* Digital Image Processing

| Chapter 4.
Image Enhancement in the
Frequency Domain

Image Enhancement in Frequency
Domain

= Objective:
= To understand the Fourier Transform and

frequency domain and how to apply to
image enhancement.

= Fourier Transform.
= Low pass filters.
= High pass filters




$ Transform Operation

= Fourier: a periodic function can be
represented by the sum of sines/cosines
of different frequencies multiplied by a
different coefficient (Fourier series).

i Fourier Transform: Definitions
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$ 2-D Fourier Transform: Properties

* Linearity:
of(x,y)+ Be(x, v)e——oF(u,v)+ BGu,v)
* Convolution:
F(p) % g(x,y)e—> F(u,v) G(ut.v)
* Multiplication:
) g(x vy e— F(u,v)* Gu,v)
+ Shift: _
f(xixo,yi)JO)%F(?J_,V)(BJLJZH(M“ +vy,)
* Modulation:
f(x,'V)eijm(”ﬂﬁvf’y) ——>FuFu,,v¥v,)

1-D Discrete Fourier Transform

i (DFT)

= Suppose {F(0), F(1),..., f(M-1)}isa
sequence/vector/1-D image of length M. Its
M-point DFT is defined as

= Inverse DFT
1 M jz—”ux
f(x)=MZF(u)e M7 x=012,......, M -1
u=0

= Recall: e’ =cosé+ jsiné




$ 1-D DFT: Example

= Example: Let 7(x) ={1, - 1, 2, 3}. (Note that M-4.)
3 2w,
FO)=Y f(xe ¢ =5
x=0
3 —jz—”x*l
FO=Y f(xe * =-1+4j
x=0

_jzlx*z
4

F(2):Zslf(x)e =1

3 _i27
FE =Y f(e ¢ =—1-4]
x=0

Magnitude, Phase and Power
Spectrum

Fu)=R)+ jl(u)

Magnitude: |F(lz’)| = \/Rz (u)+ I? (1)

N -l [(u)'
Phase:  ¢(u)=tan (R(u) )

Power Spectrum:  P(u) = | F (u)|2




2-D Discrete Fourier
i Transform (DFT): Definition

DFT M—-1 N-1 _]2 [IH 11]
Fay=Y Y fGye MY
x=0 y=0

u=012,...M-1, v=0,1,2,.... N-1

bl

IDFT | M=l N-l zx[’{;#”
X,y)=—— Fu,ve M
S =0 20 ZO (u,v)

x=0,12,....M-1, y=012,....N-1

Magnitude, Phase and Power
Spectrum

Fu,v)=Ru,v)+ jl(u,v)

Magnitude: |F(u,v)| = \/RZ (u,v) + [2 (u,v)
I(u,v) ]

-1
Phase: @(4,v) = tan
ase: $(1,v) (R(u,v)

Power Spectrum: P(MJJ) = | F (u,v)|2




i Displaying the 2-D DF T

e, )Y «——Fu-M/2,v-N/2)

F(u,v) Fu-M/2,v=N/2)
low _/ k high
high ._,1‘Aﬂ B v low "‘——[3 /-\C
¢ D B\/A
N 7] | | .
M
E] (in Matlab: fftshift)
[F ()] |F(u)|

-One period




i Example: 2-D DFT of a Rectangle




Basic steps for filtering in the
frequency domain

Frequency domain filtering operation

, Filter Inverse
Fourier . . .
teansform function Fourier
Hu,v) transform
F(u,v) H(w, v)F(u,v)

Pre- Post-
processing processing
f(x.y) g(x.y)
Input Enhanced

image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Basics of filtering in the
frequency domain

multiply the input image by (-1)**Y to center
the transform to u= M/2 and v = N/2

compute F(u,v), the 2-D DFT of the image
from (1)

multiply F(u,v) by a filter function H(u,v)
compute the inverse DFT of the result in (3)
obtain the real part of the result in (4)

multiply the result in (5) by (-1)**Y to cancel
the multiplication of the input image.
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Low pass
filter

High pass
filter
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FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4{a).
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4{a).

i Lowpass Filter (LPF)

= Edges and sharp fransitions in gray values in an image
contribute significantly to high-frequency content of
its Fourier transform.

= Regions of relatively uniform gray values in an image
contribute to low-frequency content of its Fourier
transform.

= Hence, an image can be smoothed in the Frequency
domain by attenuating the high-frequency content of
its Fourier transform. This would be a lowpass filter!

= For simplicity, we will consider only those filters that
are real and radially symmetric.




Correspondence between filter
i in spatial and frequency domains

Hiu) Hiu) a b
oid

i Ideal Low Pass Filter

= Has transfer function
l if D(u,v)<D,

H )) =
w,v) ][0 if D(u,v)>D,

Where D(u,v)is the distance from point (¢,v)
from the origin of the frequency rectangle

= If the centeris at (M/2,N/2)

D(u.v) = (- M 12) +(v— N /2)?




Smoothing Frequency-domain
filters: Ideal Lowpass filter (ILPF)

H(uv) H(u,v)

D, v)
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FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross section.

i I'mage Power Circles
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FIGURE 4.11 (a) An image of size 500 X 500 pixels and (b} its Fourier spectrum. The
superimposed circles have radii values of 5. 15, 30, 80, and 230, which enclose 92.0.
94.6,96.4, 98.0, and 99.5% of the image power, respectively.
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:_L Result of ILPF

sl YTy ]
*Notice the severe ringing o= a P a
effect in the blurred images, ( m”””
which is a characteristic of axaad llissaanaa
ideal filters. It is due to the ' o

discontinuity in the filter ELLL L BEESELLY J
transfer function. oo a oo a
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a b FGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
e I power removed by these filters was 8.5.4,3.6,2, and 0.5% of the total. respectively.

Example

*ldeal low pass filter is

not practical, because it
causes ringing effect.

How to avoid this
ringing effect?
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FIGURE 4.13 (a) A frequency-domain ILPF of radius 5. (b) Corresponding spatial
filter {note the ringing). (c) Five impulses in the spatial domain, simulating the values
of five pixels. (d) Convolution of (b) and (c}) in the spatial domain.




Choice Of Cutoff Frequency in
:_L LPF

= The cutoff frequency DO of the ideal LPF
determines the amount of frequency
components passed by the filter.

= Smaller the value of DO, more the number of
image components eliminated by the filter.

= In general, the value of DOis chosen such that
most components of interest are passed
through, while most components not of interest
are eliminated.

Butterworth Lowpass Filter:
BLPF

H(u,v)=

*Frequency response does not have a sharp ’ N 2n
transition L+[D@u,v)/ D, ]
emore appropriate for image smoothing on : filter order

enot introduce ringing. *D0 : cutoff frequency

H{u,v) H{u,v)
1.0
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FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.




Example
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a'h  FIGURE 4.15 (a) Original image. (W)~(f) Results of filtering with BLPFs of order 2,
©d  with cutolf frequencies at radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b).
e [ Compare with Fig 4.12




i Gaussian Lowpass Filter: GLPF

H (u,v) _ e—DZ(u,v)/zDg

H{u. v)
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H{u.v)
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FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (¢) Filter

radial cross sections for various values of D,.

i Example
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FIGURE 4.18 (a) Original image. (b)~() Results of fillering with Gausslan lowpass
filters with cutoff frequencies set at radii values of 5, 15, 30, 80, and 230, as shown In
Fig, 4.11(b). Compare with Figs. 4.12 and 4.15.
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:_L Example
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FIGURE 4.19

(a) Sample text of
poor resolution
{note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a dats using "0

as 1900 rather than ‘tr
2000.
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Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than theﬁk
2000.
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FIGURE 4.20 (a) Original image (1028 x 732 pixcls). (b) Result of filtering with a GLPF with D, = 100,
(c) Result of fltenng with a GLPF with £, = 80. Note reduction in skin fine lines in the magnified sections
of (b} and ().
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FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with D; = 30. {¢) Result
of using a GLPF with D, = 10. (Original image courtesy of NOAA.)




:_L High Pass Filter

= Edges and sharp transitions in gray values in an image
contribute significantly to high-frequency content of
its Fourier transform.

= Regions of relatively uniform gray values in an image
contribute to low-frequency content of its Fourier
transform.

= Hence, image sharpening in the Frequency domain can
be done by attenuating the low-frequency content of
its Fourier transform. This would be a high-pass filter!

= For simplicity, we will consider only those filters that
are real and symmeftric.

Sharpening Frequency Domain

Fl I.l-er‘ - .:r wf —mm———
Ideal highpass filter . -
o [0BEYED, T
’ B 1if D(u,v) > D0 i Hiwo) | 10
Butterworth highpass filter . -
';;‘" . ‘ Bl o)
H (U,V) = 1 o “ ﬁ "
+[DO/D(U|V)] e < HHH\ [ 10
Gaussian highpass filter " . .

H (U,V) _ 1_e—D2(u,v)/2D§ - ;,, : ]
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FIGURE!‘IIZTP DWP pl pll g and ci p cal ideal ]hehp
filter. Middle and bottor s: The same seq) f tp ]Bttmc'm dC highpass filters.




:_L High Pass Filters (HPF)

= Butterworth:

= Frequency response does not have a sharp transition
as in the ideal HPF.

= This is more appropriate for image sharpening than
the ideal HPF, since this not introduce ringing.
= Gaussian:

= The parameter D,measures the spread of the
Gaussian curve. Larger the value of D, larger the
cutoff frequency.

= No ringing effect

Spatial representation of Ideal,
Butterworth and Gaussian highpass
filters
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FIGURE 4.23 Spatial representations of typical (a) ideal, (b) Butterworth, and (¢) Gaussian frequency
domain highpass filters, and corresponding gray-level profiles,




:_L Example: result of THPF
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).

i Example: result of BHPF
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FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with D, = 15,
30. and 80, respectively. These results are much smoother than those obtained with an ILPF.




i Example: result of GHPF
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FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 15,
30, and 80, respectively. Compare with Figs. 4.24 and 4.25.







Unsharp Masking and High-Boost
Filtering in the Frequency Domain

« Unsharp Masking: f,(x,¥) = f(x,y)— f]p (x,»)
Fou.v)=F@u,v)—t,w.v)=10=Hp, (. v)F(u.v)
H, (u,v)

« High-Boost Filtering: /7,5 (x,y) = Af (x,y)— ﬁp (x,»)

(A21)
th (”.ﬂ") = AF(u,v) — E.,p (Zt_,v) _

=(A- ng (wuV)F(u,v)y=(A-1+ th (u, v)F (u,v)
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FIGURE 4.41

(a) Image.

(b) Template.

{c) and

() Padded
images.

{e) Correlation
funetion displayed
as an image.
Horizontal
profile line
through the
highest value in

(). showing the
point at which the
best match took
place

Highest correlation
value

Gray-leve
profile line
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