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The compactness of the structure of glassy GexBi6S94-x (14 ≤ x ≤ 26 at %) is determined from 
the measured densities. The peculiarities observed in the compactness-composition 
dependence are understood using Phillips’-Thorpe and Tanaka’s topological models 
proposed for the structure of these covalently bonded solids. 
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 1. Introduction 
 
 Chalcogenide glasses have recently attracted much interest due to mainly two reasons. The 
first stems from their interesting physical and optical properties and consequently of their potential 
technological applications. A recent review of all these potential applications appeared in the 
proceedings of the international workshop on amorphous and nanostructured chalcogenides [1]. 
These applications include the well-known xerography process with Se or As-Se , lithography with 
Ge25Se75 [2], CD compatible erasable disk with Ge-Te or Ge-Te-Se [3], chemical sensors with As-
S(-Se) based alloys [4], long lengths of low loss IR transmitting devices with As40S60-xSex [5], the 
use of memory and switching effects as observed in Bi29Tl35Se36 [6] or photodarkening properties as 
in As2S3(-Se3), Ge-S2(Se2) [7,8], and their use for the preparation of electrical memories as in 
Al23Te77 [9]. The second one is linked to the relative ease of their preparation from the melt. The 
best example is demonstrated by pure Se which is known to be the only element able to give mono-
atomic glass [10]. As a consequence, chalcogenide glasses can be used as reference materials in 
order to develop a better understanding of the glassy state and its specific properties. Moreover, 
because these materials show a continuous change of their various properties with change in their 
chemical composition, it is possible to investigate the correlation of the features observed in the 
property-composition dependence with the structural arrangement in the glass. Such studies on 
thermal [11], mechanical [12], electrical [13], optical [14] and physicochemical [15] have recently 
been reported.  
 The Ge-S-Bi is a prototypical chalcogenide system. The first paper that dealt with the 
addition of bismuth in a chalcogenide matrix was published by Bowman and Schottmiller [16] in 
1968. The goal was the preparation of new infrared photoconductors. At the same time, it was 
discovered that a small amount of Bi atoms (≈ 7 at% Bi) incorporated in a Se matrix leads to the 
change of the conductivity type from p to n [17]. More recently, the possibility of making an all 
chalcogenide glass p-n junction based on this ability of Bi was demonstrated [18,19]. Since the 
results of [17], many studies were performed to propose an explanation of this specific property that 
the Bi atom seems to possess. Different atomic configurations were proposed. Most of these works 
were recently discussed in a review article of Vautier [20]. With regard to this review article, one 
conclusion was that after three decades of researches and debates on this matter, the origins of this 
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specific property are not yet fully understood. Indeed, one of the main problems is the lack of direct 
structural investigations of the atomic Bi surroundings. Consequently, we have performed Ge K-
edge and Bi LIII-edge extended x-ray absorption fine structure (EXAFS) measurements on these 
glasses and EXAFS measurements from Bi LIII-edge on crystalline Bi2S3 [21]. From these 
measurements, we have shown that Ge and Bi atoms in these glasses are uniquely coordinated with 
S atoms with a coordination number (CN) equal to four. The CN of Bi with S in crystalline Bi2S3 is 
found to be three and thus these results allow us to conclude that the presence of Bi2S3 
microcrystalline inclusions , in the structure of the glasses, is excluded and that these glasses are 
homogeneous at the microscopic level. Earlier, we reported X-ray photoelectron spectroscopy (XPS) 
measurements on Ge20S64Bi16 glass [22] and concluded that Bi atoms enter the parent glass matrix, 
Ge20S80, as a positive charge centre. 
 In the present work on Ge-S-Bi glasses, we report the compactness results and discuss them 
in light of the topological models proposed for their network structure. 
 
 
 2. Experimental 
 
 The glasses with the compositions GexBi6S94-x (14 ≤ x ≤ 26 at %) were fabricated from high 
purity elements by the usual melt quenching technique. Appropriate amounts of Bi pellets, S pieces 
and Ge chunks ( total 1.5 g)  were loaded into a cylindrical ( length 100 mm, internal diameter                
8 mm) quartz capsule. Each capsule was then evacuated to a pressure of 10-5 Torr, sealed, and 
transferred to an electric furnace. The temperature of the furnace was then raised to 900 oC and the 
capsule was kept at this temperature for 72 h. During this time, the capsule was continuously shaken 
to guarantee the complete mixing of the various constituents. The glass was finally obtained by 
quenching the capsule to 0 oC in an ice-water mixture. 
 The Archimedes method was used for the measurement of the density of as-prepared 
glasses. The weight of a piece of the Ge-S-Bi glassy alloy was measured in air and in distilled water 
using an electrical balance, as w1 and w2, respectively. The density of the glassy alloy could thus be 
determined from the formula 
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Five separate determinations were made on each glass composition and the average of them was 
taken as the measured density of it. The experimental uncertainties of the density measurement was 
better than ± 0.5%. The compactness, δ, of the structure of the glass was calculated according to the 
formula [23-25] 
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where xi, Ai, and ρi are the atomic fraction, the atomic weight, and the atomic density of the ith 
element of the glass and ρ is the measured density of the glass. Thus, δ is a measure of the 
normalized change of the mean atomic volume due to chemical interactions of the elements forming 
the network of a given solid [26] and, therefore, is associated with the free volume and the flexibility 
of the network. The compactness can assume negative values, which correspond to larger free 
volumes and flexibilities. 
 
 
 3. Results and discussion 
 
 The composition of the glassy alloy is represented by its mean coordination number, <r>, 
which has been widely used for the description of the structure of network glasses [27-30] and which 
is indiscriminate of the type of atomic species in a covalent bond [31]. It is defined as the mean 
number of bonded neighbours per atom in the structure and represents the rigidity of the structural 
units [31]. The <r> values for the investigated GexBi6S94-x glassy alloys are calculated using the 
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normal procedure [32-34] and cover the range between 2.46 to 2.64. The details of the calculation 
are given elsewhere [35]. Prepared samples with higher <r> were partially crystalline and therefore 
their results are not included here. The chief result of this work is depicted in Fig. 1. 
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   Fig. 1. Variations of the compactness with the mean coordination number in GexBi6S94-x  

                                 glasses. Lines through data points are drawn to guide the eye.  
 
 
 The prominent features observed in this figure are a maximum at <r>= 2.46 and a minimum 
at <r>= 2.56 which are explained in the following paragraphs. 
 Recently, Phillips [27] introduced the concept of viewing the properties of covalent glasses 
in terms of <r>. In his attempt to explain the glass forming ability of certain covalent glassy alloys 
and using elegant constraint-counting arguments, he proposed that the network connectivity could be 
parameterised by simply using <r>. He further proceeded to assume that, for the ideal glass, the 
number of inter-atomic force-field constraints per atom, Nc, exhausts the number of degrees of 
freedom per atom, Nd, in three dimensional space. Phillips’ balance condition Nc= Nd takes into 
account both bond stretching α constraints and bond bonding β constraints and led him to conclude 
that the mechanical stability for the network with the critical coordination number <r>c= 2.4 is 
optimised. Later on, Thorpe [29,30] recognised that Phillips’ balance condition can be formulated as 
a percolation problem in which the quantity of interest is rigidity. He showed that for a three 
dimensional network, the number of zero-frequency (floppy) modes per atom, f, is given by 
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which approaches zero from below when <r> approaches the critical value of 2.4. Networks with 
<r> less than 2.4 are polymeric glasses (or floppy) in which the rigid regions are isolated. As <r> 
increases, the network goes through the transition at <r>= <r>c . At this <r>c, the rigidity is said to 
percolate and the glass transforms to a rigid structure. This <r>c value is referred to as the rigidity 
percolation or mechanical threshold. Networks with <r> greater than 2.4 are amorphous solids (or 
rigid). 
 The optimised stability of the network with <r>= <r>c= 2.4 is linked with the most tight 
bonding, shortest bond lengths and consequently with the largest compactness. Therefore, the 
maximum in δ observed at <r> = 2.46 in these glasses is attributed to the floppy-rigid transition. The 
<r> value at which the rigidity transition is observed in this work for these glasses is higher than that 
predicted by the mean field theory [27-30]. Thus, it may be assumed that, in real glasses, this 
transition occurs in the slightly over-cross-linked regime. The positive shift in the <r> value marking 
the rigidity transition was noted in <r>-dependencies of various properties of chalcogenide glasses 
[36-41]. Furthermore, computer simulations of bond-depleted diamond network [42], 2D triangular 
central force networks [43], and self-organizing networks [44] confirm the existence of this rigidity 
transition. 
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 The minimum in δ at <r>= 2.56 can be understood by assuming that the structure of this 
composition (Ge22S72Bi6) is a layered one with a network dimensionality D= 2. For this composition, 
the interlayer separation is a maximum resulting in the observed minimum in δ. 
 The idea that D = 2 for structures of <r>≈ 2.5 was previously proposed with structural 
models based on rafts [27,45] and distorted layers [46,47]. Indeed, Tanaka [31], modified Phillips’-
Thorpe balance condition by including intermediate-range order (IRO) interactions and predicted the 
existence of a threshold at <r>= 2.67. At this <r> value, 2D layered structures are fully evolved and 
for higher <r> the structure is transformed to a 3D network. Thus, it can be argued that the minimum 
in δ at <r>=2.56 marks the 2D→3D structural transition in these glasses. The apparent discrepancy 
between the observed Tanaka’s threshold ( <r>= 2.56) and the predicted one ( <r>= 2.67) could be 
attributed to the inclusion of the heavy metal Bi into the Ge-S network which, in turn, leads to the 
formation of partially ionic Bi-S bonds. In this case, Tanaka’s threshold derived for purely covalent 
networks is treated as a reference value. The lower value of <r>, compared to that predicted by 
Tanaka, at which the 2D→3D transition is observed in these glasses has been reported from mean-
atomic volume results in Ge-Se-Ga [48], from surface toughness measurements in Ge-Se-Sb [49], 
from high pressure resistivity measurements in Ge-As-Te [50], from calorimetric measurements in 
Ge-S-Sb [51] and from compactness results in Ge-Se-In [52]. 
 
 
 4. Conclusions 
 
 The compositional dependence of the compactness, δ, for GexBi6S94-x chalcogenide glasses 
has been investigated. The observed maximum at <r>= 2.46 and minimum at <r>= 2.56 in the δ-<r> 
dependence are caused, respectively, by Phillips’-Thorpe floppy-to-rigid and Tanaka’s 2D→3D 
transformations. 
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