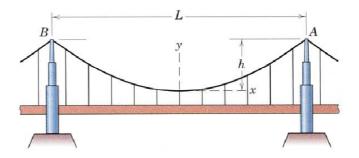
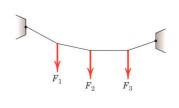
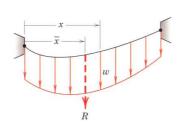
5.8 Flexible Cables

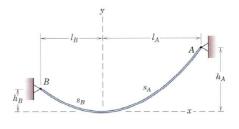
- J. L. Meriam and L. G. Kraige, Engineering Mechanics, Statics 5th ed., SI
- Examples: suspension bridges, transmission lines, messenger cables for supporting heavy trolley or telephone lines.
- To determine for design purposes:
 Tension force (T), span (L), sag (h), length of the cable (s).



- Assume: any resistance offered to bending is negligible. means: the tension force in the cable is *always* in the direction of the cable.
- Flexible cables may support
 - concentrated loads.
 - distributed loads
 - its own weight only
 - all three or only two of the above



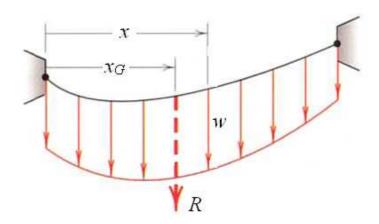




- In several cases the weight of the cable may be negligible compared with the loads it supports.

General Relationships

- Assume:
 - the distributed load w (in N/m) is homogeneous and has a *constant* thickness.
 - distributed load w = w(x).



- The resultant **R** of the vertical loading w(x) is

$$R = \int dR = \int w dx \tag{1}$$

- Position of **R**

$$x_G = \frac{\int x dR}{R} \tag{2}$$

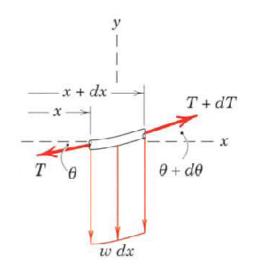
 x_G center of gravity, which equals the centroid of the area if w is homogeneous.

Static Equilibrium

Note that the changes in both T and θ are taken to be positive with a positive change in x

$$\uparrow : \sum F_y = 0$$

$$(T + dT)\sin(\theta + d\theta) = T\sin\theta + wdx$$
(3)



$$\rightarrow$$
: $\sum F_{x} = 0$

$$(T + dT)\cos(\theta + d\theta) = T\cos\theta \tag{4}$$

With the equalities:

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$
$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

and the substitutions $\sin(d\theta) = d\theta$, $\cos(d\theta) = 1$, which hold in the limit as $d\theta$ approaches zero, yields

$$(T + dT)(\sin \theta + \cos \theta \, d\theta) = T \sin \theta + w dx \tag{5}$$

$$(T + dT)(\cos \theta - \sin \theta \, d\theta) = T \cos \theta \tag{6}$$

Neglecting the second-order term $(dTd\theta)$ and simplifying leads to

$$T\cos\theta \,d\theta + dT\sin\theta = wdx\tag{7}$$

$$-T\sin\theta \,d\theta + dT\cos\theta = 0\tag{8}$$

which can be written in the form

$$d(T\sin\theta) = wdx \tag{9}$$

$$d(T\cos\theta) = 0\tag{10}$$

Equation (10) means that the horizontal component of *T* remains constant.

$$T\cos\theta = T_H = const. \tag{11}$$

$$\to T = \frac{T_H}{\cos \theta} \tag{12}$$

Substituting Eq. (12) into Eq. (9) yields

$$d(T_H \tan \theta) = w dx \tag{13}$$

with $\tan \theta = \frac{dy}{dx}$, Eq. (13) becomes

$$\frac{d^2y}{dx^2} = \frac{w}{T_H} \tag{14}$$

which represents the differential equation for the flexible cable.

The solution of this equation with considering the boundary conditions yields the shape of the cable y = y(x).

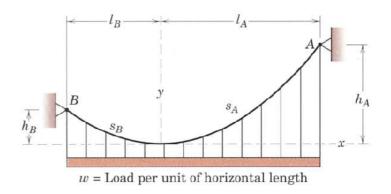
Parabolic Cable

Assume: w = const., load homogeneous

Example: suspension bridge

mass of the cable << mass of the bridge \rightarrow neglect the cable mass

Note: The mass of the cable itself is not distributed uniformly with the horizontal (*x*-axis).



- Place the coordinate origin at the lowest point of the cable.

$$\frac{d^2y}{dx^2} = \frac{w}{T_H} \tag{14}$$

Integrating yields

$$\frac{dy}{dx} = \frac{wx}{T_H} + C_1$$
 (15)

$$y(x) = \frac{wx^2}{2T_H} + C_1 x + C_2 \tag{16}$$

Boundary conditions:

a)
$$x = 0$$
, $\frac{dy}{dx} = 0$ Eq. (15) $\to C_1 = 0$
b) $x = 0$, $y = 0$ Eq. (16) $\to C_2 = 0$
 $\to y(x) = \frac{wx^2}{2T_H}$ (17)

Horizontal tension force T_H

At the lowest point, the tension force is horizontal.

BC: at
$$x = l_A$$
, $y = h_A$

Substituting this boundary condition into Eq. (17) gives

$$h_A = \frac{wl_A^2}{2T_H} \tag{18}$$

$$\to T_H = \frac{wl_A^2}{2h_A} \tag{19}$$

Note that T_H is the minimum tension force in the cable $(T_H = T_{min})$.

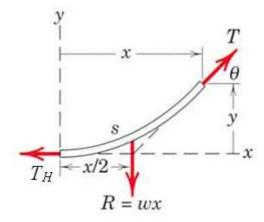
Tension force T(x)

From the figure we get

$$T = \sqrt{T_H^2 + w^2 x^2} \tag{20}$$

Where *T* becomes maximum for $x = x_{max}$, since T_H and w are constants.

Using Eq. (19) yields



$$T = w\sqrt{x^2 + (l_A^2 + 2h_A)^2}$$
 (21)

The maximum tension force occurs at $x = x_{\text{max}}$; in this case $x_{\text{max}} = l_A$.

$$T_{max,A} = wl_A \sqrt{1 + (l_A/2h_A)^2}$$
 (22)

The length of cable (s)

Length s_A

Integrating the differential length

$$ds = \sqrt{(dx)^2 + (dy)^2}$$
 (23)

gives

$$\int_0^{s_A} ds = \int_0^{l_A} \sqrt{1 + (dy/dx)^2} dx \tag{24}$$

a) exact solution

$$s_{A} = \frac{1}{2a} \left[x \sqrt{x^{2} + a^{2}} + a^{2} \ln \left(x + \sqrt{x^{2} + a^{2}} \right) \right]_{0}^{l_{A}}$$

$$s_{A} = \frac{1}{2a} \left[l_{A} \sqrt{l_{A}^{2} + a^{2}} + a^{2} \ln \left(l_{A} + \sqrt{l_{A}^{2} + a^{2}} \right) - a^{2} \ln a \right]$$
(25)

where

$$a = \frac{T_H}{w} = \frac{l_A^2}{2h_A} \tag{26}$$

b) approximate solution

using the binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$
 (27)

which converges for $x^2 < 1$, and replacing x by $(wx/T_H)^2$ and setting n = 1/2, we get

$$s_A = l_A \left[1 + \frac{2}{3} \left(\frac{h_A}{l_A} \right)^2 - \frac{2}{5} \left(\frac{h_A}{l_A} \right)^4 + \dots \right]$$
 (28)

This series is convergent for values of $h_A/l_A < 1/2$, which holds for most practical cases.

For the cable section from the origin to B (x rotated 180°), we obtain in a similar manner by replacing h_A , l_A and s_A by h_B , l_B and s_B , respectively

$$T_H = \frac{wl_B^2}{2h_B} \tag{29}$$

$$T = w\sqrt{x^2 + (l_B^2 + 2h_B)^2} \tag{30}$$

$$T_{max,B} = w l_B \sqrt{1 + (l_B/2h_B)^2}$$
(31)

$$s_B = \frac{1}{2a} \left[l_B \sqrt{l_B^2 + a^2} + a^2 \ln \left(l_B + \sqrt{l_B^2 + a^2} \right) - a^2 \ln a \right]$$
 (32)

where in this case

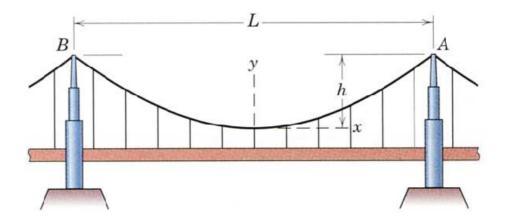
$$a = \frac{l_B^2}{2h_B} \tag{33}$$

Approximate solution

$$s_B = l_B \left[1 + \frac{2}{3} \left(\frac{h_B}{l_B} \right)^2 - \frac{2}{5} \left(\frac{h_B}{l_B} \right)^4 + \dots \right]$$
 (34)

Since $h_A > h_B$, the absolute maximum tension force in the cable will naturally occur at end A, since this side of the cable supports the greater proportion of the load.

Symmetric case



$$s_A = s_B$$
, $l_A = l_B$, $h_A = h_B$

total span $L = 2l_A$, total sag $h = h_A$

In this case we get

$$T_{max} = \frac{wL}{2} \sqrt{1 + (L/4h)^2} \tag{35}$$

$$s = 2h \left[\sqrt{1 + b^2} + b^2 \ln \left(\frac{L}{2} + \frac{L}{2} \sqrt{1 + b^2} \right) - b^2 \ln \left(\frac{L^2}{8h} \right) \right]$$
 (36)

where

$$b = \frac{L}{4h} \tag{37}$$

Approximate solution:

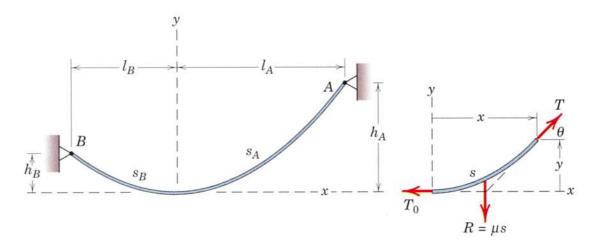
$$s = L \left[1 + \frac{8}{3} \left(\frac{h}{L} \right)^2 - \frac{32}{5} \left(\frac{h}{L} \right)^4 + \dots \right]$$
 (38)

This series converges for all values of h/L < 1/4. In most cases h << L/4.

→ The first three terms of series (38) give a sufficiently accurate approximation.

Catenary Cable

Consider cable weight only



 $wx \to \mu s$; $wdx \to \mu ds$

where μ is the weight per unit length of the cable in N/m.

Eq. (10):
$$T_H = T \cos \theta \rightarrow T = \frac{T_H}{\cos \theta}$$

Substituting into Eq. (9) and replacing wdx with μds yields

$$d(T_H \tan \theta) = \mu ds,$$
 $\tan \theta = \frac{dy}{dx}$ $d\left(T_H \frac{dy}{dx}\right) = \mu ds$ (39)

Differentiation with respect to x yield

$$\frac{d^2y}{dx^2} = \frac{\mu}{T_H} \frac{ds}{dx} \tag{40}$$

With $ds = \sqrt{(dx)^2 + (dy)^2}$, we get

$$\frac{d^2y}{dx^2} = \frac{\mu}{T_H} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \tag{41}$$

Substitution:
$$p = \frac{dy}{dx} \rightarrow \frac{dp}{dx} = \frac{d^2y}{dx^2}$$
 (42)

$$\rightarrow \frac{dp}{\sqrt{1+p^2}} = \frac{dx}{c} \tag{43}$$

where $c = \frac{T_H}{\mu}$

Substituting p = sinhu, dp = coshudu, u = arsinhp, gives

$$\frac{dx}{c} = \frac{\cosh u}{\sqrt{1 + \sinh u}} du \tag{44}$$

Integrating leads to

$$\frac{x}{c} = u + C_1 \tag{45}$$

Boundary condition:

At
$$x = 0$$
, $\frac{dy}{dx} = p = 0$ $\rightarrow \sinh(0) = 0$ $\rightarrow C_1 = 0$

So that

$$u = \frac{x}{c} = arsinhp \tag{46}$$

or

$$p = \frac{dy}{dx} = \sinh\frac{x}{c} \tag{47}$$

which leads to

$$dy = \sinh\frac{x}{c}dx\tag{48}$$

Integrating yields

$$y = c cosh \frac{x}{c} + C_2 \tag{49}$$

Boundary condition:

At
$$x = 0$$
, $y = 0$ $\rightarrow C_2 = -c$

Thus, we obtain the equation of the curve formed by the cable

$$y = \frac{T_H}{\mu} \left(\cosh \frac{\mu x}{T_H} - 1 \right) \tag{50}$$

Cable length

From the fee-body diagram shown in the figure we see that

$$\frac{dy}{dx} = tan\theta = \frac{\mu s}{T_H} \rightarrow s = \frac{T_H}{\mu} \frac{dy}{dx}$$

Using Eq. (47), we get then

$$s = \frac{T_H}{\mu} \sinh \frac{\mu x}{T_H} \tag{51}$$

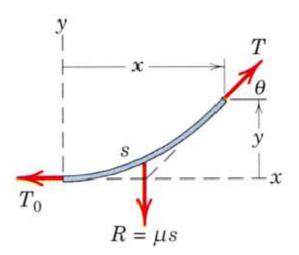
Where the unknown minimum tension force T_H may be obtained from Eq. (50) by using the boundary condition $y = h_A$ at $x = l_A$.

Tension force

From the figure, we get

$$T^2 = \mu^2 s^2 + T_H^2 \tag{52}$$

Substituting Eq. (51) into Eq. (52) leads to



$$T^{2} = T_{H}^{2} \left(1 + \sinh^{2} \frac{\mu x}{T_{H}} \right) = T_{H}^{2} \cosh^{2} \frac{\mu x}{T_{H}}$$
 or (53)

$$T = T_H cosh \frac{\mu x}{T_H} \tag{54}$$

With equation (50) we get

$$T = T_H + \mu y \tag{55}$$

The solution of catenary problems where the sag-to-span ratio is small may be approximated by the relations developed for the parabolic cable. A small sag-to-span ratio means a tight cable, and the uniform distribution of weight along the cable is not very different from the same load intensity distributed uniformly along the horizontal.