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ABSTRACT

In this paper we present the Data-Driven Multithreading
Virtual Machine for the Cell Processor (DDM-VM.). Data-

Driven Multithreading is a non-blocking multithreading model

that decouples the synchronization from the computation

portions of a program allowing them to execute asynchronously

in a dataflow manner. The core of the DDM model is the
Thread Scheduling Unit (TSU) which schedules threads dy-
namically at runtime based on data availability. DDM-VM,
implements the TSU as a software module running on the
PPE core of the Cell, allowing the SPE cores to execute
the program threads. DDM-VM. virtualizes the parallel re-
sources of the Cell processor, handles the heterogeneity of
the cores and manages the Cell memory hierarchy efficiently.

We present the architecture of DDM-VM. and provide an
in-depth performance analysis using a suite of standard com-
putational benchmarks. The evaluation shows that DDM-
VM. scales well and tolerates scheduling overheads and mem-
ory latencies effectively. Furthermore, DDM-VM, compares
favorably with other platforms targeting the Cell processor.

Categories and Subject Descriptors

D.1.m [Programming Techniques|: Miscellaneous; C.1.3
[Processor Architectures]: Other Architecture Styles—
Data-flow architectures, Heterogeneous (hybrid) systems

General Terms

Design,Languages,Performance

Keywords

multi-core, data-driven multithreading, heterogeneous

1. INTRODUCTION

The switch to multi-core has elevated concurrency as a
major issue in utilizing the ever increasing number of cores
on a single chip. Heterogeneous multi-cores make this task
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even harder, as different types of resources need to be in-
dividually optimized in order to achieve maximum global
performance.

The Cell Broadband Engine processor [13] is a high per-
formance heterogeneous multi-core system. It has one gen-
eral purpose processor called the PPE, and eight SIMD pro-
cessors, called the SPEs. Each SPE can directly operate
on a small local store memory and can also access a com-
mon shared main memory through DMA calls. The memory
management between the two levels must be handled explic-
itly by software. Cell provides a high computational power
on a single chip, making it a very appealing target for high-
performance applications. However, because of its hetero-
geneity and its novel architectural elements, programming
it is not a trivial task.

The Data-Driven Multithreading Virtual Machine (DDM-
VM,) addresses this challenge by adopting the Data-Driven
Multithreading (DDM) model of execution [10] for the Cell
processor. DDM is a non-blocking multithreading model
that is based on the Data-Flow model of execution[6, 2,
19]. The DDM model combines the latency tolerance and
the distributed concurrency mechanisms of the Data-Flow
model with the efficient execution of the sequential model.
The first implementation of DDM was the Data-Driven Net-
work of Workstations D2NOW [10] which was a simulated
cluster of distributed machines augmented with a hardware
Thread Scheduling Unit. D2NOW CacheFlow optimizations
showed that Data-Driven scheduling could generally improve
locality, contrary to the conventional wisdom at that point.
The second implementation of DDM, TFlux [16], focused
on portability, and thus developed a portable software plat-
form that runs on a variety of commercial multi-core sys-
tems. TFlux also developed the first full system simulation
of a DDM machine.

The DDM-VM. is a completely new implementation of
DDM that differs both in focus and scope from the previous
two. DDM-VM_, targets a high-performance heterogeneous
multi-core system that requires the programmer to handle
many low-level details, such as memory management and
synchronization tasks. DDM-VM.,. implements an efficient
runtime system that provides support for scheduling, exe-
cution instantiation, synchronization, and data movement
implicitly. In this context, DDM-VM, is the first heteroge-
neous implementation of DDM. It handles the heterogeneity
by mapping the decoupled synchronization and computation
tasks to the suitable core(s). DDM-VM, is also the first
DDM implementation executing under constrained memory
resources, which introduced a new set of challenges and em-



phasized the importance of exploiting locality.

DDM-VM. provides a set of C macros that enable the
programmer to describe the parallel sections of the code
and the data produced and consumed. Alternatively, the
programmer can use the Concurrent Collections (CnC) [3,
4] a platform-independent, high-level parallel language with
the help of a source-to-source compiler that generates the
DDM-VM. program. The resulting code is compiled using
the Cell SDK compilers and linked with the DDM-VM_, run-
time libraries.

DDM-VM_. is evaluated thoroughly using a suite of stan-
dard computational benchmarks. The evaluation showed
that the platform scales well and tolerates synchronization
and scheduling overheads efficiently. Moreover, DDM-VM,
is the first DDM implementation that can be directly com-
pared with alternative execution models and implementa-
tions. When compared with two other platforms [18, 15]
that target the Cell, DDM-VM. achieved better performance
for the three computationally intensive benchmarks common
to all the platforms. We believe that this is a major con-
tribution strengthening the case that hybrid models that
combine Data-Flow concurrency with efficient control-flow
execution are a viable option as the basis of a new execution
model for multi-core systems.

2. THE CELL HETEROGENEOUS MULTI-
CORE

The Cell Broadband Engine processor (Cell B.E [13]) is
a heterogeneous multi-core chip composed of one general-
purpose RISC processor called the Power Processor Element
(PPE) and eight fully-functional SIMD co-processors called
the Synergistic Processor Elements (SPE) communicating
through a high-speed ring bus called the Element Intercon-
nect Bus (EIB).

The PPE has two levels of cache and is designed to run
the operating system and act as a coordinator for the other
cores (SPEs) in the system. The SPE is a RISC processor
with 128-bit SIMD organization that is capable of deliver-
ing 25.6 GFLOPs in single-precision. It has its own 256 KB
software-controlled local store (LS) memory. The SPE can
only execute instructions and access data existing in its LS.
The data has to be explicitly fetched by the programmer
from main memory via the asynchronous Direct Memory Ac-
cess (DMA) engine of each SPE’s Memory Flow Controller
(MFC) unit.

3. DATA-DRIVEN MULTITHREADING

Data-Driven Multithreading (DDM) [10] research has com-
bined the benefits of the Data-Flow model [6, 2, 19] in ex-
ploiting concurrency with the highly efficient sequential pro-
cessing of the commodity microprocessors. Moreover, DDM
can improve the locality of sequential processing by im-
plementing deterministic data prefetching using data-driven
caching policies [9]. The core of the DDM implementation
is the Thread Scheduling Unit (TSU) [7] which is responsi-
ble for the scheduling of threads at run-time based on data
availability.

In DDM a program consists of several threads of instruc-
tions that have producer-consumer relationships. Program-
ming constructs such as loops and functions are mapped
into DDM threads. DDM enforces single-assignment se-
mantics across threads, and allows side-effects locally within

a thread. The TSU schedules a thread for execution once
all the producers of this thread have completed execution,
which ensures that all the data this thread needs is available.
Once the execution of a thread starts, instructions within a
thread are fetched by the CPU sequentially in control-flow
order, thus exploiting any optimization available by the CPU
hardware.

The threads are identified by the tuple: ThreadID, which
is static, and Context which is dynamic. Each thread is
paired with its synchronization template or meta-data spec-
ifying the following attributes:

1. The Instruction Frame Pointer (IPF): points to the
address of the first instruction of the thread.

2. The ReadyCount (RC): a value equal to the number
of producer-threads this thread needs to wait for until
starting to execute.

3. The Data Frame Pointer List (DFPL): a list of pointers
to the data inputs assigned for the thread.

4. The Consumer List (CL): a list of the thread’s con-
sumers that is used to determine which ReadyCount
values to decrement after the thread completes its ex-
ecution.

The synchronization templates of all the threads in the
DDM program constitute the data-driven synchronization
graph which is used by the TSU for scheduling threads.

The attributes of the DDM synchronization graph are typ-
ical of any dynamic data-flow graph [2, 19] with the ex-
ception of the DFPL which is needed in our work for ex-
plicit memory management. In general, the information
conveyed in the graph is sufficient to capture any struc-
tured intra-procedural control-flow. Inter-procedural exten-
sions can also be done but were not relevant for the scope
of this work.

4. DDM-VM. ARCHITECTURE

The DDM-VM_. implements the DDM model on the Cell
processor. The Thread Scheduling Unit (TSU) responsible
for scheduling threads at run-time is implemented as a soft-
ware module running primarily on the PPE core, while the
execution of the threads takes place on the SPE cores.

This mapping is an efficient utilization of the Cell hetero-
geneous resources; as the code of the TSU that heavily uses
branches and control-flow structures, is more suited to run
on the general purpose PPE core originally designed for con-
trol tasks, while the threads are more suited to run on the
SIMD SPE cores optimized for computational loads. The
communication between the TSU and the executing threads
is facilitated via DMA calls. The Software CacheFlow (S-
CacheFlow) module in the TSU manages data transfers and

prefetching automatically. Thread scheduling and S-CacheFlow

operations running on the PPE are interleaved with the ex-
ecution of threads on the SPEs, thus shortening the crit-
ical path of the application. All these operations are im-
plemented by the runtime requiring no intervention from
the programmer. Figure 1 illustrates the architecture of the
DDM-VM..

The structures holding the synchronization information
and the state of the TSU are allocated in main memory and
shared among all the SPEs. This includes the Graph Mem-
ory (GM) which contains the synchronization templates for



each thread, the Synchronization Memory (SM) which con-
tains the ReadyCount values for each thread, and the Ac-
knowledgement Queue (AQ) which holds the identification
and status of threads that have finished execution. The
Waiting Queue (WQ), Fire Queue (FQ) and Command Queue
(CQ) hold information specific to each SPE and hence are al-
located separately per SPE. The structures required for the
operation of the S-CacheFlow are allocated in main mem-
ory as well. The LS memory of the SPEs holds (i) the code
of the DDM threads linked with the runtime library(ii) the
S-CacheFlow structures including the part of the LS which
holds the data of the DDM threads, which we refer to as the
DDM Cache.

DDM Thread Execution.

The DDM thread execution takes place on the SPEs and
consists of two types of operations, computation and syn-
chronization. The synchronization operations are performed
by the runtime using simple DDM commands which are sent
via a DMA call to the corresponding TSU Command Queue
(CQ) in main memory. When a thread finishes execution
the runtime fetches the information of the next thread to
execute from the corresponding FQ in main memory via a
DMA call as well.

Thread Scheduling Unit.

The TSU running on the PPE processes the commands
in the CQ of every SPE. The commands either update the
TSU structures or inform the TSU that the current execut-
ing thread on that SPE has finished. In the latter case, the
information of the completed thread is inserted into the AQ
and used to update the ReadyCount of the consumers of the
thread that has completed execution. If any of the updated
consumer threads’ ReadyCount reaches zero, this thread is
scheduled for execution on an available SPE. This is done
by inserting the ready thread information into the Waiting
Queue (WQ) of one of the SPEs. The thread is then pro-
cessed by the S-CacheFlow module which transfers the data
this thread requires to the LS of the SPE and only after that
the thread is deemed ready to execute and its information
is moved into the Fire Queue (FQ).

Scheduling Policy.

The DDM-VM, implements a number of scheduling poli-
cies that control the mapping of ready threads to the SPE
cores. The default policy distributes the threads among the
SPEs in a way that maximizes load-balancing. The other
policies include static, modular, and round-robin policies.
The DDM-VM_. also supports using a custom policy, which
gives the programmer or the compilation tools the flexibility
to implement a scheduling policy based on data locality or
the dependency graph of the program or any other criteria.

S. SOFTWARE CACHEFLOW

CacheFlow [9] is a cache management policy utilized with
the Data-Driven Multithreading to improve the performance
by ensuring that the data a thread requires is in the cache
before the thread is fired for execution. The original imple-
mentation of CacheFlow [9] targeted machines with hard-
ware caches to implicitly improve the performance of DDM
execution by reducing cache misses. However, on the Cell,
CacheFlow is applied in a new context, that is, to manage

the Cell memory hierarchy. This is challenging because the
LS is a constrained memory resource demanding efficient uti-
lization. Moreover, the LS is software-controlled, rendering
many techniques applied to preserve coherency in hardware-
caches prohibitively expensive. To handle this challenge,
DDM-VM. utilizes the CacheFlow policy to implement Soft-
ware CacheFlow (S-CacheFlow): a fully automated pre-
fetching software cache with variable block sizes that is ex-
tended with many optimizations like adaptive multi-buffering,
data re-use and reference-counting.

S-CacheFlow Structures.

To implement S-CacheFlow on the Cell a portion of the LS
memory of each SPE, usually (96-128)KB, is pre-allocated
for the DDM Clache and divided into cache blocks. The size
of the blocks can vary to match each application character-
istics but must be in multiples of 128B.

The TSU has a Cache Directory (CD) structure for each
SPE to keep track of the cache blocks state. The data of
each Data Frame Pointer (DFP) of a thread is allocated
at least one cache block and data instances larger than one
cache block are allocated in consecutive blocks. The Remote
Cache Lookup Directory (RCLD) allocated per-SPE, keeps
track of the LS addresses where the data was allocated.

S-CacheFlow Operation.

At run-time S-CacheFlow dequeues the information of
ready threads from the WQ and tries to allocate the data in
the DDM Cache at the SPE where the thread is scheduled to
run. If the allocation is successful, S-CacheFlow issues DMA
calls to transfer the data from main memory to the LS by
placing requests in the Proxy Command Queue of the MFC
of the target SPE. Threads whose DMA calls are completed
are moved into the Fire Queue (FQ) indicating they are
ready for execution. To preserve coherency, S-CacheFlow
writes back modified cache blocks to main memory when a
thread terminates. Figure 2 illustrates the algorithm for
S-CacheFlow on the Cell.

Resolving the LS address of the data for each thread (re-
quired because data belonging to different threads can be
present in the LS due to pre-fetching) is performed using
The RCLD. The entries of the RCLD are filled by the S-
CacheFlow module in the TSU and copied to the LS of the
SPE via a DMA call. The runtime on the SPEs consults
the RCLD, before starting the execution of every thread, to
assign the pointers that will be used to access the data. The
runtime consults the RCLD again, before the thread finishes
execution to write-back modified data to main memory.

Adaptive Multi-buffering/Pre-fetching.

The ability to issue non-blocking DMA calls on the Cell
and check their completion asynchronously allows S-CacheFlow
to issue multiple DM As for threads with more than one DFP
and/or for data belonging to more than one thread in the
WQ without waiting for the transfers to complete. This al-
lows the prefetching of the data of the threads -whenever
possible- and hides the latency of the data transfers and the
S-CacheFlow work with computation. Therefore, effectively
achieving an automatic and transparent multi-buffering that
adapts to the number of ready threads and the LS space lim-
itation.
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Figure 1: The Architecture of the DDM-VM._.

Exploiting Data Locality.

S-CacheFlow exploits data re-use, whenever more than
one thread is scheduled to execute on the same SPE access
the same data, by keeping the blocks of that data in the
LS. The dirty bit is set for these blocks and a reference-
count mechanism can be employed to decide when to write
the data back to preserve coherency and avoid expensive
invalidation /update operations across the SPEs. Scheduling
threads that re-use data to the same SPE can be identified
by the programmer or inferred from the dependency graph
of the program.

Distributed S-CacheFlow.

The evaluation of the initial implementation of S-CacheFlow

scaled well for up to 4 SPE cores, but for a higher count of
cores the PPE became a bottleneck. Our analysis revealed
that a major source of overhead was the issuing of a large
number of DMAs and periodically checking their comple-
tion which overloads the PPE core that runs the TSU. To
solve this problem we have modified the S-CacheFlow imple-
mentation and moved the DMA management to the portion
of the runtime that runs on the SPEs. We call this imple-
mentation the Distributed S-CacheFlow. Evaluation of both
configurations is presented in Section 7.1.

6. DDM-VM: PROGRAMMING TOOLCHAIN

The DDM-VM_. utilizes the distributed synchronization
mechanisms of Dynamic Dataflow as described by the U-
Interpreter [2]. The program is composed of a number of
re-entrant, inter-dependent DDM threads along with their
DDM Synchronization/Dependency Graph.

The DDM-VM, programming toolchain provides program-
mers with three different methods to write their applica-
tions; the first is based on a set of C macros, the second is
based on a CnC source-to-source compiler and the third is
a more ambitious GCC-based auto-parallelization compiler

that is still under development by our group. The resulting
code of the DDM-VM, program is then compiled using the
Cell SDK compilers and linked with the DDM-VM. runtime.
Figure 3 shows an overview of the DDM-VM., toolchain.

DDM-VM. Macros.

This method is the most basic one where the programmer
uses a set of macros to write the DDM-VM,. program in
C. The macros identify the boundaries of the threads, the
data produced/consumed by the threads and the producer-
consumer relationships amongst the threads. The macros
expand into calls to the runtime to manage the execution of
the program according to the DDM model. Programming
DDM-VM, with the macros is analyzed in detail in [1].

Concurrent Collection Source-to-Source Compiler.
Concurrent Collections [3, 4] is a declarative parallel pro-
gramming language, with similar semantics to DDM, which
allows programmers who lack experience in parallelism to
express their parallel programs as a collection of high-level

computations called steps that communicate via single-assignment

data structures called items. Steps and items are uniquely
identified by tags. The major CnC constructs match the
DDM constructs: the CnC steps correspond to the DDM
threads, as both represent the unit of execution and apply
single-assignment across steps/threads while allowing side-
effects locally within a step/thread. The control and data
dependence relationships amongst the steps, manifested in
the items and tags that are produced and consumed, cor-
respond to the producer-consumer relationships (the meta-
data) of the DDM threads.

This correspondence facilitates translating CnC programs
into DDM-VM. programs. Thus, allowing programmers to
write their applications in CnC and efficiently handling the
details of the parallel execution and memory management
on the Cell, which unlocks the potential of the Cell for a
broader range of programmers.
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Figure 3: The DDM-VM. Programming Toolchain

//Item definitions

[int* A <PAIR>]; //Item A, points to a block in Memory
[int* B <PAIR>]; //Item B, points to a block in Memory
[int* C <TRIPLE>];//Item C, points to a block in Memory

// Tag definitions
<PAIR ITag>;
<TRIPLE MTag>;

//Prescriptions (control relationships) <TAG>:: (STEP)
<ITag> :: (Iterator);
<MTag> :: (Multiply);

// Step produce/consume relationships
(Iterator)-><MTag>; // Iterator produces MTag

[A], [B], [C] -> (Multiply);//Multiply consumes A,B,C
(Multiply)->[C],<MTag>; // Multiply produces C

env -> <ITag>, [A],[B],[C];//initialization produces A,B,C
[C]-> env ; //post-execution code consumes C

ﬂ

Blocked MatMult
CnC Program
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—
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Figure 4: The blocked Matrix Multiplication application. (a) textual representation of the CnC program (b)
graphical representation of the CnC program. (c) equivalent DDM dependency graph.

To this end, a CnC source-to-source compiler is being de-
veloped which parses the CnC program and generates the
corresponding DDM threads code and augments it with calls
to the DDM-VM, runtime. Figures 4-a& 4-b illustrate the
textual and graphical representations of a CnC program im-
plementing the Blocked Matrix Multiplication. The pro-
gram consists of two steps accessing three items, in addition
to two tags. Figure 4-c depicts the dependency graph of the
equivalent DDM program where each step was mapped into
a DDM thread. The Figure also depicts the dependencies
between the threads. The details of the mapping between
CnC and DDM constructs are beyond the scope of this pa-
per. Section 7.4 presents the preliminary evaluation results
for the CnC compiler.

7. PERFORMANCE EVALUATION

A prototype of the DDM-VM, has been developed on a
Sony Playstation 3 (PS3) machine with Linux 2.6.23-r1 SMP
ppc64 OS and the IBM Cell SDK version 2.1. The Cell pro-
cessor powering the PS3 has 6 SPEs available for the pro-
grammer out of the original 8. The benchmarks suite used
in the evaluation consists of ten applications featuring ker-
nels widely used in scientific and image processing applica-
tions, the characteristics of the benchmarks are depicted at
Table 1. For the benchmarks working on matrices, the ma-

trices are non-sparse SP floating-point, except for the IDCT
benchmark which works on integers.

All of the benchmarks were coded in C using the DDM-
VM. macros and compiled by the compilers available from
the IBM Cell SDK V2.1. All speedups reported are relative
to the execution time on one SPE core.

7.1 Thread Granularity and S-CacheFlow Con-
figurations

To assess the effect of thread granularity and the two S-
CacheFlow configurations on performance we executed the
benchmarks under both configurations. Note that different
benchmarks have different thread granularities and for some
of the benchmarks we have executed the same benchmark
with varying thread granularities. Table 1 reports this in-
formation for every benchmark. The speedup results are
depicted at Figure 5. The baseline for the speedup is the
best execution out of the two configurations on one SPE.

Thread Granularities.

The results show that the performance improves as the
granularity increases. This is expected, as higher granular-
ities amortize better the scheduling overheads of the TSU
and S-CacheFlow operations and allow DDM-VM. to hide
the latency of data transfers through pre-fetching/double-
buffering. Applications with small granularity do not scale



Benchmark | Description Average Granularity of Benchmark Threads Problems Size
Granularity Execution Small Medium Large
Time
MatMult Blocked Matrix Multiplication 64x64 block 22.1ps 512x512 1024x1024 2048x2048
Cholesky Blocked Cholesky Factorization 64x64 block 2248 512x512 1024x1024 2048x2048
LU Blocked LU Decomposition 64x64 block 1.82ms 512x512 1024x1024 2048x2048
304 Y-Cells 28.65us
FDTD 2D Finite Difference Time Domain [20] 608 Y-Cells 58us 304x304 608x608 1216x1216
1216 Y-Cells 116us
RK4 4th order Runge-Kutta (ODE solver) variable variable 512K 2K 3K
Conv2D 9x9 convolution filter 32x32 block 12.28us 512x512 1024x1024 | 2048x2048
64x64 block 48.11us
32x16 block 12.37us
IDCT Inverse Discrete Cosine Transform 64x32 block 49.21pus 512x512 1024x1024 2048x2048
64x64 block 98.811s
Trapez Trapezoidal rule for integration variable variable 168K steps | 337K steps | 675K steps
MatAdd Matrix Addition 64x64 block 4.6us 256  itera- | 1024 itera- | 4096 itera-
tion tion tion
MatCopy Matrix Copy 64x64 block 4.6ps 256  itera- | 1024 itera- | 4096 itera-
tion tion tion

Table 1: The benchmarks suite characteristics
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when the number of SPEs increases to four and higher as
the TSU is doing more work then and the computation is
not sufficient to totally overlap the TSU work. However,
when the thread granularity is increased (for example using
a larger block size) the applications scale almost linearly. In
certain cases, increasing thread granularities is bounded by
the limited size of the LS, hence applications like MatAdd
and MatCopy which have a poor computation/data ratio,
cannot benefit from increasing the granularity as this re-
quires larger blocks that don’t fit.

S-CacheFlow v.s Distributed S-CacheFlow.

Comparing the results of the two S-CacheFlow configu-
rations, the distributed S-CacheFlow -in general- performs
as well as or better than the basic S-CacheFlow on all of
the benchmarks. The advantage of the distributed configu-
ration is clear when the number of cores increases to 4 and
higher, as previously explained in section 5. It is worthy
to note that both configurations perform equally well for
benchmarks that are not data-intensive (Trapez) or for ones
that have a large enough granularity (ex. LU) that allows
the TSU to overlap the work of scheduling and data man-
agement at higher number of cores.

Figure 6 depicts the average activities of the SPEs for the
execution of MatMult under the two S-CacheFlow configu-
rations. For clarity we show only the upper 40% of the graph
since all the SPEs had average utilization higher than 60%.
The results show that up to 4 SPEs, the SPEs spend more
than 90% on computational work. At six SPEs -however- the
utilization drops to 64% for the basic S-CacheFlow because
the PPE becomes a bottleneck due to the demand of the
S-CacheFlow. The distributed configuration does not suffer
from this and the time spent executing the computational
load is kept around 90%. As such, distributed S-CacheFlow
has been adopted as the default for the DDM-VM..
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Figure 6: S-CacheFlow v.s. Distributed S-
CacheFlow - MatMult SPE runtime execution ac-
tivities

7.2 Concurrency and Latency Tolerance

To evaluate the potential of DDM-VM, in exploiting con-
currency and tolerating synchronization and memory laten-
cies, we have conducted a number of experiments in which
we limit the number of concurrent threads to 1 (purely se-
quential scheduling of DDM-VM, applications), 2 and 3.

We compare the results with a normal (non-DDM) sequen-
tial program. Figure 7 depicts the results for five of our
benchmarks.

The results show that when the limit is set to one (DS-
CacheFlow-1) the TSU overhead is simply added to the crit-
ical path. When the limit increases to 2 the performance
improves as the TSU is able to overlap the overhead of
scheduling one thread with the execution of another. When
the limit is set to 3 the execution finishes in time less than
the sequential, as the automatic prefetching takes effect and
-further- overlaps the latency of data transfers with the ex-
ecution. The results illustrates that DDM-VM. effectively
leverages the decoupling of synchronization and execution
for maximum tolerance of synchronization overheads.
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Figure 7: DDM-VM. latency tolerance

7.3 Problem Size

Figure 8 depicts the results of executing 8 of the bench-
marks for the three problem sizes. The results show that the
system generally scales well across the range of the bench-
marks achieving almost linear speedup for the large problem
sizes, as large problem sizes result in longer execution time
which amortizes initialization and parallelization overheads.
We expect DDM-VM. to scale well in real life applications
as the majority of such applications handle problems that
are -at least- in the order of our "Large” problem size.

7.4 CnC Source-to-Source Compiler Prelimi-
nary Results

In this section we compare the performance of two ver-
sions of the Matrix Multiplication, one coded using the DDM
macros v.s. one generated using a preliminary version of the
CnC compiler. The results are depicted at Figure 9.

The results show that the compiler-generated version is
performing on par with the macro-coded one achieving an
impressive 86.5 GFLOPS for 4 SPEs. When the number
of SPEs is six the performance of the compiler-generated
version drops. We attribute this to an inefficient implemen-
tation of the hashmap structure we use to represent CnC
data items in the generated program. A more efficient im-
plementation is currently under development. Nevertheless,
we find these preliminary results for this work-in-progress
very encouraging.

7.5 Overall Performance and Comparison
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Figure 8: Effect of problem sizes on performance

In this section, we report the GFLOPs performance results
of three computationally intensive applications, MatMult,
Cholesky and Conv2D and compare two of them with the
Sequoia[15] platform that targets the Cell processor.

The results for Sequoia were obtained by executing the
MatMult and Conv2D applications found in the latest re-
lease of the Sequoia platform (V0.9.5) on a PS3. To preserve
fairness we have used the same computational kernels used
in the Sequoia applications for our applications as well.

The results at Figure 10 shows that the DDM-VM. per-
forms very well achieving an average of 88% of the theoret-
ical peak performance on MatMult, scaling almost linearly.
Cholesky scales very well achieving a speedup of 5 on 6 SPEs
despite its complex dependency graph. The results of the
MatMult and Conv2D applications at Figure 11 also show
that both applications scale almost linearly.

Comparing the results of DDM-VM. with Sequoia, DDM-
VM. achieves an average of 25% and 93% performance im-
provement for Conv2D and MatMult, respectively. In [1]
we have shown that DDM-VM. outperforms the results of
CellSs [18, 14] (another platform targeting the Cell) for the
MatMult and Cholesky applications. We find this as an in-
dication of the efficiency of the DDM-VM. and its ability to
perform competitively with other platforms on the Cell.
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Figure 9: Performance comparison between the
macro-coded and compiler-generated versions of the
matrix multiplication program
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8. RELATED WORK

Sequoia [15] is a programming language that facilitates
the development of memory hierarchy aware parallel pro-
grams. It provides a source-to-source compiler and a run-
time system for Cell. Unlike DDM-VM. Sequoia requires
the use of special language constructs and types and focuses
on portability. CellSs [18, 14] is a parallel programming plat-
form available for the Cell. It schedules annotated tasks at
run-time based on data-dependencies. In contrast with our
model, that creates the dependency graph statically, CellSs
builds it at run-time which can incurr extra overhreads. See
section 7.5 for details on performance comparison.

The IBM Research Compiler targeting the Cell architec-
ture [12] ports the OpenMP standard to the Cell proces-
sor. It manages the execution and synchronization of the
parallelized code and handles data transfers via a compiler-
controlled software cache. Similarly, it requires the program-
mer to identify sections of code that can be parallelized using
directives, however we believe that DDM-VM, is more gen-
eral and targets problems with a higher granularity. Fur-
thermore, our platform relies on data-flow techniques and
data-flow caching policies to schedule threads and mange
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their data. Finally, because DDM-VM, relies for compila-
tion on the available Cell platform compilers it can benefit
from the latest optimizations and vectorization techniques
provided by this compiler to optimize the code of the DDM
threads running on the SPEs.

RapidMind [8] is a programming model that provides a
set of APIs, macros and specialized data types to write
streaming-like programs that targets general multi-cores and
advanced GPUs that was extended to target the Cell. Cell-
Space[11] is a framework for developing streaming applica-
tions on the Cell using a high-level coordination language
out of components in a component library. It provides a
runtime that handles scheduling, data transfers and load-
balancing. We place DDM-V M. as a more general approach,
as it doesn’t require the use of any streaming abstraction and
can be used for a wider range of applications.

In [12, 17] software-controlled caches are proposed to man-
age and optimize the tasks of data transfers on the Cell
processor. In [5] direct buffering and software cache tech-
niques are integrated to manage data transfers using both
techniques in the same program. Unlike all of the aforemen-
tioned software caches which perform cache directory opera-
tions on the SPE, S-CacheFlow operations are performed on
the PPE and overlapped with the execution of code on the
SPEs to hide the overheads of these operations. Moreover,
it enables data re-use and maintains coherency utilizing a
reference-counting mechanism, thus avoiding expensive up-

date/invalidate operations. Most notably, S-CacheFlow is
utilized at the scheduling and data management levels and
contains elements specific to DDM.

9. CONCLUSION AND FUTURE WORK

In this paper we presented DDM-VM,, a virtual machine
that implements Data-Driven Multithreading on the Cell. It
utilizes Data-Flow concurrency for scheduling threads and
manages data transfers automatically. Scheduling, data man-
agement and transfer operations are interleaved with the
execution of threads to tolerate latencies. To develop appli-
cations, the programmer uses a set of C macros or the CnC
language with the aid of a source-to-source compiler. The
evaluation demonstrates that DDM-VM. scales well and tol-
erates synchronization overheads achieving very good per-
formance and comparing favorably with other platforms.

The contributions of this work is an efficient virtual ma-
chine utilizing a completely new implementation of DDM
that targets a heterogeneous high-performance multi-core
system with software-managed limited memory resources.
It utilizes the concept of CacheFlow for developing an au-
tomated and efficient memory management for the Cell. A
distributed implementation of S-Cacheflow that supports lo-
cality has been developed through extensive analysis and
experimentation. DDM-VM, is the first implementation
of DDM that allows programmers to use CnC to produce
DDM programs with the aid of a source-to-source compiler.
DDM-VM. is also the first DDM implementation that can
be directly compared with other systems. When comparing
with two other platforms that target the Cell, DDM-VM,
achieved better performance. This is another major contri-
bution that strengthens the case that hybrid models that
combine Data-Flow concurrency with efficient control-flow
execution are candidates for adoption as the basis of a new
execution model for Multi-core systems.

We’re working on porting DDM-VM, to a cluster of Cell
processors and developing a GCC-based auto-parallelizing
compiler to make programming DDM-VM, easier.
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