- 5.1 (a) Jim forgot the impact of interest, that is, the time value of money, which will increase the annual recovery amount.
 - (b) Use Equation [5.3] to find the capital recovery amount with S = 0.

5.9 Calculate AW values to select machine R.

$$\begin{split} AW_R &= -250,000(A/P,9\%,3) + 20,000(A/F,9\%,3) - 40,000 \\ &= -250,000(0.39505) + 20,000(0.30505) - 40,000 \\ &= \$-132,662 \end{split}$$

$$AW_S &= -370,500(A/P,9\%,5) + 20,000(A/F,9\%,5) - 50,000 \\ &= -370,500(0.25709) + 20,000(0.16709) - 50,000 \\ &= \$-141,910 \end{split}$$

By spreadsheet, enter single cell functions.

```
R: = -PMT(9%,3,-250000,20000) - 40000 Display: $-132,663
S: = -PMT(9%,5,-370500,20000) - 50000 Display: $-141,911
```

5.14 From Example 4.2, bond P = \$-4750; I = \$150 each 6 months; n = 20; i = 3.35% per 6 months.

The return is approximately that desired based on AW value.

5.17 Find F in year 12; treat it as a CC value; find A forever.

$$\begin{split} F_{12} &= 4(F/P,12\%,11) - 1(F/P,12\%,9) - 3(F/P,12\%,8) - 3(F/P,12\%,7) \\ &+ 1(F/P,12\%,6) + 4(F/P,12\%,5) + 6(F/P,12\%,4) + 8(F/P,12\%,3) \\ &+ 10(F/P,12\%,2) + 12(F/A,12\%,2) + 38 \\ &= 4(3.4785) - 1(2.7731) - 3(2.4760) - 3(2.2107) \\ &+ 1(1.9738) + 4(1.7623) + 6(1.5735) + 8(1.4049) \\ &+ 10(1.2544) + 12(2.1200) + 38 \\ &= \$102.768 \end{split}$$

$$A = CC(i) = F_{12}(i) = 102.768(0.08) \\ &= \$ 8.22 \text{ per year} \qquad (\$8,221,440 \text{ per year})$$

A spreadsheet solution follows.

	Α	В	С	D	E
1					
2	Year	NCF, \$ M			
3	0				
4	1	4			
5	2	0			
6	3	-1			
7	4	-3			
8	5	-3			
9	6	1			
10	7	4			
11	8	6	= NPV(12%,B4:B15)		
12	9	8	7		
13	10	10	/		
14	11	12	/ <u>=-F</u>	√(12%,12,,l	B16)
15	12	50 ₹	+		
16	PW and FW	\$26.38	\$102.77		
17	8% AW for 13 on	\$8.22		- O#4C##	000
18				= C\$16*(0	.08)

5.22 Monetary terms are \$ million. Effective $i = (1.025)^4 - 1 = 10.38\%$. Select A.

$$\begin{aligned} AW_A &= -10 (A/P, 10.38\%, 5) + 0.7 (A/F, 10.38\%, 5) - 0.8 \\ &= -10 (0.26636) + 0.7 (0.16256) - 0.8 \\ &= \$ - 3.35 \end{aligned}$$
 (\$3.35 million)

$$AW_B = -50(0.1038) - 0.6$$

= \$-5.79 (\$5.79 million)