5.8 Flexible Cables

J. L. Meriam and L. G. Kraige, Engineering Mechanics, Statics 5" ed., SI

- Examples: suspension bridges, transmission lines, messenger cables
for supporting heavy trolley or telephone lines.

- To determine for
design purposes :
Tension force (7),
span (L), sag (h), i
length of the cable (s). e, /—j—\

- Assume: any resistance offered to bending is negligible.
means: the tension force in the cable is a/ways in the direction of the
cable.

- Flexible cables may support
- concentrated loads.
- distributed loads
- its own weight only
- all three or only two of the above

- In several cases the weight of the cable may be negligible compared
with the loads it supports.



General Relationships

- Assume:
- the distributed load w (in N/m) is homogeneous and has a
constant thickness.
- distributed load w = w(x).
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- The resultant R of the vertical loading w(x) is
R=[dR = [wdx (1)
- Position of R
dR
xo = ®)

x¢ center of gravity, which equals the centroid of the area if w is
homogeneous.



Static Equilibrium

Note that the changes in both 7'and @ are |
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(T + dT) sin(6 + df) = T sin 6 + wdx
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(T +dT) cos(60 +dB) =T cosb 4)

With the equalities:
sin(a + b) =sinacosb + cosasinb
cos(a + b) = cosacosb + sinasinb

and the substitutions sin(df) = df, cos(df) =1, which hold in the limit as d@
approaches zero, yields

(T +dT)(sinf + cos0 df) = T sin 6 + wdx (5)

(T + dT)(cos® —sin6dO) =T cos B (6)

Neglecting the second-order term (d7d#) and simplifying leads to

T cos8dO + dT sin 0 = wdx (7)

—Tsinfdf + dT cosf =0 (8)



which can be written in the form

d(T sin0) = wdx 9)
d(T cosf) =0 (10)

Equation (10) means that the horizontal component of 7 remains constant.

T cos8 = Ty = const. (11)
— _TH
- T= cosf (12)

Substituting Eq. (12) into Eq. (9) yields
d(Ty tan 0) = wdx (13)

with tan 8 = Z—Z , Eq. (13) becomes

2
@y _w (14)

dx? TH
which represents the differential equation for the flexible cable.

The solution of this equation with considering the boundary conditions
yields the shape of the cable y = y(x).



Parabolic Cable
Assume: w = const., load homogeneous
Example: suspension bridge
mass of the cable << mass of the bridge — neglect the cable mass

Note: The mass of the cable itself is not distributed uniformly with the
horizontal (x-axis).

- Place the coordinate origin at the lowest point of the cable.

d’y w
preiakos (14)
Integrating yields

dy_w_x
E_TH-I_Cl(lS)

2
y(x) = 2+ C,x + C, (16)
2Ty

Boundary conditions:

a) x=0, =0 Eq. (15) — C, =0
b) x=0, y=0 Eq. (16) > C,=0

-y = (am



Horizontal tension force Ty
At the lowest point, the tension force is horizontal.
BC: atx = lA,y= l’lA

Substituting this boundary condition into Eq. (17) gives

_ wij
ha = 22 (18)
wli
- Ty=32 (19)

Note that T} is the minimum tension force in the cable (7 = T,,;,).

Tension force T(x)

From the figure we get
T =/T? + w2x? (20)

Where T becomes maximum for x = x,,,,,
since Ty and w are constants.

Using Eq. (19) yields

T =wyx2+ (12 +2hy)2  (21)

The maximum tension force occurs at x = x,,,,; 1n this case x,,, = /4.

Thmaxa = WlA\/l + (la/2hy)? (22)



The length of cable (s)

Length s,

Integrating the differential length

ds = /(dx)? + (dy)? (23)
gives
[hds = [* 1+ (dy/dx)?dx (24)

a) exact solution

!
Sy = % [xVx2 + a% + a®In (x + Vx2 + az)]OA

Sa=— [lm/lj ¥ a?+a?ln (lA +JIZ ¥ aZ) — azlna] (25)
where

_Th _ 4 26

a= w o ZhA ( )

b) approximate solution

using the binomial series

(1+x)n=1+nx+mn__nx2+wx3+... (27)
2! 3!

which converges for x* < 1, and replacing x by (wx/Ty)* and setting n = 1/2,
we get

s, =1, [1 +Z(h_A)2_z(h_A)4+...] (28)

3\ly



This series is convergent for values of /,//,<1/2, which holds for most
practical cases.

For the cable section from the origin to B (x rotated 180°), we obtain in a
similar manner by replacing 44, [, and s, by hg, I3 and sp, respectively

wl,23

Ty = 5 (29)
T = wy/x2 + (12 + 2hp)? (30)
Traxp = Wl 1+ (Ip/2hp)? €29
Sg = i [le/lf; +a%?+a*ln (lB + 15+ az) — azlna] (32)
where in this case
_ 5

a= (33)
Approximate solution
sp=1 1+3(h—3)2—3(h—3)4+--- (34)

B— "B 3 \ip 5\l

Since &, > hg, the absolute maximum tension force in the cable will naturally

occur at end 4, since this side of the cable supports the greater proportion of
the load.



Symmetric case

Sa=5sp, L4=1lp, hy=hg
total span L = 2/, total sag h = hy

In this case we get

Tmax = =+/1+ (L/4h)2 (35)
s =2h[VI+ 52+ b?In (% + VT4 52) - b%In (o) (36)
where

b= ﬁ (37)

Approximate solution:

= tfre3(F -2 ] o

This series converges for all values of 4/L < 1/4. In most cases & << L/4.

— The first three terms of series (38) give a sufficiently accurate
approximation.



Catenary Cable

Consider cable weight only

wx — us;  wdx — uds

where u is the weight per unit length of the cable in N/m.

Ty
cos O

Eq.(10): Ty =Tcos8 — T =
Substituting into Eq. (9) and replacing wdx with uds yields

d(Ty tan @) = uds, tanf = Z—Z

S d (TH Z—z) = uds (39)

Differentiation with respect to x yield

d?y u ds

o7 Ty ax (40)
With ds = \/(dx)? + (dy)? , we get

%y _ u dy\?

EEalt (E) (41)



2
Substitution: p == L 4y (42)

== (43)

T,
where c = 2
U

Substituting p = sinhu, dp = coshudu, u = arsinhp, gives

dx coshu

c V1+sinhu u (44)

Integrating leads to
X
Boundary condition:

Atx=0, Z—z=p=0 — sinh(0)=0 — C; =0
So that

u= % = arsinhp (46)

or

p = Z—z = sinh% 47)

which leads to
dy = sinh f dx (48)
Integrating yields

y = ccosh% + G, (49)



Boundary condition:
Atx=0,y=0 — (G,=-c

Thus, we obtain the equation of the curve formed by the cable

y = %’(coshi—x — 1)

H

Cable length

From the fee-body diagram shown in the figure we see that

S Ty d
dx Ty u dx

Using Eq. (47), we get then

T . X
s =Hsinh =
I Th

(50)

(51)

Where the unknown minimum tension force 7 may be obtained from Eq.

(50) by using the boundary condition y = 4, at x = 1,.
Tension force

From the figure, we get

T? = u?s* + T4 (52)

Substituting Eq. (51) into Eq. (52)
leads to




T? =TF (1 + sinh? i—;) = T#cosh? 5—; (53)
or
T = THcosh% (54)

With equation (50) we get
T =Ty + uy (55)

The solution of catenary problems where the sag-to-span ratio is small may

be approximated by the relations developed for the parabolic cable. A small
sag-to-span ratio means a tight cable, and the uniform distribution of weight
along the cable is not very different from the same load intensity distributed
uniformly along the horizontal.



