5.8 Flexible Cables

- Examples: suspension bridges, transmission lines, messenger cables for supporting heavy trolley or telephone lines.

- To determine for design purposes: Tension force \(T \), span \(L \), sag \(h \), length of the cable \(s \).

- Assume: any resistance offered to bending is negligible. means: the tension force in the cable is always in the direction of the cable.

- Flexible cables may support
 - concentrated loads.
 - distributed loads
 - its own weight only
 - all three or only two of the above

- In several cases the weight of the cable may be negligible compared with the loads it supports.
General Relationships

- Assume:
 - the distributed load w (in N/m) is *homogeneous* and has a *constant* thickness.
 - distributed load $w = w(x)$.

- The resultant R of the vertical loading $w(x)$ is

$$ R = \int dR = \int wdx \quad (1) $$

- Position of R

$$ x_G = \frac{\int x dR}{R} \quad (2) $$

x_G center of gravity, which equals the centroid of the area if w is homogeneous.
Static Equilibrium

Note that the changes in both \(T \) and \(\theta \) are taken to be positive with a positive change in \(x \)

\[\uparrow : \sum F_y = 0 \]
\[(T + dT) \sin(\theta + d\theta) = T \sin \theta + \omega dx \] \hspace{1cm} (3)

\[\rightarrow : \sum F_x = 0 \]
\[(T + dT) \cos(\theta + d\theta) = T \cos \theta \] \hspace{1cm} (4)

With the equalities:

\[\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b \]
\[\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b \]

and the substitutions \(\sin(d\theta) = d\theta, \cos(d\theta) = 1 \), which hold in the limit as \(d\theta \)
approaches zero, yields

\[(T + dT)(\sin \theta + \cos \theta d\theta) = T \sin \theta + \omega dx \] \hspace{1cm} (5)
\[(T + dT)(\cos \theta - \sin \theta d\theta) = T \cos \theta \] \hspace{1cm} (6)

Neglecting the second-order term \((dT d\theta) \) and simplifying leads to

\[T \cos \theta \, d\theta + dT \sin \theta = \omega dx \] \hspace{1cm} (7)
\[-T \sin \theta \, d\theta + dT \cos \theta = 0 \] \hspace{1cm} (8)
which can be written in the form

\[d(T \sin \theta) = wx \] \hspace{1cm} (9)
\[d(T \cos \theta) = 0 \] \hspace{1cm} (10)

Equation (10) means that the horizontal component of \(T \) remains constant.

\[T \cos \theta = T_H = \text{const.} \] \hspace{1cm} (11)

\[\rightarrow T = \frac{T_H}{\cos \theta} \] \hspace{1cm} (12)

Substituting Eq. (12) into Eq. (9) yields

\[d(T_H \tan \theta) = wx \] \hspace{1cm} (13)

with \(\tan \theta = \frac{dy}{dx} \), Eq. (13) becomes

\[\frac{d^2y}{dx^2} = \frac{w}{T_H} \] \hspace{1cm} (14)

which represents the differential equation for the flexible cable.

The solution of this equation with considering the boundary conditions yields the shape of the cable \(y = y(x) \).
Parabolic Cable

Assume: \(w = \text{const.}, \) load homogeneous

Example: suspension bridge

mass of the cable \(\ll \) mass of the bridge \(\rightarrow \) neglect the cable mass

Note: The mass of the cable itself is not distributed uniformly with the horizontal \((x\text{-axis})\).

- Place the coordinate origin at the lowest point of the cable.

\[
\frac{d^2 y}{dx^2} = \frac{w}{T_H} \tag{14}
\]

Integrating yields

\[
\frac{dy}{dx} = \frac{wx}{T_H} + C_1 \tag{15}
\]

\[
y(x) = \frac{wx^2}{2T_H} + C_1 x + C_2 \tag{16}
\]

Boundary conditions:

a) \(x = 0, \quad \frac{dy}{dx} = 0 \quad \text{Eq.} \ (15) \rightarrow C_1 = 0 \)

b) \(x = 0, \quad y = 0 \quad \text{Eq.} \ (16) \rightarrow C_2 = 0 \)

\[\rightarrow \quad y(x) = \frac{wx^2}{2T_H} \tag{17} \]
Horizontal tension force T_H

At the lowest point, the tension force is horizontal.

BC: at $x = l_A, y = h_A$

Substituting this boundary condition into Eq. (17) gives

$$h_A = \frac{wl_A^2}{2T_H}$$

$$\rightarrow T_H = \frac{wl_A^2}{2h_A}$$

Note that T_H is the minimum tension force in the cable ($T_H = T_{\text{min}}$).

Tension force $T(x)$

From the figure we get

$$T = \sqrt{T_H^2 + w^2x^2}$$

Where T becomes maximum for $x = x_{\text{max}}$, since T_H and w are constants.

Using Eq. (19) yields

$$T = w\sqrt{x^2 + (l_A^2 + 2h_A)^2}$$

The maximum tension force occurs at $x = x_{\text{max}}$, in this case $x_{\text{max}} = l_A$.

$$T_{\text{max,}A} = wl_A\sqrt{1 + (l_A/2h_A)^2}$$
The length of cable \((s)\)

Length \(s_A\)

Integrating the differential length

\[
d s = \sqrt{(d x)^2 + (d y)^2}
\]

(23)

gives

\[
\int_0^{s_A} d s = \int_0^{l_A} \sqrt{1 + (d y/d x)^2} d x
\]

(24)

\[\text{a) exact solution}\]

\[
s_A = \frac{1}{2a} \left[x \sqrt{x^2 + a^2} + a^2 \ln (x + \sqrt{x^2 + a^2}) \right]_{0}^{l_A}
\]

\[
s_A = \frac{1}{2a} \left[l_A \sqrt{l_A^2 + a^2} + a^2 \ln \left(l_A + \sqrt{l_A^2 + a^2} \right) - a^2 \ln a \right]
\]

(25)

where

\[
a = \frac{\tau H}{w} = \frac{l_A^2}{2 h_A}
\]

(26)

\[\text{b) approximate solution}\]

using the binomial series

\[
(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \ldots
\]

(27)

which converges for \(x^2 < 1\), and replacing \(x\) by \((w x / T_H)^2\) and setting \(n = 1/2\), we get

\[
s_A = l_A \left[1 + \frac{2}{3} \left(\frac{h_A}{l_A} \right)^2 - \frac{2}{5} \left(\frac{h_A}{l_A} \right)^4 + \ldots \right]
\]

(28)
This series is convergent for values of \(h_A/l_A < 1/2 \), which holds for most practical cases.

For the cable section from the origin to \(B \) (\(x \) rotated \(180^\circ \)), we obtain in a similar manner by replacing \(h_A, l_A \) and \(s_A \) by \(h_B, l_B \) and \(s_B \), respectively

\[
T_H = \frac{wl_B}{2h_B}
\] \hspace{1cm} (29)

\[
T = w\sqrt{x^2 + (l_B^2 + 2h_B)^2}
\] \hspace{1cm} (30)

\[
T_{max,B} = wl_B\sqrt{1 + (l_B/2h_B)^2}
\] \hspace{1cm} (31)

\[
s_B = \frac{1}{2a}\left[l_B\sqrt{l_B^2 + a^2} + a^2 \ln\left(l_B + \sqrt{l_B^2 + a^2}\right) - a^2 \ln a\right]
\] \hspace{1cm} (32)

where in this case

\[
a = \frac{l_B^2}{2h_B}
\] \hspace{1cm} (33)

Approximate solution

\[
s_B = l_B\left[1 + \frac{2}{3} \left(\frac{h_B}{l_B}\right)^2 - \frac{2}{5} \left(\frac{h_B}{l_B}\right)^4 + \ldots\right]
\] \hspace{1cm} (34)

Since \(h_A > h_B \), the absolute maximum tension force in the cable will naturally occur at end \(A \), since this side of the cable supports the greater proportion of the load.
Symmetric case

\[s_A = s_B, \quad l_A = l_B, \quad h_A = h_B \]

total span \(L = 2l_A \), total sag \(h = h_A \)

In this case we get

\[T_{\text{max}} = \frac{wL}{2} \sqrt{1 + \left(\frac{L}{4h}\right)^2} \] \hfill (35)

\[s = 2h \left[\sqrt{1 + b^2} + b^2 \ln \left(\frac{L}{2} + \frac{L}{2} \sqrt{1 + b^2} \right) - b^2 \ln \left(\frac{L^2}{8h} \right) \right] \] \hfill (36)

where

\[b = \frac{L}{4h} \] \hfill (37)

Approximate solution:

\[s = L \left[1 + \frac{8}{3} \left(\frac{h}{L} \right)^2 - \frac{32}{5} \left(\frac{h}{L} \right)^4 + \cdots \right] \] \hfill (38)

This series converges for all values of \(h/L < 1/4 \). In most cases \(h << L/4 \).

→ The first three terms of series (38) give a sufficiently accurate approximation.
Catenary Cable

Consider cable weight only

\[wx \rightarrow \mu s; \quad wdx \rightarrow \mu ds \]

where \(\mu \) is the weight per unit length of the cable in N/m.

Eq. (10): \(T_H = T \cos \theta \quad \rightarrow \quad T = \frac{T_H}{\cos \theta} \)

Substituting into Eq. (9) and replacing \(wdx \) with \(\mu ds \) yields

\[d(T_H \tan \theta) = \mu ds, \quad \tan \theta = \frac{dy}{dx} \]

\[\rightarrow \quad d\left(T_H \frac{dy}{dx} \right) = \mu ds \quad (39) \]

Differentiation with respect to \(x \) yield

\[\frac{d^2y}{dx^2} = \frac{\mu}{T_H} \frac{ds}{dx} \quad (40) \]

With \(ds = \sqrt{(dx)^2 + (dy)^2} \), we get

\[\frac{d^2y}{dx^2} = \frac{\mu}{T_H} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \quad (41) \]
Substitution: \(p = \frac{dy}{dx} \rightarrow \frac{dp}{dx} = \frac{d^2y}{dx^2} \) \hspace{1cm} (42)

\[\rightarrow \frac{dp}{\sqrt{1+p^2}} = \frac{dx}{c} \] \hspace{1cm} (43)

where \(c = \frac{T_H}{\mu} \)

Substituting \(p = \sinh u, \ dp = \cosh u \ du, \ u = \arcsinh p \), gives

\[\frac{dx}{c} = \frac{\cosh u}{\sqrt{1+\sinh^2 u}} \ du \] \hspace{1cm} (44)

Integrating leads to

\[\frac{x}{c} = u + C_1 \] \hspace{1cm} (45)

Boundary condition:

At \(x = 0 \), \(\frac{dy}{dx} = p = 0 \rightarrow \sinh(0) = 0 \rightarrow C_1 = 0 \)

So that

\[u = \frac{x}{c} = \arcsinh p \] \hspace{1cm} (46)

or

\[p = \frac{dy}{dx} = \sinh \frac{x}{c} \] \hspace{1cm} (47)

which leads to

\[dy = \sinh \frac{x}{c} \ dx \] \hspace{1cm} (48)

Integrating yields

\[y = c\cosh \frac{x}{c} + C_2 \] \hspace{1cm} (49)
Boundary condition:

At \(x = 0, y = 0 \quad \rightarrow C_2 = -c \)

Thus, we obtain the equation of the curve formed by the cable

\[
y = \frac{T_H}{\mu} \left(\cosh \frac{\mu x}{T_H} - 1 \right)
\]

(50)

Cable length

From the free-body diagram shown in the figure we see that

\[
\frac{dy}{dx} = \tan \theta = \frac{\mu s}{T_H} \quad \rightarrow s = \frac{T_H}{\mu} \frac{dy}{dx}
\]

Using Eq. (47), we get then

\[
s = \frac{T_H}{\mu} \sinh \frac{\mu x}{T_H}
\]

(51)

Where the unknown minimum tension force \(T_H \) may be obtained from Eq. (50) by using the boundary condition \(y = h_A \) at \(x = l_A \).

Tension force

From the figure, we get

\[
T^2 = \mu^2 s^2 + T_H^2
\]

(52)

Substituting Eq. (51) into Eq. (52) leads to
\[T^2 = T_H^2 \left(1 + \sinh^2 \frac{\mu x}{T_H} \right) = T_H^2 \cosh^2 \frac{\mu x}{T_H} \]

(53)

or

\[T = T_H \cosh \frac{\mu x}{T_H} \]

(54)

With equation (50) we get

\[T = T_H + \mu y \]

(55)

The solution of catenary problems where the sag-to-span ratio is small may be approximated by the relations developed for the parabolic cable. A small sag-to-span ratio means a tight cable, and the uniform distribution of weight along the cable is not very different from the same load intensity distributed uniformly along the horizontal.