Ch09: Center Of Mass And Linear Momentum

- The center of mass (com)
- Motion of a system of particles (Newton’s 2nd law)
- Linear momentum
- Impulse
- Conservation of linear momentum
- Inelastic Collision in one dimension
- Elastic collision in 1 and 2 dimensions

9.1: What is physics?

- Analyzing complicated motion of any sort requires simplification via an understanding of physics.
- The complicated motion of a system of objects, such as a car or a ballerina or collection of particles, can be simplified if we determine a special point of the system—the center of mass (com) that system.
- We can apply equations of motion to the center of mass to represent the motion of that system.
- An example for complicated motion is a baseball bat when flipped into air points of bat moves along different path shapes except the center of mass moves a long a simple parabolic path (projectile motion).

9.2: The Center Of Mass

- If we consider a collection of particles or an extended object with a total mass, M.
- We can consider the system as a single particle with the total mass, M, concentrated at a single point called the center of mass (com).
- If a net force external is applied to the system, then you can apply Newton’s second law to the center of mass.
- The center of mass of a system of particles is the point that moves as though:
 - all of the system’s mass were concentrated there
 - all external forces were applied there.

9.2: The Center Of Mass: system of particles

- The position of center of mass x_{com} is the average position of the system’s masses on x-axis.
- For the two particle shown, the x_{com} is
 \[x_{com} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \]
- For n particles along x-axis
 \[x_{com} = \frac{\sum_{i=1}^{n} m_i x_i}{M} \]

Total mass of the system = M
9.2: The Center Of Mass: system of particles
- For group of particles in space (more than one dimension), we need to find position vector for the center of mass \mathbf{r}_{com}

\[
\mathbf{r}_{\text{com}} = \frac{\sum r_i m_i}{M} = \frac{1}{M} \sum r_i m_i
\]

\[
\mathbf{r}_{\text{com}} = \frac{\sum m_i \mathbf{r}_i}{M} = x_{\text{CM}} \hat{i} + y_{\text{CM}} \hat{j} + z_{\text{CM}} \hat{k}
\]

\[
x_{\text{com}} = \frac{\sum m_i x_i}{M} \quad y_{\text{com}} = \frac{\sum m_i y_i}{M} \quad z_{\text{com}} = \frac{\sum m_i z_i}{M}
\]

9.2: The Center Of Mass: Solid Bodies
- For an extended solid object (continuous distribution of matter)

\[
\mathbf{r}_{\text{CM}} = \frac{\sum \Delta m_i \mathbf{r}_i}{M}
\]

For $\Delta m_i \rightarrow 0 \rightarrow dm \rightarrow$

\[
\mathbf{r}_{\text{CM}} = \frac{1}{M} \int \mathbf{r} dm
\]

\[
x_{\text{CM}} = \frac{1}{M} \int x dm \quad y_{\text{CM}} = \frac{1}{M} \int y dm \quad z_{\text{CM}} = \frac{1}{M} \int z dm
\]

9.2: The Center Of Mass: Example
- For an extended solid object (continuous distribution of matter)
- For an extended solid object (continuous distribution of matter)

A group of particles in two dimensions is shown in the figure. Find the center of mass if $m_1=1\text{kg}, \quad m_2=1\text{kg}, \quad m_3=2\text{kg}$

we have x and y dimensions \Rightarrow

\[
x_{\text{com}} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} = \frac{(1)(0) + (1)(2) + (2)(0)}{1 + 1 + 2} = \frac{3}{4} = 0.75 \text{m}
\]

\[
y_{\text{com}} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3} = \frac{(1)(0) + (1)(0) + (2)(2)}{1 + 1 + 2} = \frac{4}{4} = 1 \text{m}
\]

\[
\mathbf{r}_{\text{com}} = (0.75 \hat{i} + 1 \hat{j}) \text{m}
\]

9.2: The Center Of Mass: Example
- A group of particles in two dimensions is shown in the figure.
- Find the center of mass if $m_1=1\text{kg}, \quad m_2=1\text{kg}, \quad m_3=2\text{kg}$

we have x and y dimensions \Rightarrow

\[
x_{\text{com}} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} = \frac{(1)(0) + (1)(2) + (2)(0)}{1 + 1 + 2} = \frac{3}{4} = 0.75 \text{m}
\]

\[
y_{\text{com}} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3} = \frac{(1)(0) + (1)(0) + (2)(2)}{1 + 1 + 2} = \frac{4}{4} = 1 \text{m}
\]

\[
\mathbf{r}_{\text{com}} = (0.75 \hat{i} + 1 \hat{j}) \text{m}
\]
For a system of particles in motion, we usually interesting in the motion of the center of mass that represents the whole system:

- the velocity of the center of mass (\vec{v}_{com}) of the system is found from

$$\vec{v}_{\text{com}} = \frac{d\vec{r}_{\text{com}}}{dt} = \frac{1}{M} \sum m_i \frac{d\vec{r}_i}{dt} = \frac{1}{M} \sum m_i \vec{v}_i$$

$$\vec{v}_{\text{com}} = \frac{1}{M} \sum m_i \vec{v}_i$$

- Hence, the total mass (M) multiplied by the velocity of center of mass (\vec{v}_{com}) represents the all system; it is equivalent to multiply each particle velocity with it's mass and sum them.

\[M\vec{v}_{\text{com}} = \sum m_i \vec{v}_i = m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + \ldots \ldots + m_n \vec{v}_n \]

Newton's Second Law for a System of Particles

- Taking the derivative of the \vec{v}_{com}, you can get the acceleration of the center of mass (\vec{a}_{com})

$$\vec{a}_{\text{com}} = \frac{d\vec{v}_{\text{com}}}{dt} = \frac{1}{M} \sum m_i \frac{d\vec{v}_i}{dt} = \frac{1}{M} \sum m_i \vec{a}_i \Rightarrow \vec{a}_{\text{com}} = \frac{\vec{F}_\text{net}}{M}$$

- Hence, the total mass (M) multiplied by the velocity of center of mass (\vec{v}_{com}) represents the all system; it is equivalent to multiply each particle velocity with it's mass and sum them.

\[M\vec{a}_{\text{com}} = \sum m_i \vec{a}_i = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3 + \ldots \ldots + m_n \vec{a}_n \]

- The com of the system will move as if all the mass were there and the net force acted there.
9.4: Linear Momentum

- The linear momentum of a particle with mass \(m \) and velocity \(\vec{v} \) is:

\[
\vec{p} = m\vec{v}
\]

SI unit is \(\text{kg m/s} \equiv N.s \)

- \(\vec{p} \) is a vector quantity and has the direction of the velocity \(\vec{v} \)
- For a particle, any change in momentum due to velocity change is related to some external net force \(\vec{F}_{\text{net}} \)
- From Newton's 2nd law:

\[
\sum \vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} \quad \Rightarrow \quad \sum \vec{F} = \frac{d(m\vec{v})}{dt} = \frac{d\vec{p}}{dt}
\]

9.5: Linear Momentum For a system of particles

- For a system of particles in motion each has its own velocity and mass \(\rightarrow \) the velocity of the center of mass (\(\vec{v}_{\text{com}} \)) is:

\[
\vec{v}_{\text{com}} = \frac{1}{M} \sum_i m_i \vec{v}_i
\]

- The linear momentum for the center of mass that represents the system particles can be obtained from above equation:

\[
\vec{P}_{\text{com}} = M\vec{v}_{\text{com}}
\]

Momentum for system of particles

where \(\vec{P}_{\text{com}} = M\vec{v}_{\text{com}} = \sum_i m_i \vec{v}_i = m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + \ldots \ldots + m_n \vec{v}_n \)

\[
\Rightarrow \vec{P}_{\text{com}} = M\vec{v}_{\text{com}} = \sum_j \vec{p}_j = \vec{p}_1 + \vec{p}_2 + \vec{p}_3 + \ldots \ldots + \vec{p}_n
\]

Hence, the momentum for the system is equivalent to the sum of all individual momentum of particles

9.6: Collision and impulse: Single Collision

- Momentum of particle can only change by a net external force
- Consider a collision between a ball and a bat in baseball game
 \(\rightarrow \) The ball will experience a force \(\vec{F}(t) \) that varies during collision \(\rightarrow \) ball slows down, stop, and reverse direction \(\rightarrow \) \(\vec{p} \) changes due to that force \(\rightarrow \) From Newton's 2nd law:

\[
\vec{F} = \frac{d\vec{p}}{dt} \quad \Rightarrow \quad d\vec{p} = \vec{F}(t) \, dt
\]

\(\rightarrow \) we can have the change in momentum by integrating both sides over time during collision:

\[
\int_{t_i}^{t_f} d\vec{p} = \int_{t_i}^{t_f} \vec{F}(t) \, dt
\]

A measure for magnitude and duration of a collision force (impulse \(\vec{f} \))
9.6: Collision and impulse: Single Collision

- The impulse on the particle (ball in this case):
 \[J = \Delta \vec{p} = \int_{t_i}^{t_f} F(t) \, dt \]

Impulse-momentum theorem: Impulse is the net change in momentum due to forces.

where \(\Delta \vec{p} = \vec{p}_f - \vec{p}_i \)

In components (x-components for instant):

\[J_x = \Delta p_x = p_{fx} - p_{ix} = \int_{t_i}^{t_f} F_x \, dt \]

- Since it is difficult to know \(F(t) \) during collisions, we use the average force magnitude and \(\Delta t \):

\[J = F_{avg} \Delta t \]

Due to Newton's 3rd law, the ball makes an impulse on the bat of same magnitude but opposite in direction.

A car made an accident with a wall. Its velocity was 15 m/s to left before the accident. After the accident, it is recoil from the wall to the right with velocity 2.6 m/s. If the accident time is 0.15 s, find the impulse caused by the collision and the average force exerted on the car.

\[m = 1500 \text{ kg}, \quad v_i = -15.0 \text{ m/s}, \quad v_f = 2.6 \text{ m/s}, \quad \Delta t = 0.150 \text{ s} \]

\[J = ? \quad F_{avg} = ? \]

9.6: Collision and impulse: Example

Note: for x-axis

If \(v \) to the right \(\Rightarrow v \) is +ve

If \(v \) to the left \(\Rightarrow v \) is -ve

The impulse

\[J = \Delta p \]

\[J = m(v_f - v_i) = m(v_f - (-v_i)) \]

\[J = 1500 \times (2.6 - (-15)) \]

\[= 2.64 \times 10^4 \text{ i N} \cdot \text{s} \]

\[F_{avg} = \frac{\Delta p}{\Delta t} = \frac{2.64 \times 10^4}{0.15} \]

\[= 1.76 \times 10^5 \text{ i N} \]

9.6: Collision and impulse: Example: continued from previous slide

Figure below shows the path taken by a race car driver as he collides with the racetrack wall. If driver mass \(m \) is 80 kg find

a) The impulse on the driver due to collision

b) Average force magnitude on driver if the collision lasts for 14 ms

\[\text{(a)} \quad J = (m(v_f - v_i)) \text{ kg} \cdot \text{m/s} \]

\[= (80)(-50 \cos 30^\circ - 70 \cos 30^\circ) \]

\[= -910 \text{ kg} \cdot \text{m/s} \]

\[\text{(b)} \quad F_{avg} = \frac{J}{\Delta t} \]

\[= \frac{3616}{0.014} \]

\[= 255,400 \text{ N} \]

\[\theta = \tan^{-1} \frac{J_y}{J_x} \]

\[= 25.5^\circ \]
Consider two particles interact together. We can apply Newton’s Third law:

\[\vec{F}_{12} = -\vec{F}_{21} \Rightarrow \vec{F}_{21} + \vec{F}_{12} = 0 \]

Apply Newton’s 2nd law:

\[m_1 \ddot{v}_1 + m_2 \ddot{v}_2 = 0 \]

\[\frac{d}{dt}(m_1 \dot{v}_1 + m_2 \dot{v}_2) = 0 \]

\[\dot{p}_1 + \dot{p}_2 = \sum \dot{p} = \text{constant} \]

9.7: Conservation of Linear Momentum: Example

Two skaters recoil each other from rest. After recoil Find a) the total momentum b) the momentum for heavy skater1 and c) the velocity for light skater2

- \(m_1 = 100 \text{ kg}, \quad v_1 = 5 \text{ m/s}, \quad m_2 = 50 \text{ kg} \)
 - a) \(\dot{p}_{tot} = ? \)
 - b) \(\dot{p}_1 = ? \)
 - c) \(v_2 = ? \)

Solution: momentum is conserved in x-axis

a) \(\sum \dot{p}_i = \dot{p}_{tot} = 0 \) \; they start from rest

b) \(\dot{p}_1 = m_1 \dot{v}_1 = 100(5) = 500 \text{ kg m/s} \)

c) \(\sum \dot{p}_f = \dot{p}_{tot} \)

\[\dot{p}_1f + \dot{p}_2f = 0 \]

\[v_2 = \frac{\dot{p}_1f}{m_2} = \frac{-500}{50} = 10 \text{ m/s} \]

9.7: Conservation of Linear Momentum: Example

Two-dimensional explosion: the figure shows a firecracker placed inside a coconut of mass \(M \), initially at rest on a frictionless floor, blows the coconut into three pieces that slide across the floor. Piece \(C \), with mass \(0.3M \), has final speed \(v_f = 5.0 \text{ m/s} \).

(a) What is the speed of piece \(B \), with mass \(0.20M \)? (b) What is the speed of piece \(A \)?
9.7: Conservation of Linear Momentum: Example: continued from previous slide

(a) What is the speed of piece B? (b) What is the speed of piece A?

\[\sum p_f = \sum p_i \Rightarrow \sum \vec{p}_f = \sum \vec{p}_i \text{ and } \sum p_f = \sum p_i \]

Since coconut was at rest before explosion

\[\sum \vec{p}_f = 0 \Rightarrow m_A v_{x_A} + m_B v_{x_B} + m_C v_{x_C} = 0 \]

- \(0.5 M v_{x_A} + 0.2 M v_{x_B} \cos 50^\circ + 0.3 M v_{x_C} \cos 80^\circ = 0 \)
- \(-0.5 v_{x_A} + 0.129 v_{x_B} + 0.26 = 0 \) \(\text{(1)} \)

\[\sum p_{fi} = 0 \Rightarrow m_A v_{fi_{x_A}} + m_B v_{fi_{x_B}} + m_C v_{fi_{x_C}} = 0 \]

\[-0.2 M v_{x_B} \sin 50^\circ + 0.3 M v_{x_C} \sin 80^\circ = 0 \]

\[-0.153 v_{x_B} + 0.148 = 0 \]

\[\Rightarrow v_{x_B} = 9.67 m/s \]

Sub. in (1) \(\Rightarrow v_{x_B} = 3 m/s \)

9.8: Momentum and Kinetic Energy in Collisions

- Inelastic collision
 - Particles don’t stick together but lose some energy

- Completely inelastic collision
 - Particles stick together and lose some energy (deformation)

- Elastic collision
 - Particles bounce off each other, no loss of energy

\[\Rightarrow \text{Mechanical Energy is conserved ONLY in elastic collisions} \]

9.9: Inelastic Collision in One dimensions: Inelastic Collision

- Inelastic collision \(\Rightarrow \) Momentum is conserved

\[\sum \vec{p}_i = \sum \vec{p}_f \]

\[m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

- Mechanical energy is not conserved

\[K_i = \frac{1}{2} \left(m_1 v_{i_1}^2 + m_2 v_{i_2}^2 \right) \quad \text{and} \quad K_f = \frac{1}{2} \left(m_1 v_{f_1}^2 + m_2 v_{f_2}^2 \right) \]

\[\Rightarrow \text{The Energy loss} = E_{loss} = K_f - K_i \]

9.9: Inelastic Collision in One dimensions: Completely Inelastic Collision

- Completely inelastic collision \(\Rightarrow \) Momentum is conserved

\[\sum \vec{p}_i = \sum \vec{p}_f \]

\[m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}_f \]

- Mechanical energy is not conserved

\[K_i = \frac{1}{2} \left(m_1 v_{i_1}^2 + m_2 v_{i_2}^2 \right) \quad \text{and} \quad K_f = \frac{1}{2} \left(m_1 + m_2 \right) v_f^2 \]

\[\Rightarrow \text{The Energy loss} = E_{loss} = K_f - K_i \]
9.9: Example: A 900 kg car had a velocity of 20 m/s to the right collides with other 1800 kg car that was stopped. If the two car stuck together, find the final velocity after collision.

\[V_i = 20 \text{ m/s} \quad V_o = 0 \quad V_f = ?? \]

Before collision

After collision

Solution:

Momentum is conserved

\[\sum \vec{p}_i = \sum \vec{p}_f \]

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = (m_1 + m_2) \vec{v}_f \]

\[\Rightarrow \vec{v}_f = \frac{m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i}}{m_1 + m_2} = \frac{900(20) + 0}{900 + 1800} = 6.67 \text{ m/s} \]

9.10: Elastic Collision in One dimensions

Before collision

After collision

- Momentum is conserved
 \[\sum \vec{p}_i = \sum \vec{p}_f \]

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = (m_1 + m_2) \vec{v}_{1f} + (m_1 + m_2) \vec{v}_{2f} \] (1)

- Energy is also conserved
 \[\sum K_i = \sum K_f \]

\[\frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2 \] (2)

From equations 1 & 2

\[\vec{v}_{1f} - \vec{v}_{2f} = -\vec{v}_{1f} - \vec{v}_{2f} \]

9.9: Example: Ballistic pendulum: A bullet \((m_1)\) is fired into a large block of wood \((m_2)\) suspended from some light wires. The bullet embeds in the block, and the entire system swings through a height \(h\). How can we determine the speed of the projectile from a measurement of \(h\)?

Before collision

Immediately after collision

To find the speed of bullet \(v_{1a}\) we need to find \(v_{2a}\)

- From conservation of energy (only for system after collision from B to C)

\[m_1 \vec{v}_{1a} + 0 = (m_1 + m_2) \vec{v}_{2a} \]

\[\Rightarrow \vec{v}_{1a} = \frac{(m_1 + m_2) \vec{v}_{2a}}{m_1} \]

We have inelastic collision

\[\sum \vec{p}_i = \sum \vec{p}_f \]

\[m_1 \vec{v}_{1a} + 0 = (m_1 + m_2) \vec{v}_{2a} \]

\[\Rightarrow \vec{v}_{1a} = \frac{(m_1 + m_2) \vec{v}_{2a}}{m_1} \]

9.10: Elastic Collision in One dimensions: Example

Two metal spheres, suspended by vertical cords, initially just touch. Sphere 1, with mass \(m_1 = 30 \text{ g}\), is pulled to the left to height \(h_1 = 8 \text{ cm}\), and then released from rest. After swinging down, it undergoes an elastic collision with sphere 2, whose mass \(m_2 = 75 \text{ g}\). What is the velocity \(v_1\) of sphere 1 just after the collision?

Sphere 1 speed before collision

\[E_f = E_i \quad \Rightarrow \quad \frac{1}{2} m_1 v_{1i}^2 = m_1 gh_1 \]

\[\Rightarrow \quad v_{1i} = \sqrt{2gh_1} = 1.252 \text{ m/s} \]

\[m_1 \vec{v}_{1o} + m_2 \vec{v}_{2o} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

\[0.047 + 0 = 0.03 \vec{v}_{1f} + 0.075 \vec{v}_{2f} \] (1)

\[\vec{v}_{1f} \cdot \vec{v}_{2f} = - (\vec{v}_{1f} \cdot \vec{v}_{2f}) \]

\[1.252 - 0 = -\vec{v}_{1f} + \vec{v}_{2f} \] (2)

Solve the two equations

\[\begin{align*}
 v_{1f} &= -0.537 \text{ m/s} \\
 v_{2f} &= 0.715 \text{ m/s}
\end{align*} \]
9.10: Example: A block \((m_1=1.6 \text{ kg})\) initially moving to the right at 4 \text{ m/s} collides with a spring attached to a second block \((m_2=2.1 \text{ kg})\) moving to the left with at 2.5 \text{ m/s}. The spring constant is 600 \text{ N/m}. Find the velocities of the two blocks after the collision.

Before collision:
- \(v_{i1} = (4.0) \text{ m/s}\)
- \(v_{i2} = (-2.5) \text{ m/s}\)

After collision:
- \(v_{f1}\)
- \(v_{f2}\)

Befor collision
Momentum is conserved
\[m_1v_{i1} + m_2v_{i2} = m_1v_{f1} + m_2v_{f2} \]

For elastic collision, we have
\[1.15 = (1.6) v_{f1} + (2.1) v_{f2} \] (1)

From eqn’s (1) and (2)
\[v_{f1} = -3.38 \text{ m/s} \]
\[v_{f2} = 3.12 \text{ m/s} \]

9.11: Collisions In Two Dimensions

- Conservation of momentum still stands:
 \[\sum p_i = \sum p_f \]
 \[m_1v_{i1x} + m_2v_{i2x} = m_1v_{f1x} + m_2v_{f2x} \]
 \[m_1v_{i1y} + m_2v_{i2y} = m_1v_{f1y} + m_2v_{f2y} \]

- Analyze each component separately:
 \[\sum p_{ix} = \sum p_{fx} \Rightarrow m_1v_{f1x} + m_2v_{f2x} = m_1v_{i1x} + m_2v_{i2x} \]
 \[\sum p_{iy} = \sum p_{fy} \Rightarrow m_1v_{f1y} + m_2v_{f2y} = m_1v_{i1y} + m_2v_{i2y} \]

- Use conservation of kinetic energy if collision is elastic:
 \[K_f = K_i \]
 \[\frac{1}{2} (m_1v_{f1x}^2 + m_2v_{f2x}^2) = \frac{1}{2} (m_1v_{i1x}^2 + m_2v_{i2x}^2) \]

9.11: Example: If before collision, \(m_2\) was at rest, find magnitude and direction of speed for \(m_2\) after collision \((m_1=1 \text{ kg}, m_2=2 \text{ kg})\)

Before collision:
- \(v_{i1} = 10 \text{ m/s}, \quad v_{i2} = 5 \text{ m/s}\)
- \(\theta = 30^\circ\)

2-variables \(\rightarrow 2\-eqn’s\)

Momentum is conserved in the two dimensions \(x\) and \(y\)

X-component
\[\sum p_{ix} = \sum p_{fx} \Rightarrow m_1v_{f1x} + m_2v_{f2x} = m_1v_{i1x} + m_2v_{i2x} \]
\[m_1v_{f1x} \cos 30 + m_2v_{f2x} \cos \phi = m_1v_{i1x} + 0 \]
\[4.33 + 2v_2 \cos \phi = 10 \Rightarrow v_2 \cos \phi = v_{f2x} = 2.83 \text{ m/s} \]

Y-component
\[\sum p_{iy} = \sum p_{fy} \Rightarrow m_1v_{f1y} + m_2v_{f2y} = m_1v_{i1y} + m_2v_{i2y} \]
\[m_1v_{f1y} \sin 30 - m_2v_{f2y} \sin \phi = 0 \]
\[-v_{f2y} \sin \phi = v_{f2y} = -1.25 \text{ m/s} \]

Hence,
\[v_{f2y} = \sqrt{v_{f2x}^2 + v_{f2y}^2} = 3.1 \text{ m/s}, \quad and \quad \phi = \tan^{-1} \frac{-1.25}{2.83} = -23.8^\circ \]
Collision for system of particles

Example: Rocket fired vertically, explode at altitude of 1000 m into three fragments, as shown. The 3 fragments are of equal masses. Find the velocity of the third part after collision.

\[\vec{p}_{\text{com},i} = \vec{p}_{\text{com},f} \Rightarrow M\vec{v}_{\text{com},i} = M\vec{v}_{\text{com},f} \Rightarrow \vec{v}_{\text{com},i} = \vec{v}_{\text{com},f} \]

For isolated system of particles → Momentum is conserved →

\[\sum \vec{p}_i = \sum \vec{p}_f = \vec{p}_{\text{com}} \]

\[Mv_{i,x} = Mv_{f,x} \Rightarrow 0 = M\left(\frac{m_1v_{1,x}}{M} + \frac{m_2v_{2,x}}{M} + \frac{m_3v_{3,x}}{M} \right) \Rightarrow 0 = m_1v_{1,x} + m_2v_{2,x} + m_3v_{3,x} = 0 + \left(\frac{M}{3} \right)(240) + \left(\frac{M}{3} \right) \]

\[\Rightarrow v_{3,x} = -240 \text{ m/s} \]