA17Þ

traceðE �F � E �F Þ ¼ n2 �F 2 ðA18Þ

so that we get

V
�X

i

ðpi � �pÞ2
�
¼ 2p2

0ð1� p0Þ2
��

1� 2

n

�X
i

F 2
i 1 �F 2

�
ðA19Þ

¼ 2p2
0ð1� p0Þ2ðn � 1Þð �F 2 1

�
1� 2

n

�
VðF ÞÞ ðA20Þ

if we set

VðF Þ ¼ 1

n � 1

X
i

ðF i � �F Þ2: ðA21Þ

Then, the variance of TLK is changed from 2(n – 1), the value corresponding to a chi-square distribution, to
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VðT LKÞ ’ 2ðn � 1Þ
�

1 1
�

1� 2

n

�VðF Þ
�F 2

�
: ðA22Þ

Evaluating the variance of Fi values can be obtained from the variance of Reynolds’ distances Rij, which estimate the
mean F values of populations i and j from their proximal common ancestor population. Indeed, with no correlation
( �f ¼ 0), Rij ¼ 1

2 ðF i 1 F jÞ, so that

VðF Þ ¼ 2VðRÞ: ðA23Þ

APPENDIX B: MULTIALLELIC VERSION OF BASIC AND EXTENDED LK TESTS

In the following we extend the test to the case of multiallelic markers.
Consider a locus with A alleles. Let P ¼ (p91, . . . , p9a, . . . , p9A)9 denote the nA-vector of allele frequencies sorted by

population within allele number: pa denotes the n-vector of frequencies of allele a in the n populations. Under drift,

EðPÞ ¼ ðp0119n; . . . ; p0a19n; . . . ; p0A19nÞ9 ¼ p051n; ðB1Þ

where 5 denotes the Kronecker product and p0 is now the A-vector of founder allele frequencies. The variance of P,

VðPÞ ¼ B05F ; ðB2Þ

involves the (n 3 n)-matrixF and the (A 3 A)-matrix B0 ¼ diagðp0Þ� p0p90. The estimator of founder frequencies is
now P̂0 ¼ ð19nw9p and can be written as ðIA51nw9ÞP, with w as in Equation 21. The multiallelic equivalent of T F�LKðp0Þ
in (23) is

T̃F�LKðP0Þ ¼ ðP� P0Þ9ðB05F Þ�1ðP� P0Þ ðB3Þ

¼ ðP� P0Þ9ðB�0 5F�1ÞðP� P0Þ; ðB4Þ

where B�0 is the Moore–Penrose generalized inverse of B0. It can be explicitly written as (Tanabe and Sagae 1992)

B�0 ¼ ðIA � 1A19AÞdiag�1ðp0ÞðIA � 1A19AÞ: ðB5Þ

Replacing p0 with p̂0 in P0 and B0 leads to the quadratic form

T̃F�LK ¼ ðP� P̂0Þ9ðB̂05F Þ�1ðP� P̂0Þ
¼ P9ðIA � InA51nwÞ9ðB̂�0 5F�1ÞðIA5InA � 1nw9ÞP
¼ PðB̂�0 5MÞP;

where M is the (n 3 n) matrix in Equation 26.
In the particular case when the number of alleles is two, T̃F�LK reduces to TF–LK in (24), so that considering one of

the two alleles or both alleles is equivalent.
From the calculation of the moments of T̃F�LK (see below), we get

EðT̃F�LKÞ � ðn � 1ÞðA � 1Þ ðB6Þ

VðT̃F�LKÞ � 2ðn � 1ÞðA � 1Þ ðB7Þ

so that T̃F�LK has approximately a x2
(n�1)(A�1)-distribution under the null hypothesis of genetic drift.

Moment calculations: The same type of demonstration as in appendix a is used for the extension of the LK test, so
that only main results are presented.

When P0 is known: The expectation of the statistic test is
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EðT̃F�LKðP 0ÞÞ ¼ trace½ðB05F Þ�VðPÞ�
¼ trace½ðB�0 5F�1ÞðB05F Þ�
¼ trace½ðB�0 B0Þ5ðF�1F Þ�
¼ traceðInÞtraceðB�0 B0Þ
¼ nðA � 1Þ:

Similarly, assuming approximate normality,

VðT̃F�LKðP0ÞÞ ¼ 2 trace½ðB05F Þ�VðPÞðB05F Þ�VðPÞ�
¼ 2nðA � 1Þ:

When P0 is unknown: First, note that P� P̂0 ¼ ð4A
a¼1ðIn �WÞÞP, where W is the (n 3 n) matrix built with identical

lines equal to w (Equation 21). It can also be shown that the ath diagonal element of B0 is
P

b 6¼a 1=p0;b and the (a, b)
element is equal to

P
c 6¼a;b 1=p0;c .

The quadratic form T̃F�LK can be written as P9M̃P, with

M̃ ¼ ð4A
a¼1ðIn �WÞÞ9ðB̂�0 5F�1Þð4A

a¼1ðIn �WÞÞ
¼ B̂�0 5½ðIn �WÞ9F�1ðIn �WÞ�
¼ B̂�0 5M

with M defined in Equation 26. Then, incidently, T̃F�LK can be written as

T̃F�LK ¼
X
a;b

p9
aMpb �

X
c 6¼a;b

1

p̂0;c

 !
ðB8Þ

with
P

a pa ¼ 1n .
Coming back to the matrix notations, and following calculation lines of the biallelic case (Equations 22, 27, and 28),

but neglecting the bias term in (22), B̂0 is replaced by its expectation B0, and

EðT̃F�LKÞ ¼ EðPÞ9M̃EðPÞ1 traceðM̃VðPÞÞ
¼ P90ðB�0 5MÞP0 1 traceððB�0 5MÞðB05F ÞÞ
¼ traceððB�0 B0Þ5ðMF ÞÞ
¼ traceðMF ÞtraceðB�0 B0Þ
¼ ðn � 1ÞðA � 1Þ;

since

traceðMF Þ ¼ trace
�

In �
F�1119

19F�11

�
¼ n � 1; ðB9Þ

and B0 has rank (A � 1).
Similarly, assuming approximate normality,

VðT̃F�LKÞ ¼ 4EðPÞ9M̃VðPÞM̃EðPÞ1 2 traceðM̃VðPÞM̃VðPÞÞ
¼ 4P90ðB�0 5MÞðB05F ÞðB�0 5MÞP0

1 2 traceððB�0 5MÞðB05F ÞðB�0 5MÞðB05F ÞÞ
¼ 2 traceððB�0 B0Þ5ðMF Þ � ðB�0 B0Þ5ðMF ÞÞ
¼ 2 traceðMFMF ÞtraceðB�0 B0B�0 B0Þ
¼ 2ðn � 1ÞðA � 1Þ;

since MFMF ¼ MF and B0B�0 B0 ¼ B0 by definition of the generalized inverse.

262 M. Bonhomme et al.
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FIGURE S1.—This figure reports the same description as Figure 3, but for an EBL model. 
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FIGURE S2.—This figure reports the same description as Figure 3, but for an UBL model. 
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FIGURE S3.—This figure illustrates the correlation between p0 estimates and true p0 values recorded in the simulations. The 

TLK and TF-LK estimators of p0 can be considered as relevant estimators, with minimum variance. 
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FIGURE S4.—This figure reports the same description as Figure 4 but for p0and F equal to their true value. 
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FIGURE S5.—This figure reports the same description as Figure 7 with a selection coefficient equal to s=0.20. 
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FILE S1 

Detecting selection in population trees: the Lewontin and Krakauer test extended 

This page is documentation on how to compute the extended LK test (named FLK) on a SNP (biallelic marker) dataset. 

Instructions are provided along with a set of input file examples containing the pig data analyzed in Bonhomme et al.  

 

All files are available for download as FileS1.zip at http://www.genetics.org/cgi/content/full/genetics.110.117275/DC1. 

Additionally, this information is available at http://qgp.jouy.inra.fr/flk. 

 

Principle 

The principle of the test is to compare patterns of differences between allele frequencies in several populations to their 

expectation under a neutral evolution. The null hypothesis of neutral evolution assumes a tree structure with branch length 

corresponding to the amount of genetic drift in each population (F). This tree is estimated from the matrix of Reynold's 

genetic distances between populations, using the neighbor joining (NJ) algorithm. 

 

Software requirements 

All software needed are freely available on all common computer operating systems. Please install the following required packages 

to use the programs provided. 

 

The test calculations are performed using R. The ape package is needed to estimate the NJ tree. 

To derive the empirical distributions of the test under neutrality, a python program is provided (see below). It requires the 

simuPOP and numpy packages to run. 

 

Input 

 

Main input 
In order to perform the test, the user needs to provide data on allele frequencies for several populations. To build the population 

tree, the program needs an outgroup population used to root the NJ tree. This file contains one line per population. Each line 

starts with the population name, followed by the list of allele frequencies for this population. 

 

As it is assumed markers are biallelic (SNP), only one allele frequency is needed per marker. It doesn't matter the allele which 

frequency is reported in the file, as long as it is the same allele for all populations. 

 

Excerpt of the input file for the pig dataset  
    GBDU02 0.6875 0 0 0.40425532 0.23958333 ... 

    FRLR01 0.73958333 0.03125 0.11 0.27659574 0.23469388 ... 

    GBLW05 0.55 0.03703704 0.22916667 0.125 0 ... 

    DEPI03 0.65306122 0.15306122 0.01 0.5 0 ... 

    FRMS01 0.3125 0 0 0 0.375 ... 

For this dataset, the outgroup population is FRMS01. 

 

Additional input 
Additionally, the user may provide a file with the Reynolds genetic distances already computed. This is convenient (and 
recommended) if the SNP data is small and restricted to a few regions of the genome. The format of the file is as follows: 

Each line contains first the population name and then the corresponding row of the matrix of reynolds genetic distances. It is 

assumed that the population order is the same for the row and the columns. Population names in this file must match the ones in 

the main input file, although the order might be different. 

 

Reynolds Genetic Distances for the pig dataset. 

    GBDU02 0.0000 0.2422 0.2850 0.3916 0.2647 

    FRLR01 0.2422 0.0000 0.1732 0.3396 0.1501 

    GBLW05 0.2850 0.1732 0.0000 0.3572 0.1774 

    FRMS01 0.3916 0.3396 0.3572 0.0000 0.3436 

    DEPI03 0.2647 0.1501 0.1774 0.3436 0.0000 

In the pig data analysed by Bonhomme et al., the Reynolds genetic distances were computed from microsatellite data. 

http://www.r-project.org/
http://cran.r-project.org/web/packages/ape/
http://simupop.sourceforge.net/
http://numpy.scipy.org/
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Computing FLK test 

In order to compute the FLK test, you will need the R code provided in the file FLK.R. 
We provide instructions to use the code through an example R session on the pig data. An analysis of the input file must follow 

the same steps. The R statements are in bold and comments in italic: 

 

    ## import the functions 
    source('FLK.R') 

    ## Read the SNP frequency data 

    freq=read.table('pig.dat',row.names=1) 

    ## Read the matrix of Reynolds Genetic Distances 
    DR=read.table('pig.dist',row.names=1) 

    ## Estimate the population tree with provided Reynolds matrix 

    F=Fij(freq,outgroup='FRMS01',D=DR) 

    ## Alternatively estimate the population tree using Reynolds distances 
    ## computed on the SNP data (not recommended here) 
    Fsnp=Fij(freq,outgroup='FRMS01') 

    ## Now compute the FLK and LK tests 
    tests=FLK(freq,F)  

 

The FLK R function returns a data frame where each line corresponds to results for a SNP. The order of the SNPs in the data 

frame is the same as on input. For each SNP, the function returns the mean heterozygosity (Ht), the FLK statistic (F.LK), the 

associated asymptotic p-value (F.LK.p.val), the original LK statistic (LK) and associated asymptotic p-value (LK.p.val). 

Excerpt of the data frame obtained on the pig data: 

 

    Ht F.LK F.LK.p.val LK LK.p.val 

    0.45036473 4.422247e-01 0.931388145 0.34041443 0.95225673 

    0.10454975 1.286550e+00 0.732329480 1.03240612 0.79341130 

    0.15934366 2.034670e+00 0.565242014 1.71449799 0.63371538 

    0.43976966 1.783754e+00 0.618476643 1.43776139 0.69670761 
    0.20902125 2.316534e+00 0.509360914 2.14718524 0.54242600 

    0.37367636 7.443688e+00 0.059023131 5.54232704 0.13612880 

 

Additional output files are created by the Fij function. It returns the estimated F matrix in a file named fij.txt and the NJ tree in 

the file named tree.txt. These files are needed to derive the empirical null distribution of the FLK statistic (see below). 

 

Empirical null distribution of FLK 

We provide a program called FLKnull to derive the empirical null distribution of the FLK statistic. This program performs 

simulations conditional on the dataset analysed (that is the population tree estimated from the data). The program needs the 

fij.txt and tree.txt files created by the Fij R function (see above). 

 

Running the program 

To run the program, open a terminal and go the directory containing the results of the analysis. Then just run the program by 
typing python FLKnull. This will perform 10,000 simulations conditional on the estimated population tree. Optionnaly, more 

(or less although not recommended) simulations can be specified as an argument to the program. For example typing python 

FLKnull 50000 will lead to performing 50,000 simulations. Note that the simulation process can take some time. 

 

FLKnull returns the empirical quantiles of the null distribution of the tests for different heterozygocities. The results are provided 

in an output file named 'envelope.txt'. Each line of the file is composed of: 

• Heterozygosity 

• 0.005, 0.025, 0.5 (median), 0.975, 0.995 quantiles of the null distribution 
The output file has a header as first line indicating the values for the different columns. 

 

Plotting the distribution 

We provide another R code to plot the null distribution envelope. This is done by calling source('plotNull.R') within your 

session (provided the output file 'envelope.txt' is in the current working directory). The actual estimated quantiles are plotted in 
gray. Because of the variance due to the simulation process, the envelope is better represented by fitting a spline on the actual 

quantiles. These are the lines represented in black: the solid lines correspond to the 0.005 and 0.995 quantiles, the dashed lines 

the 0.025 and 0.975 quantiles and the doted line to the median. If you find the variance around the spline to be too large, 

perform more simulations as explained above. 

 

You can then add the observed value of your data by calling points(tests$Ht,tests$F.LK,pch=16). On the pig data this 
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results in the following figure:

 




