Computer Programming in C/C++
66111
Department of Computer Engineering
Luai M. Malhis, Ph.D.
Spring 2010

Computer Programming (66111)

An-Najah N. University
Computer Engineering Department
Luai Malhis, Ph.D,

Introduction To Computer System

Luai M. Malhis 1

Computer System

Definition of a computer

* The computer is an electronic machine that
performs the following four general
operations:

1. Input

2. Storage
3. Processing
4. Output.

Luai M. Malhis

Computer Components

A computer consists of two main components :

Hardware the mechanical, magnetic, electronic,
and electrical components making up a computer
system

Software: which are written programs pertaining
to the operation of a computer system and that
are stored in read/write memory.

Following is an overview of the main hardware
and software components in a computer

Luai M. Malhis 3

Computer Hardware

Input devices

System unit

Output devices

Storage devices
* Processing Unit:
The CPU and
Main Memory

Luai M. Malhis

¢ Enter data to be processed

— Keyboard

— Scanners

— Mouse

— Trackball

— Touch screen
— Microphone

— Game Controller

— Digital camera

Input Devices

>

S

Luai M. Malhis

System Unit
e Cabinet that houses all components
* Motherboard
* CPU

* Memory modules

@ System Unit

CPU

Bt

Memory
Module

Motherboard

Luai M. Malhis

Output Devices

e Enable us to see or hear the processed

information
— Monitor

— Speakers
— Printers

Luai M. Malhis

Storage Devices

e Enable us to store data or information to be
accessed again

Hard Disk Drive Floppy Disk CD / DVD Drive

Flash Drive
Luai M. Malhis

The Central processing Unit

¢ The CPU contains three parts:

e Arithmetic Logic Unit - ALU is where the "intelligence" of the
computer is located. It performs all arithmetic operations such
as addition, subtraction, multiplication and division. The ALU
performs logical operations i.e. makes decisions by determining
if a number is greater, less, or equal to the other number. An
operation completes in nanoseconds, which is a billionth of a
second.

e Registers: which are small storage devices holds instructions and
operands needed by the ALU during operation execution.

e 3. Control Unit - This is the part of the unit, which directs
information to the proper places in your computer, such as
calculation of information by the ALU unit or to store and print

material.
Luai M. Malhis 9

The Memory Unit

The Main Memory:

Two types of memory contained on a chip are ROM
(Read Only Memory) or RAM (Random Access
Memory).

ROM memory is installed on a computer by the
manufacturer and can not be altered. ROM is the
memory that determines all the basic functions of the
operation of rge computer such as startup, shut down,
and placing a character on the screen.

RAM is temporary memory, which stores programs
during execution and also hold all information displayed
on the monitor. RAM is read/write memory and it is
much larger in size than ROM. Data disappears from the
RAM when the computer is turned off or power is off.

Luai M. Malhis 10

Computer Software

» Software - programs
that enable the hardware
to perform different tasks

e Application software
— Tools for getting things done

Luai M. Malhis 1

Computer Software

e System software

— Essential for platform operation and support

A,
_— f‘fﬁ

Windows "

Luai M. Malhis 12

Computer Platforms:
PCs and Macs

PC Mac
e CPU - Intel, AMD e CPU - Motorola
* Operating system — * Operating system —
Microsoft Windows Apple Mac OS

TR

Luai M. Malhis 13

Application Software

Used to accomplish specific tasks other than just
running the computer system.

* May consist of a single program, such as an image
viewer;

e A small collection of programs (often called a
software package) that work closely together to
accomplish a task.

* Independent programs and packages that have a
common user interface or shared data format,
such as Microsoft Office.

Luai M. Malhis 14

Programming languages

e The machine language, which is the only languages
understood by CPU. While easily understood by the CPU,
the machine language is almost impossible for humans
to use because they consist entirely of 0’s and 1’s.

e A assembly language contains the same instructions as a
machine language, but the instructions and variables
have names instead of being just 0’s and 1’s.

* High Level language Closely resemble human language
Examples of high level languages are : Pascal, Fortran,
Basic, Java, and C/C++. Programs written in high-level
languages are translated into machine language by a
compiler.

Luai M. Malhis 15

C/C++ Programming Lnaguage

e History of C

— Evolved from two other programming languages
* BCPLand B
— “Typeless” languages

— Dennis Ritchie (Bell Laboratories)
¢ Added data typing, other features
— Hardware independent
* Portable programs

— 1989: ANSI standard

— The C Lnaguage is Then developed to contain classes and other
object Oriented features and named as C++.

— Many Other Lnaguages currently developed that uses a synatx
and symantics like C.

— C/C++ is traditionally the first language a programmer learns.

Luai M. Malhis 16

How C++ Works

Programs are written by humans.

Programs are run on computers.

C++ programs are written by humans and translates
into machine language by the C++ compiler.

C++ Programmer Machine Language

C++ Compiler

0010 1101
// Compute the area - 1101 1000
// of a triangle 1001 1000
area = 0001 0010
(base * height) / 0010 0000

Luai M. Malhis 17

What is a program

e Aprogram is a set of instructions that a computer follows.

e Example: computing the Area of Rectangle
Get base Get Height
Area = 0.5 * base * height

e Steps to writing a program:
Step 1. Think! (This is not optional.)
Step 2. Organize your thoughts
Step 3. Write them down in English
Step 4. Translate them into C++

Luai M. Malhis

18

Program Construction

* Text Editor

This is used to create the program in C++ form. Since this is
the start or source of the other forms this is called a source
file. (Source files end with .cpp. -- also used C and .cc.)

e Compiler

This translates the source file into a machine dependent file
called an object file. The object file contains the
instructions in a way that the machine can understand. The
source file is in the C++ language (high level code) while
the object file is in machine language (low level code.)

* Link
This is used to associate the object file with other

necessary files to generate an EXE file Which contains the
machine language.

Luai M. Malhis 19

Data vs. Information

e Data vs. Information:
— Data is a representation of a fact or idea
* Number
* Word
* Picture
* Sound

— Information is data that has been organized or
presented in a meaningful fashion.

Luai M. Malhis

20

Computers are Data Processing Devices

* Four major functions:
— Input data

— Process data

— Output information

— Store data and information

Luai M. Malhis

21

Bits and Bytes:
The Language of Computers

Bit

— Binary digit . . OFF ON
—Ooril Microchip 0

Byte Switch ‘ Q
— Eight bits

ASCII

— Each byte represents a
letter, number or special
character

R i a w
SRS

Luai M. Malhis 22

How Much is a Byte?

NAME ABBREVIATION NUMBER OF RELATIVE SIZE
BYTES

Byte B 1 byte Can hold one character of data.

Kilobyte KB 1,024 bytes Can hold 1,024 characters or about half of
a typewritten page double-spaced.

Megabyte MB 1,048,576 bytes A floppy disk holds approximately 1.4 MB
of data, or approximately 768 pages of
typed text.

Gigabyte GB 1,073,741,824 bytes Approximately 786,432 pages of text.
Since 500 sheets of paper is
approximately 2 inches, this represents a
stack of paper 262 feet high.

Terabyte B 1,099,511,627,776 bytes | This represents a stack of typewritten
pages almost 51 miles high.

Petabyte PB 1,125,899,906,842,624 The stack of pages is now 52,000 miles

bytes

high, or about one-fourth the distance from
the Earth to the moon.

Luai M. Malhis

23

Binary Language

Computers work in binary language

Consists of two numbers: 0 and 1

Everything a computer does is broken
down into a series of Os and 1s

Switches: Devices inside the computer
that can be flipped between these two
states: 1 or 0, on or off

Luai M. Malhis 24

Switches

* Non-mechanical devices in
computers that open and close
circuits

azia

* Types of electronic switches: Vacuum Tube

— Vacuum tubes
— Transistors: N ,
¢ Semiconductors [t . {

¥

Transistors

— Integrated circuits

oLy
Integrated Circuits
Luai M. Malhis 25

Switches Representing Data

* The on/off state of a switch represents one bit
of data

 Bit (binary digit) ON
—0On=1 @
—0Off=0
O| OR 1@ = 1 bit
1 0

The Binary Number System

e Describes a number as powers of 2
* Also referred to as base 2 numbering system

* Used to represent every piece of data stored in
a computer: all of the numbers, letters, and
instructions

Luai M. Malhis 27

The Binary Number System

* Number systems are organized ways to represent numbers

* Each number in one system has a corresponding number in
another.

128 64 32 16 8 4 2 1
2x64 | 2x32 | 2x16 2x8 2x4 2x2 2x1

Binary | 0 1 0 1 1 0 0 1

Base |0+ |64+| 0+ |16+| 8+ |0+ |0+ | 1=189

01011001 = 89

Binary Base 10

Luai M. Malhis

Understanding Decimal Numbers Understanding Binary Numbers

Decimal numbers are made of decimal digits: e Binary numbers are made of binary digits (bits):
(0,1,2,3,4,5,6,7,8,9) —0and1

But how many items does a decimal number e How many items does an binary number
represent? represent?

— 8653 = 8x103 + 6x102 * 5x10* * 3x10° _ (1011), = 1x23 + 0x22* 1x21* 1x20= (11)

What about fractions?

- gzggﬁfgng)z(lm + 7x103*6x102+5x10% +4x100 + — (1010010) = 64+16+2 = (82),,

— In formal notation ->.(9.7654.35)10 .' ‘. — (100010001) = 256+ 16+1 = (273),,
Why do we use 10 digits, anyway? JRN

The Growth of Binary Numbers

Convert from Decimal to binary
N is the number of bits in the binary number

For each digit position:

- . 2n n 2n
1. Divide decimal number by the base (e.g. 2) —— 2 >T=356
2. The remainder is the lowest-order digit 1 51— 9 2%=512
3. Repeat first two steps until no divisor remains. 5 = 10 210=1024
Example for (13),,. 3 e 1 211=2048
Integer Remainder Coefficient —
Quotient Z 2%=16 12 | 21=40%
13/2 = 6 + ¥ a,=1 50 S20=TN]
— — 5= - Mega
6/2 = 3 + 0 a,=0 5 2°=32
312 = 1+ % a,=1 = = 30 2=1G | Giga
1/2 = 0 + ¥ a;=1
7 27=128 40 29=1T | Tera

Answer (13),,= (aga, a, a,), = (1101),

Understanding Octal Numbers

Octal numbers are made of octal digits:
(011)2I3’415)6I7)

How many items does an octal number
represent?

— (4536), = 4x83 + 5x82 * 3x81 * 6x8° = (1362),,
What about fractions?

— (465.27), = 4x82* 6x81 * 5x8° + 2x81* 7x82
Octal numbers don’t use digits 8 or 9

Luai M. Malhis 33

Convert an Integer from Decimal to Octal

For each digit position:
1. Divide decimal number by the base (8)
2. The remainderis the lowest-order digit

3. Repeat first two steps until no divisor remains.

Example for (175),,.

Integer Remainder Coefficient

Quotient
175/8= 21 + 7/8 ag=7
21/8= 2 + 5/8 a;=5
28= 0 + 28 a,=2

Answer (175),0= (8,3, 85), = (257)g

Understanding Hexadecimal Numbers

Hexadecimal numbers are made of 16 digits:
-(0,1,2,3,4,5,6,7,89,A,B,C,D, E, F)

How many items does an hex number represent?
— (3A9F), = 3x16° + 10x162 * 9x161 * 15x16° = 14999,
What about fractions?

— (2D3.5),, = 2x162* 13x16 *3x16° + 5x161 = 723.3125,
Note that each hexadecimal digit can be
represented with four bits.

— (1110) , = (E) ¢

Converting Between Base 16 and Base 2

3A9F;; = 0011 1010 1001 1111,

3 A F

° Conversion is easy!

» Determine 4-bit value for each hex digit

E_ote that there are 24 = 16 different values of four
its

° Easier to read and write in hexadecimal.

° Representations are equivalent!

Converting Between Base 16 and Base 8

Number System Conversion Table

Dec Bin Oct Hex
0 0 0 0
3 A | 9 F 1 1 1 1
v 2 10 2 2
35237, = 011 101 010 011 111, 3 o 3 3
4 100 4 4
3 5 2 3 7 5 101 5 5
6 110 6 6
7 111 7 7
Convert from Base 8 to Base 2 5 1000 0 8
1. Regroup bits into groups of three starting from right - o . -
. 11 1011 13 B
2. Ignore leading zeros 12 100 m c
3. Each group of three bits forms an octal digit. ﬁ ﬁf; 12 E
15 111 17 F

Luai M. Malhis 38
ASCII Chart

Representing Letters and Symbols

There are codes that dictate how to represent characters
in binary format. Most of today’s computers use the
American Standard Code for Information
Interchange (ASCII code) to represent each letter or
character as an 8-bit (or 1-byte) binary code.

The ASCII code represents the 26 uppercase letters and
26 lowercase letters used in the English language, along
with a number of punctuation symbols and other special
characters, using 8 bits. Eight bits is the standard length
upon which computers are built.

In the ASCII The representation for Ais 41H (65)

B is 42H (66), ais 61H (97) and b is 62h (98). The
Complete table is shown next slide

Luai M. Malhis 39

0010 0011,
0100 0001
0011,
0100 0101,
0100 10015
owomnol. | o i ouoni, |
| s 83 owiooi, | w _ m7 0110101, |
0101 0101,
0101 0111, v 121
101 1001,
e —Emas e EoeERTE T e = e |

n@o@>a-.
-H O H
:

@

1 73

o B H &3 B EBECH B
HHHHHEHEE G

8

Computer Programming

An-Najah N. University
Computer Engineering Department
Luai Malhis, Ph.D,

The C Language Basic

Luai M. Malhis

C Language Elements

Key Words - reserved words with special
purpose that are part of the C/C++ language

Programmer Defined Symbols - words or names
that have been defined by the programmer.
May be variables, or constants.

Operators - Tell the computer to perform specific
operations (ex: +,-, .. > &&).
Punctuation - begins or ends a statement (;)

Syntax - grammar rules for writing a C
statement.

Luai M. Malhis 2

Some Definitions

e Statement - instruction for the computer to
perform, usually ends in a semicolon (;).

e Variable - name given to a memory location
that stores data that may change

* Constant - data that does not change like
numbers 12, -14, 16.5 or letters ‘A’

Luai M. Malhis

Programming Errors

e Syntax errors: violation of the syntax (grammar rules)
of the programming language

. The compiler gives an error message if the
program contains a syntax error

* Run-time errors: errors detected when the program is
run

. The system usually gives an error message during
execution for run-time error

* Logic errors: program compiles and runs normally, but
does not perform properly. Caused by an error in the
logic of the program

Luai M. Malhis 4

Special Characters

Character Name Use
!/ double slash to indicate a comment,
everything to right is ignored.
/* */ slash asterisk to enclose a comment
pound sign to indicate preprocessor directive
<> brackets to enclose a file name for a

preprocessor directive

() parentheses to enclose parameters for a
function or change precedence
{1} braces to enclose a group of statements
“oou quotes to enclose a string of characters
; semicolon to end a statement

Comments

* Important part of the program.
* Non-executable (not compiled) statements

e Describe the purpose of the program or parts of
the program

e Can be indicated by the double slash or the
slash asterisk combination

—// everything to the right of the double slash until
the end of the line is ignored

— /* encloses comment and requires a closing */ to
end comment.

* Provide documentation

Programming Process

Define the problem (most important step).
— Purpose
— Input
— Processing
— Output
Design an algorithm (often in pseudo code(English))
Check logic
Write code, enter code, compile code
Correct any syntax errors
Run code with test data, correct any errors

Example

* Suppose you want to calculate the area of a circle using the
radius that a user enters.
e Define the Problem

— purpose: the program is to calculate the area of a circle for a given
radius

— input: radius

— process: area = 1/2 pi radius?

— output: area
eAlgorithm -
Display a message asking for radius // cout << “enter radius”;
Input the radius // cin >> radius;

Calculate the area= 0.57r? // area=0.5*3.14
raduis*raduis

Display the radius and the area // cout << “the area is “<< area;

* Check Logic - does this algorithm fulfill the purpose.
* Write code, enter the code, and compile it.

Variables and Constants

Data can be stored in RAM (Random Access
Memory) to be used as needed.

Variables and symbolic constants are names
for these memory locations.

Variables refer to memory locations in which
the value stored may change throughout the
execution of the program.

Constants refer to memory locations in which
the values do not change.

Use a declaration to set aside memory space.

Identifiers (Variables)

* |dentifiers are names (or symbols) used by the

programmer to refer to items such as
variables, constants, functions.

Identifiers (variable) should be descriptive of
what they stand for. Ex sum, total or area

The “Name” used for identifiers must follow
specific guidelines in C/C++ to be valid.

Identifier Naming Rules

. The identifier cannot be a keyword, e.g. int,
float, if, while, etc.

. The identifier must be comprised of only letters
(A-Z, a-z), numbers(0-9), the underscore (_) and
the S

. The first character must not be a digit

4. C/C++ is case sensitive so total is not the same

identifier as Total

Valid and Invalid Names

e X:isvalid name

e Xy2:isvalid name

e I1class: is invalid because it starts with digit
* Num two: is invalid because it contains space
* For:isvalid

e for:is invalid because it is a keyword

* X%y: is invalid because it contains %

* Total Score: is valid

 area: is valid name

e _Info2for: valid

e @num: invalid

Data Types

To allocate the memory space for a variable
you must state the type of data that is being
stored as well as the identifier.

The classification of data types:

Key words for Data Types

* In C/C++ There are 6 basic keywords used to define variables
of the different data types

Integers: Example (decleration)
* short - integer (size 2 bytes) // short x;

e int- integer (size 4 bytes) //inty2;

* long - integer (size 4 bytes) // long abc;

1. Integers (whole numbers), Floating Points:
. . ¢ float - floating point value: i.e. a number with a fractional part.
2. Real numbers (with fractional parts) (size 4 bytes) // float area;
3. Characters (ASCIl code) may be letters * double - a double-precision floating point value. // double w;
numbers or any other symbol ’ Symbols(letters):
Y Y) * char - asingle character. (size 1 byte) // char z;
————— In this class, we will mainly use char, int and double when
declaring variables.
Declarations .
Assignment Statement
* Declarations are statements that tell the e The assignment statement is used to store
computer to allocate memory space and the values in memory locations
identifier will be used to refer to that space. e The general syntax is
 All variables must be declared before they
can be used! _ _
« Variable decl _ H he f * Where expression may be simple or complex
ariable dec aratlons. ave.t. e format expression (equation).
1. fjata type Name(identifier); e The expression evaluated first then the result is
2. int someNumber; stored at the identifier.
3. double radius; « Later will discuss expressions in more details
4. char let;

Assignment statement (2)

The assignment statement can be used to initialize
variables. Examples are:

int num1 =15; // initialize to constant value
int num2 = num1; // initialize to variable
char = ‘A’; // initialize to character

Note the use of quotations with charters to
differentiate it from variables

double sum = 13.2; // initialize double values
intx =13.2; // store only 13

int z=‘A’; // converts char to int stores 65 in z.
double f=12; //stores 12.0into f

Input Statement

* Allows data entered by the keyboard to be stored in
variables.

The general syntax :

cin >> variable; // note the use of >>
e Examples are:int abc; cin >> abg;
e Can enter multiple values in one statement.
cin>>length>>width;
e cin skips all white spaces blanks, newlines, and tabs.
example cin >> x>>y; skips all spaces between x andy.
* cin requires the use of the pre-processor directive
#include <iostream.h> as first line in the program file

Output Statement

Used to display text and data to the screen.
The general syntax is

Examples are:

cout << 5; // display constant value

cout << “Hello World”; // display text

int num =5; cout << num; // display variable num

int val; cin >> val; cout << val+2; // evaluate expression and
display result on the screen.

cout << “the area is “ << 5 *2; // text + value;
cout << “the house” << endl << “is full”; prints
the house

is full

Use endl to stop printing on current line.

Expression Definition

e An expression in C/C++ is a C statement that may contain
constants, variables and operators.

* An expression is two types simple and complex

* Simple expression is either constant value such as integer 12,
double13.4 or character ‘A’ or a value of a variable such int
x=5; the value of x.

* Complex expression contains simple expressions and
operator to be applied on it or them. Examples: 5+7,

x*2+7/2, X*2> Y. Complex expression are build from other simple or
complex expressions.

* Every expression must have a value: if the expression is
constant it value is the value of the constant (12, 13.5. ‘A’). If
variable the value stored in the variable (int x =12, value 12).
Complex evaluate expression to compute value (x + 2).

Expression Types and Values

Expression may contain many simple, complex expressions and
many operators applied on these expression that results in

a single value.
An expression can be either of two types: Arithmetic or Logical

Arithmetic expression applies an arithmetic operator to an
operands (expressions) (+,-,*,%, ... more later)

Logical expression applies logical operator to an operands
(expressions) (>, < ,&& | |, more later)

The Final value of an expression is either logical or arithmetic
depending on last operator executed. If the last operator is logical
the expression final value is either “true” 1 or “False” 0. If the last
operator is arithmetic the expression final value is a arithmetic
(integer or double)

For any expression if the arithmetic value is zero its logically “false’
otherwise it is logically “true”.

4

Expression Evaluation
. means the integer or floating-point constants
and/or variables in the expression.
*There are two kinds of numeric values:
—Integers (0, 12, -17, 142)
—Floating-point numbers (3.14, -6.023e23)

. are things like addition, subtraction
multiplication, greater than and less.

*The value of an expression will depend on the data
and and on the used

*Additionally, the value assigned to a variable in an
assignment statement will also depend on the of
the variable.

Arithmetic Operators

Operators can be combined into complex expressions
result = total + count / max - offset;
Operators have a well-defined precedence which determines
the order in which they are evaluated
Precedence rules
— Parenthesis are done first
— Division, multiplication and modulus are done second
¢ Left to right if same precedence (this is called associativity)
— Addition and subtraction are done last

« Left to right if same precedence
* QOperator types:
operates on two operands : 6.5 * num
operates on one operand: -23.4

Sample Expressions

*Operators on doubles:

unary: - and binary: +, -, *, and/
Constants of type double: 0.0, 3.14, -2.1, 5.0,
Sample expressions:
— 0.4 * income - children * 500
— (A4.0/3.0) * 3.14 * radius * radius * radius

*Operators on integers:

unary: - and binary: +, -, *, /and %
Constants of type integers: 0, 1, -17, 42

Sample expressions:
—5+4%*2
—Int x =10; x/2

int Division and Remainder

Integer operators include

(/) and
%,
/ is integer division: no remainder, no rounding
299/100 2
6/4 1
5/6 0

% is mod or remainder:

299 % 100 99
6% 4 2
5%6 5

int rad

A Cautionary Example

ius;

double volume;

double pi =3.141596;

volume =(4/3) * pi * radius *radius * radius;

Resultis (1) * pi * radius *radius * radius;

resul
val= (3

result

tis 3.141596 * radius *radius * radius
/4)* radius
is 0 * radius = 0.0 * radius

Order of Evaluation

determines the order of evaluation

of operators.

Is equal to
And does it matter?

Try this:

(4+3)*(2-1)=7
4+(3%2)-1=9

Pre

Operator Precedence Rules

cedence rules:

—1. do | /s first, starting with innermost
—2. then do unary minus (negation):
—3. then do “multiplicative” ops:

—4. lastly do “additive” ops: binary

Operator(s) Operation(s) Order of evaluation (precedence)

O Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

* /,or% Multiplication Division |Evaluated second. If there are several, they re

Modulus evaluated left to right.
+or - Addition Evaluated last. If there are several, they are
Subtraction evaluated left to right.

Associativity Matters

determines the order among
consecutive operators of equal precedence

*Does it matter? Try this:

*Most C arithmetic operators are
within the same precedence level

Luai M. Malhis 29

Depicting Expressions
assume a =-1.0; b = 2.5; and c = 15.2 then

Luai M. Malhis 30

Data Conversions

Sometimes it is convenient to convert data from one type to
another

— For example, we may want to treat an integer as a floating point value
during a computation

Conversions must be handled carefully to avoid losing
information

Two types of conversions

— Widening conversions are generally safe because they tend to go from
a small data type to a larger one (such as a shorttoan int)

— Narrowing conversions can lose information because they tend to go
from a large data type to a smaller one (such as an int toa short)

Luai M. Malhis 31

Data Conversions

e In CH#, data conversions can occur in three ways:

— Assignment conversion

* occurs automatically when a value of one type is assigned to
a variable of another

* only widening conversions can happen via assignment
e Example: aFloatVar = anIntVar
— Arithmetic promotion

* happens automatically when operators in expressions
convert their operands

» Example: aFloatVar / aniIntVar
— Casting

Luai M. Malhis

N

Data Conversions: Casting

Casting is the most powerful, and dangerous, technique
for conversion
Both widening and narrowing conversions can be
accomplished by explicitly casting a value
To cast, the type is put in parentheses in front of the value
being converted
For example, if total and count are integers, but we
want a floating point result when dividing them, we can
cast total:

result = (float) total / count;

Conversions in Assignments

int total, count, value;
double avg;

total =97; count=10;
avg = total / count ;
value = total*2.2;

implicit conversion L .
implicit conversion

to double to int — drops
fraction with no
warning
Explicit Conversions Using Casts
Use a to explicitly convert the result of an int total, count ;
expression to a different type double avg;
. total=97; count=10;
Format: (type) expression " _ _
/* explicit conversion to double (right way)*/

Examples (double) myage avg = (double) total / (double) count; /*avgis 9.7 */

(int) (balance + deposit)

This does not change the rules for evaluating
the expression itself (types, etc.)

Good style, because it shows the reader that
the conversion was intentional, not an accident

Luai M. Malhis 35

avg = (double) total /count;

avg = total/ (double) count;

/* explicit conversion to double (wrong way)*/

avg = (double) (total / count) ; /*avg is 9.0*/

Luai M. Malhis 36

Advice on Writing Expressions
*Write in the clearest way possible to help the reader

*Keep it simple; break very complex expressions into
multiple assignment statements

*Use parentheses to indicate your desired precedence
for operators when it is not clear

*Use explicit casts to avoid (hidden) implicit conversions
in mixed mode expressions and assignments

*Be aware of types: Every variable, value, and
expression in C has a type (int, double or char)

Relational Operators

Logical expressions are C statements that when evaluated
result in true or false values. In C true is represented by any
numeric value not equal to 0 and false is represented by 0

Relational Operators

Relation operators allow us to compare two expressions or
variables. Below is a list of these relational operators in
order of precedence.

> |s greater than

< Isless than

>= Is greater than or equal to

<= Is less than or equal to

== Isequal to // Thisis a mathematical equals

I =Is not equal to // An exclamation point means not in C++

Logical Operators

There are three types of logical operators which can be
used to combine Boolean expressions into compound
Boolean expressions.

The operators are: !(not), && (and), || (or)

The following table summarizes these operators|

x|y X && y x|y Ix
0)0 0 0 i
0|1 0 1 1
110 0 1 0
E 1 1 0

Short Circuits &&

* Short circuit evaluation looks at a compound
expression and evaluates it until it reaches a conflict a
final result of the expression

* A n expression filled with ANDs
p && q // where p, q are boolean expressions.

e if pisfalse, then the expression is false and therefore,
the evaluation will stop, i.e. p is not evaluated.

e If pistrue, then evaluate g and the result of the overall
expression depends on the evaluation of expression r.

int x=4; (x==4) && (x = 3); cout << x; what is printed?
intx=4; (x>4)&& (x=3); cout << x; what is printed?

Short Circuit | |

If we have A long expression filled with Ors like
p || a// where p, q are Boolean expressions

if p is true, then the expression is true and
therefore, the evaluation stop there.

if p is false q is evaluated and the value of the
overall expression depends on expression r being
true or false.

Example:
intx=4; (x==4) || (x=3); cout << x; what is printed?
Intx=4; (x>4) || (x=3); cout << x; what is printed?

Summary and examples

Conditional AND (&&) and Conditional OR (] |)Would
not evaluate the second condition if the result of the
first condition would already decide the final
outcome.

This argument extends for expression of the from

P&& q&& T &&......
or
PlIgllr]] .

Logical and Arithmetic Operator Precedence

1. Parenthesis () Highest precedence
2. Unary ! not and — (negative) (cast)

3. * /,% multiply, divide remainder

4. +, - plus and minus

5. >, <, >=, <= less, greater, less than, greater than

6. ==, I= equal and not equal

7. && (AND)

8. Il (OR)

9. =(assignment) Lowest precedence

Mixing Expressions
It is possible to include logical and

arithmetic operators in the same
expression.

The result of evaluating such expression is
logical or arithmetic depending on the final
operator being performed.

If the last operator is logical then the result
is either true or false.

If the last operator is arithmetic the final
value is arithmetic.

Mixed Expression

e Special care must be taken when evaluating

such expressions with the order of precedence.
Example int x =5;y =7, int z;

z = x+3 >v. In the precedence rules above the >
operator is evaluated last hence result of
expression is logical and value stored in z is 1.

z =x+(3 >y). The last operator evaluated is +

Since 3 <y iszero. Then z =x+0. This is an

arithmetic expression and in 5 is stored in z.

Assignment Revisited

¢ You can consider assighment as another operator, with a
lower precedence than the arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

answer = sum / 4 + MAX * lowest;

— _
I

Then the result is stored in the
variable on the left hand side

Examples

Given inti= 1, j =3, k =4; Evaluate the following expressions.

Assume each expression is independent of the others
2*i || i<j

k=i+2 ==

3 && k==4

i=3&&i<3

(k=2) && k==

lk || k>0

K< 10+ 2 *(k =5)

k/345.0/3+k==

Examples

e Givenint x=1,y =2, z=14;

Then the value of the expression
(x>=1&&y==3 || z<12)is 0 “false”

®* Givenintx,y=12; x=(y==12) + 25%4;
What is the value of x. 2

double w = (int) 13.5 + (int) (21/4 +3.5);

What is the value of w 21.5

Examples Continue

* To test if X is outside the range 5...20 which of
the following is correct

a. (5> X>20) b. (X<5 || X>20)

Short Hand Operators

Syntax:

Variable Op.= Expression;

Evaluated as

Variable = Variable Op. (Expression);

Assighment rator Sample expression Explanation
c. (X>=5 && X<=20) d. (X<5 && X >20) = Jc+=7 Jo=c+7
-= d -=4 d=d-14
*= e *= 5 e=e*5
; ; — ; -2. — . /= f /=3 f=ft/3
. iven int x=4; inty= X=X
Given int x=4; ty=3; /v; = T =g
what is the value of x
a.o0 b.0.75 c.1.25 d. 1
Examples Increment and Decrement Operators
. . Operator Called Sample expresson |Explanation
|nt X =10, Int y =20, Int z = 30, +’-)|- preincrement ++ap_ : In(‘:rementabyl, then use the new value
of a in the expression in which a resides.
d X+= 5, eql.“Valent tO X=X + 5, ++ postincrement |g++ Use the current value of a in the expression

o y ¥*=2-12; equivalent toy =y *(z — 12);

important: not y=y *z-12;

* 7 /=x+y/4; equivalent to z = z /(x+y/4);
* X % =y; equivalent to X = X%0Y;
* x+1 +=12-z+4; //illegal operation

in which a resides, then increment a by 1.

—_ predecrement |——Db Decrement b by 1, then use the new value

of b in the expression in which b resides.

—_ postdecrement |pp—— Use the current value of b in the expression

in which b resides, then decrement b by 1.

Hg. 4.13The increment and decrement operators.

There is no difference between post and pre increment on the variable itself.
However, the difference in the final value of expression in which pre and post
increment are found.

Post increments the variable afferit is used in evaluating the expression and Pre
increments the variable beforeit is used in evaluating the expression

Difference between Pre and Post

Pre and Post increments/decrements with respect to the value of the variable.
_Pre
int number = 5; // declares number to be 5

Examples

e Givenint x =5; int y =10; then what is the
output assume each group of statements are

;+number; // increments number to 6. independent
Post
int number = 5; //declares number to be 5 ° X++, cout << X,
number++; //increments number to 6
. cout << ++X;
i:: and post increment/decremented with respect the value of the expression. ° cout << X++;
o int number =5, b; . --X; Yy++; cout << x+y;
b = number++; b =5, number=6
Post * cout<<--y—x--; cout<<x <<y,
int number =5, b; e cout << y++ + x++; cout << x; cout<<y;
b = ++number; b =6, number =6
Luai M. Malhis Luai M. Malhis
Precedence and Associativity Pre and Post Operators Summary
o R T e Syntax : (Variables)++; (Variables)--;
perators SSOCIatvI ype . .
0 et orig —— ++(Variables); --(Variables);
. fght to lf unery posti e Can not do: (expression)++; (X + 1) ++; (5)++;
9 . ' * Which value of the variable used in evaluating the
Ho-- - (type) right to eft unary prefix expression? Depends on pre or post
x [eft o ight multiplicative * Pre: update variable first then use new value in
. _ evaluating the expression.
t - et 0 rght aditve * Post: Evaluate expression first using old value then
ow | IS &> > leftto right relational update variable.
== |I= lefttoright equality * Exmaple:
, - int x =5,y =6;intz=x++---y; z=10, x =6,y =5;
= 4z -z o [z = right to left assignment . y Y Y
int z=13; cout << --z; cout << 5+z++; cout<< 5+++z;

Luai M. Malhis

12 18 19

Luai M. Malhis

Math Functions

An expression in C/C++ may need to perform a
mathematical functions like compute the square
root of a value or the sin of a degree

C provides build in functions to perform
common operations.

To use these functions we must insert
#include <math.h > at the of program file.

These functions are called by writing
functionName (argument); or

functionName(argumentl, argument2, ...);

Math Functions Examples

e Examples:
cout << sqrt(900.0); // would print 30.
intx =5;inty=2; intz
z=x+exp(2.0) +sqgrt(900)/2; 5+7+15 (27);
e All functions in math library return a double.

Function arguments can be

— Constants: sqrt(4);

— Variables: sqrt(x);

— Expressions: sqrt(sqrt(x)); or sqrt(3-6x);

Luai M. Malhis 57 Luai M. Malhis 58
Method Description ~ |Example i
ceil(x) rounds ¥ to the smallest integer fcei] (9.2 JiAs.lO-O log(%) natural logarithmof x (base @) [1og(2.718282)is1.0
not less than ceil(-9.8)is-9.0 Tog(- Vis2.0
cos(x) trigonometriccosineofy fcos(0.0)is1.,0 loglo(x) |logarithmof x (base 10) logl0(10.0)is1.0
(x in radians) logl0(100.0)is2.0
exp(x) |eponentialfunctioner |egp(1.0) 52.71628 ponl ¥, ¥ [rmasediopower y () |powl 2, 7) 1268
exp(2.0)187.38906 pow(9, .5)is3
fabs(x) absolute value of x fabs(5.1)is5.1 sin(x) trigonometric sine of x sin(0.0)is0
fabsg 1.0 }150.0 (x in radians)
fabs(-6.76) is8.76 sqrtl x) squareroot of ¥ sqrt(900.0)is30.0
floor(x) rounds x to the largestinteger |£1oor (9.2)is 9.0 : : sqrt(5.0)183.0
not greater than ¥ floor(-9.8) is-10.0 tanl x) Efx‘if’;z:;;:;)" tangentofx tan(0.0) is0
fmod(%, y) [remainderof vyasa floating- |fmod(13.657, 2.333) is1.992
point number
Luai M. Malhis 59 Luai M. Malhis 60

Computer Programming
An-Najah N. University
Computer Engineering Department

Luai Malhis, Ph.D,

The Selection and Iteration Statements

Selection statement (if Statement)

* Gives the ability to choose which set of instructions are
executed according to a condition.

e Choose among alternative courses of action
Syntax :if (condition)
statement;

The if statement allows you to evaluate a condition and only
carry out the statement if the condition is true (not zero).

— Example:

Read student’s grade
If student’s grade is greater than or equal to 60
Print “Passed”
int grade; cin >> grade;
if (grade >= 60)
cout << "Passed";

1 /el se Selection

Different action is taken depends on conditions being true or
false

Example:
Read studen’s garde

If student’s grade Is greater than or equal to 60
print “Passed”

else print “Failed”
if (grade >=60)
cout << "'Passed"";
else cout << "'Failed"";

Another example:
if (hours <= 40.0) pay = rate * hours;
else pay = rate * (40.0 + (hours - 40.0) * 1.5);

Nested If Statements

There are no restrictions on what the statements in an if statement can be.
For example an if statement can contain another if statement.
if(x<0)
ifly!=4)
z=y*x
else
z=y/x
else
ifly>4)
Z=y+Xx;
else
zZ=y-X

In the code above first if statement contains another if else construct
and the else statement contains another if else construct. Please note if
no braces are used always the else statement matches the closest if.

More Examples

If Statements are Independent of each other
int day; cin >> day;
if (day == 1) cout << "Sunday";
if (day == 2) cout << "Monday";
if (day == 7) cout << "Saturday";
if (day <1 [| day > 7) cout << “Unknown Day";

In the code above all the if statement must be evaluated.
However, the cout statement is executed for only one of
them depending on the value of day entered.

This wastes computation time.

if ...elseif.... else construct

intday; cin >>day

if (day == 1) cout << "Sunday";

else if (day == 2) cout << "Monday ”;
else if (day == 7) cout << "Saturday";
else cout << “Unknown day”;
statement

The code above is more efficient because when one statement
evaluates to true the rest of statements are skipped to the
statement after last else. Evaluation is done in the order of
the statements.

Another Example

* Compute tax based on income

Income %o Tax
<20,000 Notax
== 20,000 and < 33,000 0%
== 33,000 and < 30,000 13%
<= 350,000 and < 100,000 30%
= 100,000 33%
int income;
cin >> income;
if (income < 20000) printf(“No tax.”);

else if (income < 35000) cout << “tax = “ << 0.20 * income;
else if (income < 50000) cout << “tax = “<< 0.25 * income;
else if (income < 100000) cout << “tax =" << 0.30 * income;
else cout << “tax =” << 0.35 * income;

Compound Statements

— Set of statements within a pair of braces

if (grade >= 60)
cout << "Passed.\n";
else {
cout << "Failed.\n";
cout << "You must take this course again.\n";

}
— Without braces,

cout << "You must take this course again.\n";

always executed
Block

— Set of statements within braces { statements }

Common Mistakes

One common mistake can occur when the == (equality)
operator is confused with the = (assighment) operator.
int n; cin >>n;

if (n = 3) cout << "n equals 3"; // statement is always true;

independent if statement: more than one statement
may be executed? int n; cin >> n;

if (n>0) cout << “positive”;

if (n%2) cout <<“odd”;

if (n < -10) cout << “not zero”;

else cout << “zero”; what is the output
ifn=0, 10, 17, -7 -50;

Common Mistakes (2)

The null statement: if (condition);

int num;

cin >> num;

if (num >0);
cout << num;

In this case the value of num will always be
printed on the screen regardless of its value.
The reason is that the “cout << num;”
statements is outside the if selection.

Code Examples
 if only // read double prints negative if value is less
than 0
double db;
cin >> db;
if (db <0)
cout << negative;

e If ...else //readtwo numbers and print the smallest
intx,y;
cin >>x >>y;
if (x<vy)
cout << x;
else
cout <<y;

Code Examples (2)

if ... elseif.. else construct
// Code to print case of letter:
char ch;
cin >> ch;
if ((ch>=‘a’) && (ch <='Z’))
cout << “Small Letter”;
else if ((ch >="A’") && (ch <= Z’))
cout << “Capital Letter”;
else cout << “None Letter”;

The Switch Statement Examples
— Test expression for multiple values
— Series of case labels and optional defaul t case Read in day as a number 1,2,3,....,7 and
switch (expression) { print it as text Sunday, Monday, Tuesday, , Saturday.
// only works if expression evaluates to integer value int day;
case valuel: //taken if expression value is valuel] ’
statements cin >> day;
break; Il necessary to exit switch switch (day) {
case value2: case 1 : cout << “ Sunday”; break;
case value3: /l taken if expression value is value2 or value3 case 2 : cout << “ monday”; break;
statements 3: cout << “Tuesdav”: break:
break: case 3: cou uesday”; break;
de;atl:tlzments// taken if expression value matches no other cases case 7 : cout << “ Saturday”; break;
break; // break here not necessary with last option default : cout << “unknown day”;
}
}
Examp|es (2) MISSIﬂg Breaks
int n;
You can have multiple statements per case .
cin >>n;

Intx,y;
cin >>x>>vy;
Switch (x<y){
case 1: cout << “xis smaller thany”;
cout << x;
cout <<vy;
cout << “The sum of x and y is “ << x+y;
break;

default : // case 0 makes no difference
cout << “x is greater than or equal to y”;
cout << x +vy;

switch (n) {
case 1: cout << “one ”;
case 2: cout << “two ”;
case 3: cout << “three ”; break;
case 4: cout << “four ”;
default: cout << “good bye”;

}// In the code above if n == 1 then one two three are printed.
If n == 2 two three are printed.

If n ==3 three is printed.
If n ==4 four good bye are printed.

Default location

char gender;
cin >> gender;
switch (gender) {
default: cout << “Uknown gender”; break;
case ‘M’”:
case ‘m’: cout << “Male”; break;
case ‘F’:
case ‘f’: cout << “Female”; break;
}
The example above illustrates that

The default statement does not have to be the last statement in the
cases block. It could be placed anywhere first, last or in between.

the last case may or may not have break;

Multiple case values

char gender;
cin >> gender;
switch (gender) {
default: cout << “Uknown gender”; break;
case ‘M”:
case‘m’: cout << “Male”; break;
case ‘F’:
case ‘f’: cout << “Female”; break;

}

The example above illustrates that if the same set of statement to
be executed for more than a single case value, the case values
are written following each other. Then the statement to be
executed follow that last case. In the example above we print
Male if the input is ether ‘M’ or ‘m’. Print Female if the input is
either ‘f’ or 'F’

Ilterations

Definition: Iteration is a repetition structure in which
a set of statements are repeated while some
condition remains true

— Example
while there are more numbers to read
Read number and perform processing
— whi le loop repeated until condition becomes false
e Example
int product = 2;
while (product <= 1000)
product = 2 * product;

Loop Definition

* Loops allow a group of statements to be
executed over and over again.

e All loops must have:
— loop-control variable(s)

— body - block of statements to be executed
repeatedly

— a way for the loop to be terminated.

* Three basic loop mechanisms: while, for, and
do-while.

While Loop

* Has the Syntax;
initial condition;
while (conditional expression)
{ statement(s) // body of loop
}

* The statements comprising the body of the loop
will be executed until the conditional expression
evaluates to false.

e Therefore one of the statements in the body
should modify the loop-control variable(s) so the
loop terminates.

e While loops are pre-test loops, the condition for

While Loop (cont.)

* The while loop may not be executed if initial loop condition
is false.

* The initial condition is optional it sets up the condition
based on which the loop may or may not executed.

Loop types:
(1) Count-controlled repetition
Loop repeated until counter reaches certain value
Number of repetitions known
Example: intn=0;
while (n < 10) {
cout << “hello”;

n++
repetition is tested before the loop is executed. }
While loop continue Examples
(2) Sentinel value:
Loop ends when certain value reached. e Read 10 int number and compute their average:
Example int x;
int radius; cin >> radius; // initial condition int count =0;
while (radius <=0 { int sum =0;
cout<<“ Zero is not a valid radius! \n” while (count < 10) {
<<“Please re-enter the radius.\n"; cin >> x;
cin>>radius; sum += X;
} count++;
The loop is only executed if an invalid value is entered.)

An invalid value is radius <=0. Loop is ended when user
enters valid value for radius.

cout << “The average is “ << (double) sum/ count;

Examples (2)

Keep reading int values until their average exceeds 1000
int x; int count =0;
double sum =0; double average = 0;
while (average <= 1000) {
cin >> x;
sum += x;

count++;
average = sum/ count;

}

cout << “The average is “ << average;

Examples (3)

Read characters until ‘#’ is entered.
Print the count of small and capital letters entered.
int countsmall =0; int countcapital =0;
charc;, cin>>c;
while (c = #') {
If(c >=‘a’ && c <= ‘Z’) countsmall++;
If(c >="A" && ¢ <= Z’) countcapital++;
cin >>c;
}
cout << “the count of small is “ << countsmall << end];
cout << “the count of capital is “ << countcapital;

Common Mistakes

* Not reaching the termination condition - loop never
ends. Itis an infinite loop.

int x = 1; while (x > 0) cout << “hello”;
* Missing braces - only first statement is executed as
body of the loop.
int x = 0; while (x < 10) cout << “hello”; x++;
* A semicolon at the end of while line
while (condition);

No statement is executed - it is an empty loop and an
infinite loop once it starts. Like the null statement in
the If structure.

int x =0; while (x >0); cout << “hello”; x++;

Do-While Loops

* The do-while loop is a post-test loop.
e The condition is tested after the loop is executed.
* The loop is always executed at least once.
do {
statement(s); // body of loop
} while (condition);
Example:
int x =0;
do{
cout << x;
} while (x 1=0);
This loop prints O before it stops.

Common Use

A common use is printing menu continuously on screen:
int n1, n2, result;
Do {
cout<<"Please enter S to subtract two values” << end|

Another Example

Keep doing area calculations for rectangles while user wishes
void main () {
int length, width; char answer;

<< “enter A to add two values” << endl do{ ; ;
<< “or enter Q to quit”; cout<< “please enter length: ”;
cin> > operation; cin >> length;
switch (operation) { cout << “please enter width:”;
case ‘A’ : cin >>nl>> n2; cin >> width;
result = nl +n2; cout << “the area is “ << length * width << endl;
cout << result; cout<<“Would you like another calculation enter”
blre'a k; << yorY any other character to quit”;
} case 'S cin>> answer;
h . while (answer == ‘y’ | | answer == ‘Y’);
} while (operation !=‘Q’); | J (vl)
Luai M. Malhis 29 Luai M. Malhis 30
For-loop Common Mistakes with for loop

e Pretest loops
e Mostly count-controlled
e Have the format
for(initialization; test; update)
{ statement(s) }

// suppose you want to read 5 numbers and print their sum
intj, num, sum =0;
for(j=0;j<5;j++) {
cin >> num;
sum += num;

}

cout<<sum;

¢ Note that j is only used to control the number of imes this loop
executes, you could write for (j=1;j<=5;j++) ..orfor(j=5;j>
0;j-) would give the same results.

Luai M. Malhis 31

e Missing braces — only the first statement is repeated.

int sum =0;

for (int 1 =1; I <=5; i++) // note that 1+2+3+4+5is 15
cout << I;
sum +=I;

cout << “ the sum is “ << sum;

prints: 12345 the sumis 5; why?

¢ Updating the loop control variable in the body of the loop
—the variable is updated twice.
for (int1=0; 1< 10;i++) {
cout<i<<endl
i++;
}
Prints:02468 why?

Luai M. Malhis 32

Omitting some of the loop parts
One, two, or all of the expressions may be omitted from the
for loop.
Sample 1: for(;x<10; x =x+2)
the initial value of x is taken from earlier part of code.

Sample 2: for(;x<10;)

the loop control variable must be updated in the body of
the loop to avoid an infinite loop.

Sample 3: for(; ;) // an infinite loop like while(1)

Loop updates and control must be done inside loop body
we will handle such loops later using break statement

What Loop should you use

* Any while loop can be converted into: do while loop or for
loop and vice versa.

e The loop to use depends on the problem?
* Should the loop always execute at least once?
— Yes = do-while No = while or for
* Should the loop be count controlled or sentinel controlled.
— Count =» for is the most common
— Sentinel=» while or do-while is most common
— For loops fit more naturally with count controlled
— While loops more naturally with sentinel controlled
— Do while are rarely used.

Examples
keep reading and printing chars until ‘#’ is read.
// while loop

int c; cin >>c;

while (c != ‘#') { cout << c; cin >> ¢;}
// for loop

charc; cin>>c;

for (;c '="#";) { cout << ¢c; cin >> c;}
// do while

charc; do{
cin >>c; cout << c;
} while (c!="#');

Example using for

Problem: Read 10 integers and print the smallest

Solution: (algorithm)
read first number consider it as smallest
then read next number and compare it with smallest
change smallest if the next number is smaller than smallest
Repeat the process until 10 numbers are read.

Code : int num, smallest;
cin >> num; smallest = num;
for (inti=1;1<=10; i++) {
cin >> num;
if (num < smallest)
smallest = num;

}

cout << “the smallest number is << smallest;

Example using while

Write code that keeps reading int numbers until 0 is entered find the
sum of all odd numbers and the product of all even numbers.

Code: int num; int sum =0; int product =1; // initial values
cin >> num;
while (num !=0) {
if (num%2) // if (num%2 ==1)
sum + = num;
else // if (hum% 2 ==0)
product *= num;
cin >>num; }
cout << “the sum of all positive numbers is “<< sum << endl;
cout << “the product of all negative numbers is “<< product << endl;

Nested Loops

Some problems require the use of a loop inside another loop.

Example keep reading integers until O is entered and for each read
integer n compute the sum of values from 1 to n inclusive

- Design and test outer loop
- Design and test inner loop
Code: for inside while
int num, sum; cin >> num;
while (num > 0) { // outer loop
sum =0;
for (inti=1;i<=num;i++) //innerloop
sum += num;
cout << sum << endl;
cin >> num;

Luai M. Malhis 38

More Nested Loops

For Loops can be “nested” inside another for loop
for (intj=1;j<10; j++) // outer loop
for (int k = 1; k<= 10; k++) // inner
cout << j << ‘X’ << k << “=" << j*k; << endl;
For each iteration of the outer loop the entire inner loop is executed
Another example: inti; j, sum;
for (i=1;i<=3;i++)
{ cout<<i<<endl
cin>>j; sum =0;
for(j=1;j<=n;j++)
sum +=j;
}loops read j and prints sum form 1 to j repeated 3 times

Luai M. Malhis 39

Inter loop dependence

inside loop is control dependent on outside loop
int outer, inner;
for (outer=1; outer<=5; outer++) {
int sum =0;
for (inner=1; inner <= outer; inner++)
sum += inner;

" "

cout << sum << ;
}
Theoutput: 1 3 6 10 15
Notice not using braces because the entire inner loop is
considered as one statement with respect to the outer
loop.

Luai M. Malhis 40

Using “Break” in Loops

e |tis a way to stop loop execution.

* It should be used very cautiously as it makes the code
more difficult to understand.

* Itis usually part of an if structure inside the loop
if (cond) break;

Example: Keeps reading and printing characters until
small letter is entered
charc;
while (1) {
cin >>c;
if (c>=‘a’ && c<=7")) break;
cout<<c;}

Luai M. Malhis 41

Common Use

* When the programmer writes a for loop or a while loop, but
wants to stop the loop when some value is reached.

char c; while (1) { cin >> c; if (¢ =='#) break; }
intx; for (;;) {cin>>x;if (x%2) cout << x; else break;}

e Example 1: for (inti=0; 1<100;i++){

cout << i;
if (1==9) break; } //be carful if (I =9) break;}
Prints: 0123456789 // Prints O

e Example 2: int x =10, sum =0;
while (--x) { sum +=x; if (x ==5) break;} // if (x =5)
cout << sum;

Prints: 35 //9

Luai M. Malhis 42

Break in Nested Loops

* When break is used in an inner loop, it only interrupts that
loop, the iterations of outer loops would continue.

e When break is used in an outer loop, the inner loop is also
ended.

Example: int j =0;
while (j < 3){
for (int | =j; 1 < 10; i++) {
cout << I[;
if (I == 5) break; }
cout <<endl; j++; }
Prints: 012345
12345
2345

Luai M. Malhis 43

Using Continue in Loops

* Itis usually used with an if structure inside the loop

» Tells the loop to skip over the remaining statements
in the body and go execute the update statement

» Example 1:
for (int1=0;1<10; I++) {

if (1(1 %2)) /] if (1%2)
continue;
cout << [;
}
Prints: 13579 // 02468

Luai M. Malhis 44

Break and Continue Examples

inti=0; inti=0;
while (i++) { while(++i) {
if (i==2) if (i==2)
continue; continue;
if(i==8) if (i==8)
break; break;
if(i<5) if (i<5)
cout <<i<<“”s cout <<i<<“”s
} }
cout << “I="<<1j; cout << “1="<<i;
Prints: 1=1 Prints: 1,3,4, 1=8

Break and Continue Examples 2

What is printed?
for (inti=0; i< 20;i++) {

if (i==5]|]i==11)
continue;

if(1==13 || 1==16)
break;

if (1>=4&&i<38)
i=9;

cout << I<<“s

}

Prints 0,1,2,3,9,10,12,

Be carful when using
continue in a while loop?
intl=0;
while (1 < 10) {
if (1%2)
continue;
cout << [;
[++;

’

}

Prints O then goes to
infinite loop

Prime or not Prime Example

Write code to keep reading one integer numbers and quits if
number greater than 100 is entered.

For each entered number print prime or not prime:

int num;
while (1) {
cin >> num;

Summation Example

Write the code to read x and y then compute the

following equation :

If(num >= 100) break;
for (inti=2; i< num; i++)
if (hnum%i ==0) break;
if(i == num) cout << num << “is prime” << endl;
else cout << num << “is not prime” << end|;

|=X
> 2*(Y+1%?), wherexandy>0.
=1
Solution:
int x,y;
cin >> x>>y;

for (int 1 =1, int sum =0; | <=x; [++)
sum+=2*(Y+1*1);
cout << “The sum is “ << sum;

Write Code Examples 1

Keep reading int numbers until O is entered, then
for each entered number n
if n >0 compute the sum of values between 1 and n
if n <0 compute the product of values between -1 and n
Solution:
intn; intproduct=1; intsum=0;

cin >>n;

while (n) {
If (n>0) for(inti=0; i<=n;i++)sum+=i;
else for (inti=-1; i>=n;i--) product *=i;
cin>>n; }

Write Code Examples 2

keep reading numbers stops
when negative number is
read. find the sum of all
positive odd numbers.

int num , sum =0;

for (;;) {

cin >> num;

If (num < 0) brerak;

else If (num %2 && num > 0)
sum+= num;

else
break; }

Read characters until non
letter ins entered convert
small to capital

charc;

while(1) {

cin >>¢;

If (c>="A" && c <='Z')
continue;

else If(c>=‘a’ && ¢ <=7')
cout << (char) c-32;

else break; }

Write Code Examples 3

e Print all small letters.
for (charc="a’"; c<=7; c++)
cout << z << end|;

* Read int number n and print its factorial
int n, product =1;
for (int 1 =n; | >=1; I--)
product * = 1;

e Print all numbers 0 to 1000 that are even and divisible by 3
for (int 1 = 0; | <= 1000;1++)
if(19%2 == 0 && 1%3 ==0)
cout << | << endl;

Summary
* |f statement can be used independent of else

e Else statement must be associated with an if

e Inif... elseif ... else construct: when one is true
no more checking is done

* Any loop can be converted to other type

e For loops are count controlled

* While loops are sentinel

e Be carful with the null statement in if and loops

if (x> 0); cout << x;

while (x > 0); x--;

Computer Programming
An-Najah N. University
Computer Engineering Department

Luai Malhis, Ph.D,

Review Questions and Problems

(1) double x = (int)(4/5 +(float)(5/2) + (3.0*3)/2);
what is the value of x.

a. 7.8 b.7.0 c. 6.0 d. 6.5

(2) Given int x=4, y=3; double a = x/y; cout <<a;
what is the output

a. 0.0 b.1.33 c.1 d.0.75

(3) Given: cout << 5.5 + 4/7 — (double) 4/ (5%3);
what is printed

a.3.5 b.1.0 c.4.5 d.-1.0000

(4) float x = 3.0 + (3/6) + (3.0/2) + (float)(4/8) ;
what is stored in x;
a.5.0 c.4 d.5 e.4.5

(5) Given int x=5, y =10;
cout << (x==y || (x<y) && (x !=y)); what is printed
a. 0 b.1 d. syntax error
(6) Given double z=2.3; int x=13;

intw = (int) (x+6.7)+ z +z>=2.0; valueof wis?
a. 22 b. 23 c.22.3 d. 1

(7) Given int a =4, int b=5; what is printed?
cout << (double) (0.5+2 < b +(5/2 > a/2));

1.5 b.1 c.0 d. NOA
(8) Given int x =5; inty=10; int z;
if(x-=5) z=x;
else if (x++) z = x;
else z =2*x;
cout << z; what is printed?
a.0 b.1 c.2 d.5 e.10

(9) Given: int x =6; int y=5; int z=2;
if ((x-1) == y++) z=y++ * --x;
else z=x++* ++y;

what is the value of z

a. 25 b. 20 c.30 d. 42
(10) Giveninta=4; intb=5; intc=0;

if (a=5) c =a * b;

else c = b;

if (a<b)c+=10;

else c+=b; the value of cis :
a. 35 b. 30 c.10 d. 15

(11) int x =2;
switch (x) {
case 1: cout << 1<<"": break;
case 2:
case 4: cout << 2 <<" "
default: cout << 3 <<""; break;
}
What is printed?

a.23 b. 2 c.3 d.123
e. nothing

(12) Given for (int x =0; x!=10;x++) {
cin >> x;
cout << x << endl;
} The last printed value is?
a. 9 b. 10 c.0
d. unknown value e. infinite loop

(13) Given int sum =0, j=3;

for (inti=j<7;j-i; i++) {sum +=i+j; } cout << sum;
What is printed after executing the loop:

a.o b.5 c.9 d. infinite loop

(14) Given: int x =0, inty =0;
while (x < 10) {y = y + x++; x+=2;} cout <<y;
What is printed?

a. 22 b. 18 c. 55 d.10

(15) Given int x =0;
while (x <5)
X+=2;
cout << "hello" << endl;
How many times the word hello is printed?
a.o0 b.1 c.2 d.5

(16) Given int x = 10;
for (; x>0; x--) {

(18) Given int a=3, b=5;
while(++a < b++)

n n if(++a == --b)
<< << ;
cout hello endl; f (bee ==)
X=X-2; a=a+10;
} How many times hello is printed what is the value of a?
a. 0 b. 4 c.10 d. infinite a.4 b.14 c.5 d.3
(19) Given : intx=0;
(17) int sum =0; do{x+=2; cout<<x;
for(int i=1;i<=10;i=i*2) sum=sum-+i; if (x++ == 3) break;
cout<<sum; What is printed ? _ hwhile(x); , , .
What is the number of iterations in the last loop?
a.0 b.4 c.8 d. 15 a.o b.1 c. 2 d.infinit loop
(20) Given int t1=0, t2 =0; e Write c code to print all values between -10 and
for (int j =0; j < 4;j++) 10 inclusive that are even and divisible by 3
for (|nt k = 3’ k > O, __k) for (lnt i= -10; i <=10; i++)
{ if(i% 2 ==0 && i%3 == 0) cout << | << endl;
++t1; e Read 2 integer numbers X and Y to print (XY + X)
} without using any math function in "math.h"
t24+; int x,y; cin >>x >>y; int p =1, value ;
cout <<t1l+t2++; for (inti=0; | <vy; i++) p *=x;
a. 13 b. 14 c. 16 d. 17 value =X *Y +1/p;

e. none of the above

cout << value;

Write a program that keeps reading integers
until -1 is read your program must then print
(1) the count of even numbers
(2) the count of 3 digit numbers
(3) the average of all read numbers
Solution:
// initialize variables
int num, counte =0, count3=0, count =0;
double sum =0.0;
// next slide is the loop

while(1) {
cin >> num;
if (hnum ==-1) break;
count++;
sum += num;
if('(num%2)) counte++;
if(num>99 && num<1000) count3++;
}
cout << sum/count << endl;
cout << counte << end|;

cout << count3 << endl;

» Keep reading integer numbers until one
positive number > 0 is entered. Then print the
divisors of the positive number.

e Ex: if-10 -112is entered then prints2 3 4 6

int num;
do { cin >> num;
} while (num <=0);
for (inti=1;i<=num/2;i++)

if (num%i ==) cout << i << endl;

* Keep reading integer numbers and calculating
their sum. Your program should stop when a
3 digit number is entered .

You must print the average of all entered
numbers. Note 3 digit number is a number
between 100 and 999 inclusive.

Solution #1: Last number is included in average

int num, count =0; double sum =0;
do{ cin >> num; sum+= num; cou++;
} while (num <100 || num >999);

cout << “average is “ << sum/count;

Solution# 2 // last number is not included in average

int num, count =0; double sum =0;

cin >> num;

while (num <100 || num > 1000)

{ sum+= num; count++; cin >> num;}

cout << “average is “ << sum/count;
Solution#3 // can or not include last number
int num, count =0; double sum =0;
while(1) { cin >> num; sum+ = num; count++;

if (num > 99 && mum < 1000) break;}

cout << “average is “ << sum/count;

Write a complete program that keeps reading characters
until the character '!" is read. For each character read
your program needs to do the following.

if the read character is capital letter or small letter it
Prints "L".

if the character is a digit (0,1,----9) it Prints "D".

for any other character it prints "*".

Then your program also prints "more capital" if the
number of capital letters read is larger than the
number of small letters read. Otherwise it prints
"more small".

Example if inputis:Acd941D>KAd5s!
Output s :LLLDDDL*L*DL
more small

char c¢; int counts =0, countl =0;

for(;;{
cin >>c;
If (c >="a’ && c <= ‘7’) {cout << ‘L’ ; counts++;}
else If (¢ >="A" && c <= ‘Z’) {cout << ‘L’ ; countl++;}
else if (c >='0" && ¢ <=9’) cout << ‘D’;
else cout << *;

}

If (counts > countl) cout << “\n more small”;

else cout << end| << “more capital”;

* Keep reading numbers of type integer until
two equal consecutive numbers are entered.
At the end print the average of all entered
numbers, the count of even numbers, and the
count of negative numbers. Assume that at
least two numbers will be entered.

e Example input -2 -10 7 9 -11 30 6 7 7.
int countn =0; counte, count =0;

int last, cur;

cin >> cur; last =cur-1;

// continue next page

while(1) {
if (last == cur) break;
else if (cur < 0) countn++;
else if (cur%2 ==0) counte++;
sum+=cur; count++;
last = cur;
cin>> cur
}
cout << countn << counte;

cout << “average is “ << sum/count;

* Write code that keeps reading numbers and
stops when a negative number is entered. Based
on the numbers entered, the program should
print the smallest and largest numbers entered.

Solution: int num, small, large;

cin >> num; small = large = num;
while (num >0) { cin >> num;
if(num < small) small = num;
if (num > large) large = num;}
cout <<“the smallest numbers is”<<small<< end|;
cout << “the largest numbers is” << large;

Arrays

* So far we have only used scalar variables:

Computer Programming variable with single value

* But many things require set of related values:

An-Najah N. University student grades in exam, letters in a aname.
Computer Engineering Department * Arrays are used to store a collection of related
Luai Malhis, Ph.D, values. Example 100 int values.

_ _ * Instead of declaring an individual variable to to
Arrays: One and Two Dimensional each element in the array. We declare one
special variable to all to all the elements.

Array Declaration Example

* Suppose | want to store grades for 100 students.

Array declaration has the format: Then | need to do either:

data type arrayname([size]; * Declare 100 scalar variables scorel, score2,
where size is an integer constant > 0 that score100.
represents the maximum number of values In this case | need 100 cin statements to read the graders
(elements), that you want to store in the array. from the keyboard:

Each element of the array is like little varaible cin >> scorel

cin >> score2
All elements of the array are of the same type.

To reach an element use arrayname[index| cin >> score100

where index in the range 0 to size -1 This is a tedious process and makes programming boring
and difficult.

Example continue

Instead, | could declare the array, int score[100];
which allocates space for 100 integer values.

Using a loop and one cin statement | can read the
100 scores into the array as follows:

for (inti=0; i< 100; i++)
cin >> score[i];

This technique allows me to declare an array
of very large size and be able to process the
array using loops.

Luai M. Mlahis

Schematic of Memory

As separate variables

scorel score3 score2 score4 score5 score100
As an array
score[0] score[l] score[2] score[3] score[4] score[99]

Luai M. Mlahis 6

Some Constraints

Array name must be valid variable name.
Array size must be constant value > 0.

Examples of valid array declarations:
double salaries[100]; char name[30];

Examples of invalid array declarations:

int x; double salaries[x]; // not constant

char namel[-5]; // constant <0

int players[]; // must have a constant

double average[5.5]; // must be integer constant

Luai M. Mlahis

Accessing Array Elements

e The individual elements of an array may be
accessed by the array name and the subscript
or index.

score[3], score[78], score[99]

e Subscripts in C++ begin with zero, so the first
element of the array with size n has the index
or subscript 0 and the last element has the
index or subscript n-1.

e Any subscript outside this range (< 0 or >=n) is
an invalid access to array element.

Luai M. Mlahis

Array Types

All array elements are of the same type.
We can declare an array of integers
int IA[40];
We can have an array of doubles
double DA[50];
We can have array of characters
char CA[30];

Special case: strings array of characters that ends
with special characters called null \0’

* You can have an array of any other data type:
float, short, long,....

Storing Elements in an Array

* Array elements may be input one at a time

score[0] = 78; // assignment
score[5] = 80;

cin >> score[81];

cin >> score[66];

Or use a loop:
for (intj=0;j<n; j++)
cin>>score[j]; //from the keyboard
for (intj=0;j<n;j++)
score[j] =j *2; // using an expression
for (intj=0;j<n;j++)
score[j] = 70; // same value in all locations

Initialization at Declaration

Array elements can be initialized at time of declaration.
float temps[4] = {78.5, 79.8, 85.4, 86.2};

If you are initializing the elements at the point of
declaration the size declarator may be omitted.

float temps[] = {78.5, 79.8, 85.4, 86.2};

the size will implicitly be set equal to the number of
elements specified (four here).

float temps[]; // is invalid must give size if not initialized

float temp[4] = {1,6.5,88.2,19,72,31}; // invalid size is
too small

Initialization at declaration continues

int x[10] = {4,5,6}; Store 4,5,and 6 in the first 3
locations respectively and 0 in the rest

char name([3] = {'M’/A’)Y’}; array of characters
Char name[4] ={'M’/A’Y’)\Q’}; string

char name[10] = {‘M’/A’/Y’}; // string all elements
at locations 3,4..9 are filled with ‘\0’

char name[10] = “MAY”; string like above

double values[5] = {1.2, 4,5, 6.2}; locations 3, 4
are filled with 0.0

char namel[] = “Ahmad”; //sizeis 6
char name|[5] “Ahmad”; // invalid size is small

Declarations and Initializations Continue

e int x[3] ={10,5,13,4,6}; invalid size is too small
for specified elements.

* int x[10] ={4,5,,6,7}; is invalid only last values
in the array may be omitted. The correct
declaration in this case is int x[10] = {4,5,0,6,7};

e int X[10]; x = {4,5,6,7}; is invalid because
declaration and the initialization are done in
two separate statements .

e char x =“abc”; // x is a single char not array

Luai M. Mlahis 13

Strings
 Strings are arrays of characters.
 Strings have some special properties that
numeric arrays do not have.
— The size should allow for the null character ‘\0’
— Input may be an entire array at a time
cout<<“Please enter a filename”<<end];
cin>>filename
char name[6] = “Ahmad”; //valid
char name[10] = “Ahmad”; //valid
char name[5] = “Ahmad”; // invalid size is small

Luai M. Mlahis 14

Outputting Data from an Array

* Array elements can be outputted individually
cout<<score[0]<<“ “<<score[5];
e Or using aloop
for (intj=0;j<n;j++)
cout<<score[j]<< endl;

* All elements of arrays cannot be outputted by
just using the array name.

cout<<score; // will not work!
exception to this if the array is a string

char B[10] = “ahmad”; cout << B; // output
entire string in one cout statement

Luai M. Mlahis 15

Array Declaration Examples

* Define arrays of types int, char, double and floats each
of size 10 elements.

Solution: int A[10]; char B[10];
double C[10]; float D[10];
* Declare and initialize an integer array of 100 elements
that contains {6,12,4,9,15,0,0....0}.
Solution: int IA[100] = {6,12,4,9,15};
* Declare and initialize an array of 100 doubles that
contain {0.0, 2.0, 4.0, 6.0,...198.0}.
Solution: double DA[100];
for (inti=0;1<100; i++) DA[i]=1* 2;

Luai M. Mlahis 16

Examples Continue

* Define an arrays of characters size 26 elements. Store
all small letters in the array.

solution 1: char CA1[26];
for (inti=0;i<26; i++)
CAL1[i] = (char) (‘a’+i);
solution 2: char CA2[26];
for (char ch =@’; ch <= ‘Z’; ch++)
CA2[ch —‘d"] = ch;

* Declare an array of 10 characters store “world” in it.
solution: char st[10] = “world”;

Examples Continue

* Declare and initialize a string with the word
“palestine”. Array size is selected automatically

solution char st2[] = “palestine”;

e Declare an Array of 100 doubles Then read values into
the array from the keyboard. Then multiply each read
value by 2 and print the final result in the array
starting at location 99 then 98 ... down to O.

Solution:

double A[100];

for (inti=0; i< 100; I4++) cin >> A[i]; //read data

for (i=0; i< 100; i++) A[i] *=2; //process data

for (i = 99; i >=0; i--) cout << A[i] << endl; //output data

Caution!

e C/C++ has no checking on the bounds of the
array. Outside therange Oton -1

e Therefore you c++ allows you to store elements
with subscripts larger than the size declarator.
However, these values could be corrupted
because the memory spaces have not been
officially reserved. If you try to access such
elements you may get run time error.

» Retrieving data stored in out-of-bounds elements
is compiler and/or platform dependent.

Array Processing

Array elements can be used in assighment
statement, output statement, and to perform
operations on them, in a similar manner as
individual variables.

Int IA[10] ={1,2,4,}; intx,y=12;

x =y *IA[2];

IA[4]= sart(IA[3]) + x;

for (1A[0] =5, int j =1; j < 10; j++)
IA[]] = 1A[j-1] * 2;

for (int sum =0, int j=0; j<100;j++)
sum += IA[j];

Examples

Declare an array of grades for 50 students. Ask the user to enter
grade for each student compute and display the average.

int grades[50]; inti, sum =0;

for (i=0;i<50;i++) {
cout << "Enter grade:"; cin >> grades|i];
sum = sum + grades]i]; }

cout << "Average is:" << sum/50.0 ;

More processing: int fail =0; int pass =0;
for (i=0; | < 50; i++) if (grade[i] >= 60) pass++;
cout <<pass<<“ passed”;
for (i=0; | < 50; i++) if (grade[i] < 60) fail++;
cout << fail << “ failed”;

Examples 2

Given an array of 100 int values called A, compute
the smallest, and the largest values in the array.
int smallest =0; int largest = 0;
for (inti=0;i<100; i++) {
if (A[i] < smallest) smallest = A[i];
if (A[i] > largest) largess = A[il;
}
cout << “The smallest value is “ << smallest << endl;
cout << “The largest value is “ << largest;

Examples 3

Read 120 int values from the keyboard store all negative
values in an array called negative and all positive values in
an array called positive. Select appropriate array size for
negative and positive arrays.

Soultion:

int positive[120]; int negative[120]; int num;
inti,jk;i=j=k=0;

for (; i< 120; i++) {

cin >> num;
if (num >= 0) positive[j++] = num;
else negative[k++] = num;

Examples 4
e Given an array of 1000 characters called AC, compute
the count small letters in the array.
for (int csmall =0, int | = 0; | < 1000; i++)
if (AC[i] >= ‘@’ && AC <= ‘Z”) csmall++;

e Given an array of int values of size 100 (Al) print the
average of all 3 digit values in the array.
double sum =0; int count =0;
for (int 1 =0; 1 < 100; I++)
if (AI[I]>99 && Al[1]<999){sum += AC[i]; count++};
cout << “The average is” << sum/count;

Examples 5

* Define an array of 100 int and store the sequence:
123581321....
int A[100]; A[0] = 1; A[1] = 2;
for (inti=2;i<100; i++)
Ali] = A[i-1] + A[i-2];

e Write a program to do each of the following:
Given an array of 15 double values called DA.
Print the index of the smallest value in the array
The larges tod value.

Print the sum of all values that are > 100.0
Replace all negative values with 0.0 in the array.
Print only array elements that are even and 2 digits

Examples 5 continue
inti =0, locsmall =0, small = DA[0], sum =0, large = DA[O0];
for (inti=0;i<15; i++) {

if (DA[i] < small) { small = DA[i]; locsmall =i;}

if (DA[i] %2 && DA[i] > large) large = DA[i];

if (DA[i] > 100) sum+= DA[i];

if(DA[i] < 0) DA[i] = 0;

if(DA[i] > 9 and DA[i] < 100 && DA[i]%2 ==0)

cout << DA[i] << end]l;

}
cout << “loc = “ << locsmall << “sum = “ << sum << endl;
cout << Largest value in the array << “large” << endl;

Two Dimensional Arrays (Matrices)

* Two subscripts a[1 J[J] are used to
reference an element 1In the matrix

* When declared must define number of rows
and columns example: double B[5][6];
— Matix with rows and columns
— Specify row, then column
— “Array of arrays” ex a[3][4];
e a[0] is an array of 4 elements
« a[0][0] is the first element of that array

Column 0O Column 1 Column 2 Column 3

Row O alo]JLO0] alo1[1] afo1[2] afo1[3]

Row 1 af 1 1L 0] afl 1 1L 1] afl11[21 af 1 1L 31

Row 2 al2]1C0] ,a[%][1 af21[2] afl21[3]

Array’ﬁga;///// Row subscript Column subscript

Matrix Declaration and Initialization

* Define a matrix of types int, char, double and
floats each of size 6X4 elements.

intim[6][4]; char cm[6][4];
double dm[6][4]; float fm[6][4];

e Define a 4x4 int matrix where each cell contains
the sum of row and column indices

int a[4][4];
for (inti=0;i<4;i++)
for (intj =0; j < 4; j++)
alillj) = i+;

Matrix Initialization

e A matrix can be initialized at declaration:

Default of 0 (int), or 0.0 (double) or \0’ (char) for not specified
values like the one dimensional array

— Initializes grouped by row in braces
intb[l2]1[2]1={{1,23, {3,413} };
Row0o |1
Row 1 3

intbL 210 2]1={{1} {3,4}};

Row 0 1 0
Row 1 3 4

When initializing a matrix at declaration the number
of columns must be specified but number of row may
be not specified.

Luai M. Mlahis 29

Initialization at Declaration

int M[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

int [1[3] = {{1,2},{3},{4,5,6}}; specifies a matrix with
three rows and three columns missing values are
filled with 0. {1,2,0},{3,0,0},{4,5,6}
int A[][] = {{1,2},{3},{4,5,6}}; is invalid declaration
because number of columns not defined

int A[2][] = {{1,2},{3},{4,5,6}}; is invalid declaration
because number of rows must be at least three

int A[4][4] = {{1,2},{3},{4,5,6}}; valid declaration fills
missing values with Os.
{{112)010}1{3IOIOIO}I{4I5I6)O}I{OIO)OIO}}

Luai M. Mlahis 30

Reading and Printing Matrix Elements

* When reading elements from the keyboard must read it
one item at a time: Int A[10][20];

for (int r =0; r < 10; r++) // for each row
for (int ¢ =0; c < 20; c++) //for each columnin arow
cin>> Alr][c]; // read elements

* When printing elements on the screen must print it one
item at a time: Int A[10][20];

for (int r =0; r < 10; r++) { // for each row
for (int c =0; c < 20; c++) // for each column in a row
cout << A[r][c] << ““; // print element
cout << endl; // print end line

Luai M. Mlahis 31

Read and Print Examples
Give int M2[6][4];
Read elements and store in matrix rowO then row1 ...
for (intr=0; r< 6; r++)
for (intc=0; c< 4; c++)
cin >> M2[r][c]

Print the elements in the matrix row0 then row1 ...
for (intr=0;r<6; r++) {
for (intc=0; c<4; c++)
cout << M2[r][c];
cout << endl; }

Luai M. Mlahis

Read and Print Examples 2

Read Elements and store columnO then columnl

int M2[6][4];
for (intc=0; c<4; c++)
for (intr=0; r < 6; r++)
cin >> M2[r][c];

Print the Matrix elements columnO then columnl

for (intc=0; c<4; c++) {
for (intr=0;i<6; r++)
cout << M2[r][c];
cout << endl;

Important Notes
e int A[][]; or int A[][4]; or int A[5][]; are invalid

declarations; must specify both rows and columns when

declared only (not initialized at declaration)

e Given int A[Row][Col]; Each element is specified using
row and column indices. Range 0..Row -1, 0 .. Col -1

e Example: Given int B[3][5]; Then B[1][3] references the
element in 2" row and 4t column

* To traverse all elements in the matrix need two loops.
One loop traverse the rows the other loop traverse the
columns.

Matrix Examples

Given 10X10 matrix M of type int.
Print the values of first and last elements in M.
cout << “first ” << M[0][0];
cout << “last ” << M[9][9];
Print the value of the first element in row 3 of the matrix.
cout << M[3][0];
Print the value of row 2 column 4
cout << M[2][4];
Store 110 in element at 4t row and 5t column
M([3][4] = 110;

Add any two locations and and store result in another location

M[2][4] = M[1][2] + M[6][3];

Matrix Example 2

Store 0 in the diagonal elements in the matrix.
for (inti=0; i< 10; i++) M[i][i] =0;
Store 5 in the last element of every row // last column
for (inti=0;i<10; i++) MJi][9] = 5;
Print in the first element of every column // first row
for (inti=0;i<10; i++) cout << M[0][i] << end]I;
Print the elements in row 5.
for (inti=0;i<10; i++) cout << M[5][0] << endl;
Find the sum all the elementsin column 6
for (inti =0, int sum =0; i < 10; i++) sum+=M[i][6];

Matrix Examples 3

Compute smallest, largest and average value in M.
int small = M[0][0]; int large = M[0][0]; int sum =0;
for (int r=0; r < 10; r++)
for (int c=0; c < 10; c++) {

if(M[r][c] < small) small = M[r][c];

if(M[r][c] > large) large = M[r][c];

sum + = M[r][c]; }
cout << “smallest - largest” << small <<

o n

<< large;

cout << “the average value “ << sum/100.0;

Matrix Examples 4
Compute the count of negative values, the sum of all
even values and product all values > 10.
int countn =0, sume =0; int product10 =1;
for (intr =0; r < 10; r++)
for (int c=0; c < 10; c++) {
if (M[r][c] < 0) countn++;
if(M[r][c] %2 == 0) sume+= M[r][c];
if(M[r][c] > 10) product10 *= M[r][c]; }
cout << “count negative =“ << countn << endl;
cout << “sum even =“ << sume << endl;
cout << “product greater than 10 =" << product10;

Matrix Examples 5

Swap elements in row 2 with elements in row 5
for (int c =0, int temp; c < 10; c++) {

temp = M[2][c];

M(2][c] = M[5]Ic];

M[5][c] = temp; }
Compute the sum of each row and store it in array
int Asums[10] = {};
for (intr =0; r < 10; r++)

for (int c=0; c< 10; c++)

Asums(r] += M[r][c];

Arrays With Higher Dimensions

e Same arguments is extended to arrays of higher
dimensions

e int A[3][4][5]; is an array of 3 dimensions
e int A[4][5][6][7]; is an array of 4 dimensions.

* When referencing an element in k dimensional
array k subscripts must be used.

* For this course we only deal with one and two
dimensional arrays.

Computer Programming
An-Najah N. University
Computer Engineering Department

Luai Malhis, Ph.D,

Pointers

Luai M. Malhis 1

Definition

* Pointers are variables used to hold (and to
refer to) memory addresses of other variables.

 Memory addresses is the location of the first
byte of memory allocated for that variable or
array. Remember that the amount of memory
allocated to a variable is dependent on the
data type of the variable.

* You can learn the memory address of a

variable or array by using the address operator,
(the & symbol), before the variable name.

Luai M. Malhis

Definition continue

* A pointer variable is designated at time of
declaration by a * before the variable name.

—int *pntr;

o After declaration, a * immediately before a pointer
name acts as an indirection operator to refer to the
value stored in memory, and consequently, may be
used to change what is stored in that memory
location by an assignment statement.

cout << *pntr;
*pntr += 5;

Luai M. Malhis

Pointer Declaration

* Pointers are declared by specifying the type of
location (variable) they point at..

e Syntax:
type * name;
For all data types pointer size is 4 bytes
* For example:
each of the following pointer declarations.
int *p; char *tp; double *dp;
* When a pointer is declared it points to null
(not valid memory location)

Luai M. Malhis 4

Pointer Initialization 1

Before using a pointer to store or retrieve data from
memory location it must be initialized to a valid
memory location.

Valid locations are either:
exist: (static) variables of the same type
new: (dynamic) new locations of same type
Example: intx; int*p;
p = &x;

p = new int;

To delete memory allocated by new use: delete p;

Pointer initialization 2

e Suppose ‘p'is a pointer, then “*p'is the value in
memory location which "p' points to.

[5]

int x =5; int *p; X

p = &x; then Ja/

The location x can be accesses using *p or x.

e Example:

cout << *p;
*p =10; cout<<x;

Pointer Initialization 3

When a pointer is initialized it must point to a
location that can hold data of the same type;

Example: Given int *pl1; double *p2; char *p3;
intx; doubley; char z;

The following is valid initialization:

pl = &x; pl = new int;
p2 = &y; p2 = new double;
p3 = &z; p3 = new char;

The following is invalid initializations:
pl=~&z, orpl=&y; orpl=newdouble;
p2=&x; orp2=~&z, orp2=newchar;

Pointer Initialization 3

e Pointer can only point to one location at a time;
e Example: Given intx=5,y=10; int *p;
p = &x; cout << *p;
p = &y; cout << *p;
p = new int; cout << *p;
* More than one pointer may point to the same
location. Example Given: int x; int *p1,*p2;
pl = &x; p2 = &x;
*p1=10; then
cout << x; or cout << *p1;

All prints the same value 10 because they all reference
the same location.

or cout << *p2;

Pointer Examples 2
Given: double *dp, d; char ¢ ='A’; What is valid?

Pointer Examples 1
Givenint x =5, y=10; int *p1, *p2;

what is the output of the following if valid? cin >> dp;
pl = x; cin >> *dp;
y = *p2; dp =&d; cin >> *dp;
pl=p2=8&x; cout<< *p2; d= &dp;
pl =&y; cout << *pl; cout<< *p2; dp = new double; d =*dp;
pl=8&x; x=y; cout<< *pl; *d=dp;
pl =&x; pl++; cout << *pl; dp = &¢;

p2 = &y; *(p2)++; cout << *p2;

dp = new double; *dp=c; orc=*dp;
dp=&d; *dp=*dp+c;

Pointers and Arrays 1

Remember that an array name refers to a group
of memory addresses, not just a single one.

The array name holds the address of the first
byte of memory allocated to that array.

Therefore, an array name, without the index,
may be considered a pointer to that array.

Array name is a static pointer and can only point
to the location assigned to it.

Because the array name already acts as a pointer
you do not need the address operator, &, to
output the first memory address.

Pointers and Arrays 2

* The indirection operator, *, may be used with the static

array name to store a value in the first array element.
*arrayname = 15;

* Values can be stored in subsequent array elements by

adding numbers to the array name and employing the
indirection operator

*(arrayname + 1) =25;
*(arrayname + n) =67;
arrayname = arrayname +5;

*arrayname = *arrayname + 5;

Pointer Arithmetic
Integer values may be added to or subtracted

from a pointer to move it to different locations
Example: Given int A[5]; int *p;

p=A; //p=&A[0];

p=A; then p=p+2;

p=8&A[2]; p-;

p=A;p=p+5;

p=A; p+=2; p[l]=18;

p = A+5; pl-1] = 20;
Important Note: With A index is absolute from A.
With p index is relative to pointer location

Pointer Arithmetic 2

* One pointer may also be subtracted from
another pointer.

* Example Given int A[10] ={1,4,6,10,12,20,22};
int *pl = &A[2]; int *p2 = &A[5];
cout << p2 —pl; prints 3

cout << *p2 - *p2; prints 14

* Pointers can not be added pl+ p2 has no
meaning in C.

pl=pl+*p2;
pl-= *p2;

Other Pointer Operations

* Pointers can be initialized at time of declaration.
float *fp= &fvar;
e Pointers, and memory addresses, may also be
compared using the relational operators.
pl<p2; pll=p2; pl==p2
e Static pointers can not be incremented
* Int A[10]; A= A+5; or A++; or A--; A[-1];
are invalid operations

e Since A is a static pointer it must always point to
the same location (first element of the array) and
can not be moved.

Static Arrays and Pointers 1

int A[10] = {12,4,7,10, 13, 16};

int *p1 =A; Then

A[0], *A, pl1[0] and *p1 all used to refer to the
first element of the array (12 in this case).

int *p2 = A+ 2; now p2 points to A[2]. Then

A[1] and *(A+1), p2[-1], and *(p2-1) all have the
value (the second element, 4 in this case)

Int *p3 = &A[4]; p3 = p3-2; Then

A[2], *(A+2), p3[0], and *p3 all refer to the third
element in the array (7 in this case).

Static Arrays and pointers 2
Given int A[10] ={12,4,7,10, 13, 16}; int *p = A;
Then we can print array elements as follows:
for (int i =0; i < 10; i++) cout << A[i];
for (int i =0; i < 10; i++) cout << *(A+i);
(inti =0; i< 10; i++) cout << p[i];
for (int i =0; i < 10; i++) cout << *(p+i); //not *p+i;
for (int i =0; i < 10; i++) {cout << *p; p++;}
Note that:
for (inti =0; i< 10; i++) {cout << *A; A++;} is invalid

for

Dynamic Arrays

* So far we have allocated arrays statically.

Example int AI[20]. In which case array size is
fixed at compile time to 20 and can not change.

* However, C allows us to declare a pointer and
make it point to consecutive memory locations
(array) at run time.

e Example int *ap; Then we write:

ap = new int[30]; where we allocate array called
ap and we can use ap to refere to any element
in the array like ap[i]; i< 30; or *ap, or *(ap+i)

Dynamic Arrays 2

Array size may be entered by the user at run time.
Example: double *dp; int size;

cout << “please enter array size:”;

cin >> size;

dp = new double[size];

* You can access array elements using static method
or dynamic method, dp[i] or *dp; dp++; ...etc

* To delete memory allocated to the array we use
the statement delete [] dp;

Dynamic Arrays 3

e Be carful: In dynamic arrays if array pointer is
made, accidentally, point outside the array then
the pointer can not be made to point again to
the array.

e Example given int *p = new int[10]; int x;
p = p+15; p now points outside the array and
can not make it point to the array again.

p = &x; p now points to memory location x and
can not make it point to the array again.

p = new int; p now points to new memory and
can not be made to point the array again.

Example 1

e Givenintx; int *pl, *p2; make p point to x;
and make p2 point to new location.
solution: pl =&x; p2=new.int;

e Given: double *dp, d; Which one is valid

a. dp =&d; b. d = *dp; c. d=&dp;

e Given ints1[5] ={3,5,6}; ints2[5]; int*p;
which of the following is valid and why?

Examples 2

* Given int x[]={0,2,4,6,8,10}; int *y;
y=8&x[2]; *y+=1; *(y+2) +=2;
what is the new array content: {0,2,5,6,10,10};
e Given float x[10]={2.5,3.5,4.5,20.0,0.0,6.5};
float *p=x + (int) *x; float sum=0.0; inti=0;

while(*p && i < 10){ sum+=*p++; i++};
cout<<sum; what is printed? 24.5

e Given int x[6] ={1,5,3,4,0}; int *p=x+1;

a. s2=s1; b. p=&s1[6]; for(int i= *p; | > 0; i -=*x){cout<<"hello";}
c. s2=*p; d. p=sl+l; how many time hello is printed 5
Examples 3 Examples 4

e Given an Array A of 100 int values, and int *p;
Write code to: Print array content using static
pointer A.

for (inti=0;i<100; i++)
cout << A[i]; // cout << *(A+i);
Print array content using pointer p;
for(inti=0, p=A;i<100; i++)
cout << p[i]; //cout << *(p+i);
// {cout < *p; p++;} Thisis not possible with A

Given an Array A of 100 int values, and int *p;

* Use p to replace all even values in A with O.
for(inti=0, p=A;i<100; i++)
{if (*p%2 ==0) *p = 0; p++;}

e Use pointer p to print all elements in the array
in reverse location 99,98,...0
for(inti =0, p = &A[99]; i < 100; i++)
{cout << *p << endl; p--;}

e Use p to sum all elements in A until first 0.

for(int sum =0, p = A; *p; p++) sum = *p;

Examples 5
Given an Array A of 100 int values, and int *p;
Declare two pointers pl and p2
(1) Make p1 point to the first negative value in A.
(2) Make p2 point to the last even value in A.

(3) Find the count elems. between p1 and p2 inclusive.

(4) Find the sum of values between p1 and p2.
Solution: int *p1, *p2;

(1) p1 = A; while(1) { if (*p1>=0) p1++; else break;}

(2) p2 = A+99; while(*p2%2) p2--;

(3) int elemcount = p2 — pl1+1;

(4) For (int sum=0, p = p1; p <=p2; p++) sum += *p;

Examples 6

Given an Array A of 100 int values, and int *p;

Declare two pointers pl and p2 make pl and p2
point to array locations index 20 and index 50
respectively, then (1) use pointer p to print all odd
values between p1 and p2 exclusively. Then (2)
copy all values between pl and p2 into new
dynamically allocated array.

(1) int * p1 = &A[20]; int *p2 = &A[50];

for (p = p1+1; p !=p2; p++) if (*p%2) cout << *p;
(2) int *t = new int [p2 — p1 -1];

for (p = pl+1; p 1=p2;) *t++ = *p++;

Example 7

e Declare a dynamic array of N double values
where N is entered by the user then read the
N double values and store them in the array.
Multiply each value in the array by 2. Then
print the new content array in reverse.

Solution:

int N; cin >> N; int *p = new double [N];

for (int *t =p, inti =0; i < N; i++, t++) cin >> *t;
for (int *t =p, inti =0; i < N; i++, t++) *t+=2;
for (int *t =p+N; t >=p;) cout << *t-- << end|;

Important points
e Pointer declaration: type * name;
e Pointer must point to a location before it is used.
* Pointer type and location type must be the same.
* Pointers can be subtracted. But can not be added.
e Static arrays (pointer) point to the first element.
 Static pointers can not change location it points to.
e Dynamic pointers can point to any valid location.

e Dynamic pointer can not only point to two or
more locations at the same time.

* Two or more pointers can point to same location.

Computer Programming
An-Najah N. University

Computer Engineering Department
Luai Malhis, Ph.D,

Functions

Introduction

e Computer programs that solve real-world
problems are usually much larger than the
simple programs discussed so far.

* To design, implement and maintain larger
programs it is necessary to break them down
into smaller, more manageable pieces or
modules.

e Dividing the problem into parts and building the
solution from simpler parts is a key concept in
problem solving and programming.

Introduction Continues

* |In C++ we can subdivide the program into
blocks of code known as functions. In effect
these are subprograms that can be used to
avoid the repetition of similar code and allow
complicated tasks to be broken down into parts

e Until now we have encountered programs
where all the code (statements) has been
written inside a single function called main().
Every executable C++ program has at least this
function.

Function Definition

e Afunction Is comprised of heading and a body. Following
is the syntax of function definition.

return type function name (data type parameter(s))

{
statement(s); //function body

void main () int main ()
{ { statement(s)
statement(s); return (exp);

Examples

void print2lines ()
3k 3k sk sk sk sk sk sk sk 3k 3k 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk ok .
{ cout<<” \n”;

Cout<<”**************************\nﬂ,
’

}

int sum2int (int a, int b) // params are declared
{ intc;
c=a+b;

return (c);}

Function Return Type

May be void, indicating that nothing will be
returned, or any of the data types (int, float,
double, char,..., or a pointer to type)

When the return type is any thing other than
void, a return statement must be part of the
function body. In this case the function return
a value (Value - Returning functions)

When functions are part of a conditional
expression they can not be void. Example
If (pow(2,3) >5)

Return Statement and its Placement

e Are included in value-returning functions
(non-void functions).

* Terminate the execution of statements in a
function. Any statements after the return
statement are not executed.

* Send a single value back to the calling

function may be main or another function.

e int f1(int x) { x = x *2; return x; cout << x;}
the cout statement never executed

Function Placement

* a function may be placed before main or

after main. If it defined after main, it
requires function prototypes. Example:

int f1() {inty;;return();} //impl.
double f2(int); // proto
void f3(char); // proto
void main(){.... F1...... F2.... F3}; //impl
double f2(int z) {......return();} // impl
void f3(char z) {....}; // impl

Function Prototypes

Act similar to a variable declarations.
Occur before its called in the file (before main).

Look similar to function heading except that it
ends in a semicolon and it does not require the
parameter name, just the data type.

void print2lines ();
int sum2int (int, int);

If the parameter name is included, it is ignored.

Function Format

//comments # include library files
include library files function prototype(s)
Global variables global variables
function definition(s) void main ()
{ {

statement(s) //body statement(s)
} }
void main () function definition(s)
{ {

statement(s) statement(s) // body
} }

Calling Functions

A function call is the statement that tells the
function to execute.

When execution of the function has been
completed, flow of the program returns to the
statement immediately after the call.

It has the format of
function name (parameters);

The parameters from the call are transferred to
the function heading.

Function calls for value-returning functions are
often part of assignment statements.

Examples of Function Calls

#include <iostream.h>

int readint() {int x; cin >>x}

void printint(int x) {cout << x << endl;}
int sum2int(int x, int y){ return(x+y);}

void main () {
int a,b,c;
a = readint(); b=readint();
c = sumz2int(a,b);
printint(c); }

More on Function Calls

A function can call another function or even
itself (recursive functions)

A single C++ statement may call more than one
function. Example: sqrt(x) + pow(x,y);

Function calls can be part of a condition.

if (sum2ints(6, 12) > 10) {statements}
if (function()) {statements}

Function could be part of an expression
X + function()

int y = function();

Parameters

* The parameters in the function heading are referred to
as “formal parameters” or arguments.

int add(int x, inty) { return(x+y);}

* The parameters in the function call are referred to as
“actual parameters” or arguments.

intw=10; cout << add(4,w);

* When the function call is executed, the actual
parameters are transferred to the formal parameters in
order that they appear in the call.

¢ We will discuss some restrictions later.

* Formal parameters and actual parameters are different
variables even if the have the same name

Passing Parameters

» Pass by value — a copy of the value from the actual
parameter is sent to the formal parameter of the
function. The function can not change the value of
the actual parameter.

* Pass by address (pointer)- the formal parameters
point to the actual parameters. The function can
change the value of the actual parameter.

» Pass by reference — the same memory location is
shared by actual parameter and the formal
parameter. The function can change the value of
the actual parameter.

Pass by Value
e Only the value of the actual parameter stored in
the formal parameter.

e The actual parameters and the formal parameters
are separate memory locations

e Example:
int f1(int x) { x = x/2; cout << x; return(x);}
void main() {int y =10;
cout << f1(y) << endl; //5;
cout << y; // 10

Pass by Value 2

Pass by can be generalized to include passing the
value of any expression to the function.

int f2(int x) { x = x/2; return x;}

In main() we can call the function as follows:

void main() { inty =10;
cout << f2(y); //5
cout << f2(30); // 15;
cout<<f2(25*2+vy); //30
cout << f2(f2(y)/2 + 15); // 10

Passing by Address

* The address of a variable is passed to the function and
the function access the variable using a pointer.

* Pass address of the variable using & operator
* Define the formal parameter as pointer in the function

e Use * operator to access and make changes to the
value of the variable from inside the function.

void f3(int *x) { *x =5};
void main{int y =10; f3(&y); cout << y;}

// it prints 5 because the function call changes the
content of location y in main using pointer x.

Pass by Reference

Reference is defining another name to previously
defined variable. Reference declaration syntax:

type & name = variable;
int x =5, y=10; int & z=x;
Now both x and z are names for the same location.

X—| 5 |=—1¢

cout<<z; //5 z=20; cout<<x; //20
Int & z=y;
Int & w;

Pass by Reference 2

* We can use references to pass variables to
functions by defining another name in the
function to the variable passed.

* Use reference name in the function to access and
make changes to the value of the variable from
inside the function.

void f3(int &x) { x =5};
void main{inty =10; f3(y); cout << y;}

// it prints 5 because the function call changes the
content of location y in main using reference x.

Function call Example Example (cont.)

e Suppose your know the length of the sides of a e The Function Definition would be
rectangle and you want a single function to

. void calcAreaPeri(float rect_length,
calculate both the perimeter and the area of the (ik

rectangle. float rect_width, float &perimeter, float * area)
e Your function would need 4 parameters, { perimeter =2 * rect_length + 2 * rect_width;
rect_length, rect_width, perimeter, and area. *area = rect_length * rect_width; }

e The parameters rect_length and rect_width
would be passed by value because you do not
want the function to change them. The
parameters perimeter and area would be e The function call would be: float p, a;
passe_d by reference or by address because the calcAreaPeri(4.6, 8.5, p, &a);
function calculates them and store changes.

e The function prototype would be
void calcAreaPeri(float, float, float&, float *);

Example (cont.) Summary of Passing Parameters

¢ Write main that calls the function

_ _ . * With pass by value, the actual parameter may be a
voidmain (){ floatlen, width, p=0,a=0; variable, constant , or an expression.

cout<<“Please enter the length and width. \n"; * Pass by reference the actual parameter must be

cin >>len >> width; //len=4 and width=6 variable name. use & in the function heading.
calcAreaPeri(len, width, p, &a); void Func(int & a, floatb, char & c){ }

cout<<“A rectangle of length "<<len <<endl; // 4 main () {intx, floaty, char z; Func(x,y,z);}

cout << “and width of ” <<width <<endl; //6 With pass by address, the actual parameter must be
cout << “and has a perimeter of “<<p <<endl; //20 the address of a variable and defined as a pointer in
cout <<“ and has an area of’<< a<< endl; /] 24 the function heading.

} Func (int *a, float b, char *c) { }

main () {intx, floaty, char z; Func(&x,y,&z);}

Passing Arrays to Functions

e An entire array can be passed to a function.
* In the function call, just use the array name
without any indices or subscripts.

— Often the number of elements in the array is
passed as another argument of the function call.

— Printarray(myarray, 30);

* In the function heading, the size of the array
should be left blank by using empty brackets
— void Printarray(float numbarray[], int size)

Some Details of Array Passing

* Previously in functions, we discussed that we
could pass parameters “pass by value or “pass
by reference” or pass by address.

* However, we cannot pass an entire array as
pass by value to a function.

e By default an array is passed in a similar
manner (to pass by value) as pass by reference.

* Any changes to array content in the function
will be permanent.

Example of passing Arrays to Functions

void printarray(float B[], int size)
{for (inti=0; i< size; i++) cout << B[i] << “ “;}

)

void mult2array(float B[], int size)

{ for (inti=0;i<size; i++) B[i] *=2;}

// all changes to array content will be present to main,
void main () {

float A[10] = {2.5,6.9,7.2,13.1,26.5};

printarray(A, 10); // 2.5 6.9 7.2 13.1 26.5
mult2array(A,10);

printarray(A,10); //5.2 13.8 14.4 16.2 53

Returning a pointer to memory

* Instead of returning a value from a function a pointer to a
memory location may be returned provided that the
memory location allocated dynamically (using new).

int * f(inta) {int b; int * p = new int[10]; return(p)}
void main () {int *x; x =f();}
Now x points to new memory pointed to by p.

* Never return a pointer to a (temporarily) variable declared
in the function heading or body. Because the memory
location disappears when the function end.

* Inthe example above the function should not include
the statement: return (&a) or return(&b).

Designing Functions

* When we design a function we should
consider the following points:

* What do | want this function to do?
* What parameters do | need and their type?
e Should this function return a single value?

* if so what is the data type of the returned
value?

e What local variables need to be defined
within this function?

e Etc.

Example 1

e Write a function to print “Hello” on the screen n
times where n is passed as parameters. And
write main to call the function .

void printhello (int n) {
for (inti=0;1<n;i++) cout << “hello”; }
void main() { intx;
printhello(5);
cin >>x; printhello(x);
printhello(x*2+19);

Example 2

* Write a function that takes an int passed by value,
a double passed by address and char passed by
reference. In your function multiply the double
by the int value and store result in the double
value. Add the int to the char value and store the
result in the char value. Also return the sum of all
three variables. write main to call the function;

double comp (int a, double *p, char *c) {
*p=*p*a, c =c+a; return(a+ *p+c);}
void main() { int x =5; double y = 12.5; charz = "A’;
double w = comp(x, &y, z); }

Example 3

e Write a function that takes two characters c1 and
c2. Print all characters between them. Your
function return the count of printed chacaters.
Example if c1 =f; and c2 = p; prints aghijklmnop.
returns 11
int printchar (char ch1, char ch2) {

int count =0;
for (char ch = ch1; ch <= ch2; ch++,count++)
cout << ch;

return(count); }

Example 4

* Write a function that takes an array of characters
and array size. Your function returns a pointer to
new dynamically allocated array that contains all
small letters in the passed array.

char * getsmall (char A, int size) { int scount = 0;
for (inti=0; | < size; i++)
if (A[i] > ="’ && AJi] <= ‘Z’) scount++;
char *p = new char[scount]; char *t =p;
for (inti=0; | < size; i++)
if (A[i] >=a’ && A[i] <= ‘Z’) *t++ = AJi];
return(p); }

Example 5

Given: double M[20][10]. Write a function that takes the
matrix M as parameter. Your function computes and
returns the smallest value in the matrix.

double small (double A[20][10) { //must define # columns
double small = A[0][0];
for (intr=0; r < 20; r++)
for (intc=0; c < 10; c++)
if (A[r][c] < small) small = A[r][c];
return(small); }
void main() { double M[20][10] ={{..},{....},{....}};
cout << small(M);}

Global vs. Local Variables

A variable that is declared within a block is “local”
to that block and may only be accessed within that
block. Block is enclosed within { }

Therefore, a variable declared in a function
definition (either heading or body) is local to that
function.

Several functions may use the same identifiers as
variable names, but each is stored in a different
memory space.

F1() {int x;} F2() {intx} main() {int x}

Global variables are declared outside all functions
and may be accessed from anywhere.

intx; f1(){ x=5;} f2(){x+=2;} main() {x..

Variable Scope
The variable is known from the point it is defined in a block
and any sub block in that block.
A block is the code between { }
e Example 1: if (1) {int x; x =5;}
The cout statement accesses x outside the block

// syntax error

* Example 2 :{intx=2;
{inty=3; cout <<x; cout<<y;
{intz=12; cout<<z<<x<<y}
} // all good
cout <<y; cout << x; //syntax errorony
} cout << x<<y<<z; //xyandznot known

Computer Programming
An-Najah N. University

Computer Engineering Department
Luai Malhis, Ph.D,

Strings

String Definition

* Series of characters treated as single unit

 Can include letters, digits, special characters +, -, *
and any character in the ASCII code

e String literal (string constants) Enclosed in double
quotes, for example: “Palestine"”

e Array of characters, ends with null character *\0*

* String name is a pointer that points to the first
character of the string.

e String name can be static or dynamic as follows:
char ss[20] =“palestine”; // static pointer
char *ds = “palestine”; // dynamic pointer

String assignment

 Character array char color[] = "blue";
Creates 5 element char array color last element is'\0*
Same as char color[5] =“blue”;
Alternative for character array
char color[] = {‘'b’,I’,'u’,'e’,\0’ };

*Variable of type char *

char *colorPtr = "blue";

Creates pointer colorPtr to letter b in string “blue”
* “blue” is stored somewhere in memory.

String input output

* In addition to initializing string as one unit we can

read and print a string as one unit:

* Reading strings: Read string content from Keyboard

Given: char word[20]; then cin >> word;

Reads characters until whitespace (BLANK, TAB,
ENDLINE) is reached. Then appends ‘\0’.

Can read at most 19 characters.

* Printing strings: display string content on the screen

cout << word ;
prints characters until '\0* is reached

String Processing

Given a string char * s = “ABCDE”;

The statement cout << s; prints ABCDE

The statement cout << s+2; prints CDE

s = s+3; cout << s; is a valid operation since s is a

dynamic pointer; prints DE on the screen

for (;*s;s++) cout << s << “ “ prints:
ABCDE BCDE CDE DE E

for (;*s;s++) cout << *s << “
A B C D E

“; prints:

String Processing 2

Given a string char s[] = “ABCDE”;

The statement cout << s; prints ABCDE

The statement cout << s+2; prints CDE

s = s+3; cout << s; is an in valid operation since s

is a static pointer; cannot change s

for (int i =0; s[i];i++) cout << s+i<<“ “; prints:
ABCDE BCDE CDE DE E

for (int i =0; s[i];i++) cout << s[i] << “ “; prints:
A B C D E

String Functions

Set of build in function in C to manipulate
strings. These functions are found in library
<string.h>: must #include <string.h>

Some of the most important functions are:

— Copy one string to another

— Compare two strings strings

— Compute string length

— Concatenate one string into another string

— In the next few slides we will study these function
— There are many more functions in string.h

String functions prototypes

int strlen(char *sl); |Returnsthe number of characters in

string s without the null.

char *strcpy(char *s1, |Copiesthestring s2 into the character

char *s2);

array sl1. The value of s1 is returned.

char *strcat(char
*sl, char *s2);

Appends the string s2 to the string
s1. The first character of s2
overwrites the terminating null
character of s1. The value of s1 is
returned.

int strcmp(char *si,
char *s2);

Compares the string s1 with the
string s2. The function returns a value
of zero, less than zero or greater than
zero if s1 is equal to, less than or
greater than s2, respectively.

String Length: strlen

int strlen(char *sl);

Returns the number of charters in the string without null.
Given char s1[10] =“ABCDEF”; char s2[]="zyz”;
Cout<<strlen(s1); prints 6.

Cout << strlen(s2); prints 3.

Cout << strlen(s1+2); prints 4

Cout << streln(s2+streln(s2)); prints O.

Cout << strlen(“12345”); 5

aun

Cout << strlen(“”); prints O

String Copy: strcpy

char *strcpy(char *sl1, char *s2)

Copies second argument into first argument. S1 must be
large enough to store s2 with the null character.

Given char S1[10] = “ABCDEFG”; char S2 =“XYZ”; Then:
strcpy (s2,s1); is an invalid because s2 is too small for s1;
strcpy (s1,s2); “XYZ” is stored in s1 and s2 is not changed
strcpy(s1+2,s2); s1 becomes ABXYZ;
strcpy(s1,”123456789”); s1 becomes “123456789”
strcpy(s1+2,52+2); s1 becomes ABZ

strcpy(s2+2,”LMN”); invalid operation

Strcpy (s1,strcpy(s2,”ABCD”); copies ABCD into s1 and s2

Concatenating strings: strcat
char *strcat(char *sl1l, const char *s2)

Appends second s2 to the end of s1. Must make sure s1
large enough to store all characters in s1, s2 and null.

returns pointer to sl.
Examples: Given char S1[10] = “ABCDEFG”;char S2 =“XYZ";
strcat (s2,s1); is an invalid because s2 is too small for s2+s1;
strcat (s1,s2); “XYZ” is stored at the end of s1= ABCDEFGXYZ
strcat(s1+2,s2); s1 becomes ABCDEFGXYZ
strcat(s1+2,52+2); s1 becomes ABCDEFGZ
strcat(s2,”LM”); is invalid operation becaue s2
strcat(“Im”,s2); is invalid operation because “Im” is constant.
stract (strcat(s1,”1”),”2"); s1 becomes ABCDEFG12

String Compare : strcmp
int strcmp(char *sl1, char *s2)

Characters represented as ASCII code.

Compares string character by character according
to their ASCII code values. Example

S1="abc” s2 ="abcd”, s3 =“ABCDEF”", s4 =“123456";
Returns Zero if the two strings are equal.

Returns Negative value if s1 is smaller than s2
Returns Positive value if s1 is greater than s2.

In examples above s1 <s2, s2 >s3, s4 <sl,s2, s3.

String compare continue

Given char s1[10] = “ABCD”; char s2[] =“ABM”; Then
strcmp(sl1,s2); returns a value < 0; since C<M
strcmp(s2,s1); returns a value > 0; since M >C
strcmp(s2, “ab”); returns a value <0 since A<a.

strcmp(s2,”ABM”); returns O since both strings are equal

strcmp(s1+2”,”CD”); returns O since both are equal
stremp(“abc”,’a”) returns > 0 since b > null
stremp(“abc”,strcpy(s1,’abc”); returns > 0;

stremp(“s1+2,strcpy(s1,”M”); returns O

String Function Examples 1

Write code to read 100 strings print the average
string size. Assume max string size is 20.

char st[21]; int sumall =0;
for (inti =0; i < 100; i++) {
cin >> st;
sumall += strlren(st);

}

cout << “average string size is “<< sumall/100.0;

String Functions Example 2

Write code to keep reading strings until the
string “finish” is entered print the largest
entered string. Assume max string size is 20.

char st[21]; char maxst[21] ="";
while(1) { cin >> st;
if (strcmp(st,”finish”) ==0) break;
if (strlen(st) > strlen(maxst))
strcpy(maxst,st); }
cout << maxst;

String Functions Example 3

Write code to read 50 strings concatenate them
into 1 string. Assume max string size is 20. The
compute the strlen of the new string and the
count of ‘@’ in the new string.

char st[21]; char all[50*20+1] =“";

for(int i =0; | < 50; i++) { cin >> st; strcat(all,st)}
cout << “the length of all is” << strlen(all);

int counta =0;

for (chat *p = all; *p; p++) if(*p == a) couta++;

String Functions Example 4

Write a function that takes string s1 and char c1
as parameters. Your function returns the
number of times c1 is found in s1.

int find(char *s, char c1) {
int count =0;
while (*s) {
if (*s ==cl1) count++;
s++; }

return(count);

String Functions Example 5

Write function that takes s1, c1 and c2 as
parameters your function returns a pointer to
new allocated string that contains all characters
between cl and c2 inclusive.

char * extract(char *s, char c1, char c2) {
char *pl =s, *p2 =s, *p, *ns;
while(*p1 !=cl1) pl++; while(*p2 !=c2) p2++;
ns = new char[p2 — p1 +2];
for (char *t =ns, p = pl; p <=p2;) *t++ = *p++;
return(ns); }

Array of Strings 1

* We can allocate a matrix of characters and store
each string in a given row of the matrix. Following
is a code to read student names from the keyboard
and store the names in a two dimensional array.

char students[40][15];
//40 students, Max length of a name is 14 letters
for (int 1 =0; 1 < 40; 1++) {
cout <<"Enter Student Name:";
cin >> students[i];
}
e // also we can print them one string per line
for (1 =0; | <40; |++) cout << students[i] << end|;

Array of Strings 2

e Given char months[12][20] = {“January”,
“February”, “March’, /' December”};

Print the number of months starts with M or J
Print the months that are larger than 5 characters
Print the number of months that end with y.
Int smj =0; int ey =0;
for(inti=0;i<12;i++){
if (months[i][0]=="M’| | months[i][0]==")") smj++;
if (strlen(months[i]) > 5) cout<<months|i]<<endl;
if (monthsli][strlen(months]i]) -1] ==y) ey++;}

Computer Programming
An-Najah N. University

Computer Engineering Department
Luai Malhis, Ph.D,

Structures

Definition
e Structure is a user defined data type, that is build of
basic data types (char, int, double,....).

e Structure allow many variables of different types
grouped together under the same name.

e To define a structure we use the following format:
struct name

{

type memberl;
type member2;

Structure Definition Example

e We can Define a structure called person which
is made up of a string for the name and an
integer for the age and a double for salary.

e struct person

{

char name[20];
int age;

double salary;

%

Defining Variable of A structure

* Previously we defined a data type called person.

* However, we must create a variable of that type to
be able to use it.
* Following is sample variable declarations:

#include<iostream.h>
struct person{ char name[20]; int age; double salary;}

void main() {
person p1l; // variable of type person

person *ptr; // pointer of type person
person PA[100]; // Array of persons }

Accessing member variables

» After defining a variable of type structure, we can
access structure member variables using the ’ (call
it dot) operator.

* Inthe previous example to access member fields of
the structure we place a dot between the structure
variable name (p1) and the name of a member
variable (name, age or salary).

pl.age , pl.salary, pl.name

e |f the variable is a structure we use and arrow ->
to separate pointer name and field name:
ptr->age, ptr->salary, ptr->name;

Structure Initialization

* Like other data type we can initialize structure
when we declare it. As far initialization goes
structures obey the same set of rules as
arrays. We initialize the fields of a structure
following structure declaration with a list
containing values for each filed.

e Assume we have the following structure
definition:
struct Employee{ int emp_id; char name[25];
char department[10]; float salary; };

Structure Initialization 2

We can initialize a variable of type employee
when we declare it as follows

* Employee empl
={125,"basil”,”"marketing”,500.00};

e This initializes the emp_id field to 125, the
name field to “basil”, the department field to
“marketing” and the salary filed to 500.0.

* We can use assignment statement to initialize
one structure to another. Example:

Employee emp2 = empl;

Structure Initialization 3

* We can initialize a variable of type employee one
field at a time using the assignment operator.

Employee emp3.

emp3.salary = 2470.28;
strcpy(emp3.name, “Ahmad”);
strcpy(emp3.department,’sales”);
emp3.emp_id = 27;

* We can also use cin statement to read fields of a
structure: cin >> emp3.name; cin >>emp3.emp_id;

cin >> emp3.salary >> emp3.department;

Pointer to structures

* When declaring a pointer to structure, before
we use the pointer to access member variables
the pointer must be made to point to an existing
structure or new structure. Example:

Employee emp4 ={133,"nael”/’sales”,1234.5};
Employee *ptl, *pt2, *p3;

ptl = &emp4; // pt points to existing structure;
pt2 = new Employee;

pt3 = ptl;

Pointer to structures 2

* Then to access member variable use the “->” to
separate pointer name and field name. Example

strcpy(pl->name,”Nader”);
pl->emp_id = 1234;
strcpy(pl->department,”Human Resources”);
pl->salary = 1765.5;

// Note: Employee *p5; p5->emp_id = 1234.6;
is invalid because p5 does not point to a an
variable of type structure or to new structure.

Array of structures

 |tis possible to define an array of structures. for
example if we are maintaining information of all
the students in some university. We need to use
an array of structures to maintain information
about all students.
struct info
{
intid_no; char name[20];
char address[20]; int age;
2
Then, we can define an array of structure
information as follows: info student[100];

Array of Structures 2
* Then can access member fields as follows:
student[0].id_no = 212;
strcpy(student[4].name,”walid”);

int x; cin >> x; cout << student[x].age;

* We can also declare and array of pointers to

structure as follows: info *stptr[200]; Then to we
can access member variables as follows:

stptrp[10] = new structure;
stptr[10]->age=19; strcpy(stptr[10]->name,”ab”);

Example:

#include<iostream.h >
struct info
{ intid_no; char name[20]; char address[20]; intage; }
void main() {
info std[100]; intl,n;
cout << “Enter the number of students”; cin>>n;
cout<< “Enter Id_no, name, address, and age”);
for(1=0;l < n;l++) {
cin>> std[l].id_no >> std[l].name;
cin>> std[l].address >> std[l].age; }
cout << “Student information”;
for (1=0;I< n;l++) {
cout << std[l].id_no << << std[l].name << “ “;
cout << std[l].address; << “ “ << std[l].age << endl;

" “

Nested Structure

* A structure may be defined as a member of
another structure. In such structures the
declaration of the embedded structure must
appear before the declarations of other
structures. Example

struct date { intday; intmonth; intyear;};

struct info

{
intid_no; char name[20];
char address[20]; int age;
date dob;

2

the structure student constrains another structure
date as its one of its members.

Accessing member variable of
Nested structure

e Given: info stl; info *ptr; Then
strcpy(stl.name,”Adel”);
stl.id no =223344;
stl.dob.day = 12; stl.dob.month =09;
stl.year = 1998;
ptr = &st1;
cout << ptr->name; cout << pt->id_no;
cout << ptr->dob.day << ptr->dob.month;

Pointer inside a structure

e A structure may contain a pointer to a variable to

another structure. Programmers must be carful to
allocate memory to these pointers before accessing
them. In this case we must allocate memory to each
structure then use the -> to access each member.
Example:

struct data { int age; char *name; }; data ex; Then:
ex.age = 21; ex.name = new char[30];
strcpy(ex.name,”abc”);
data * ptr; ptr = new data; ptr->name = new char[20];
ptr->age = 22; strcpy(ptr->name,”abc’);

Examples Example 1

* Given the following definition: * Write code to declare a variable of type info

* struct info call it s1 and give it the following values 123

{ forid, “wael” for name, “jenin” for address

int id_no; and 21 for age.

c:ar ng(rjne[ZOz],;) * Solution1: info s1;

icntaz: ae. ress[20]; sl.id no=123; strcpy(sl.name,”wael”);
) Be; sl.age = 21; strcpy(sl.address,”jenin”);

* Solution 2:
info s1 ={123,"wael”,”jenin”,21};
Example 2 Example 3

* Define a pointer to structure and make it point
to s1. Then use the pointer to print s2.

info *ptr = &s2;

cout << ptr->id_no; cout << ptr->name;

* Define another variable of type info call it s2
and read information of s2 from the keyboard.

e Solution: info s2;

cin >>s2.id_no; cin >>s2.name;

. . cout << ptr->address; cout << ptr->age;
cin >> s2.address; cin >> s2.age; P ; ptr->age;

* Define a pointer to info and call it ptr; allocate

_ new memoy to ptr and read info from the K.B.
e Print the content of s2 to screen. _ N .
_ info *ptr = new info;
cout << s2.id_no; cout << s2.name;) . .
cin >> ptr->.id_no; cin >> ptr->.name;
cout << s2.address; cout << s2.age; : .

cin >> ptr->address; cin >> ptr->.age;

Example 4
* Declares an array called A of info of size 1000
then read the structure content from the K.B.
info A[1000]; int n; cin >>n;
for (inti=0;1<n;i++) {
cin >> A[il.id_no; cin>> A[i]l.name;
cin >> A[i].address; cin >> A[i].age; }
e Suppose we have info *ptr = A; then
for (inti=0; | <n; i++, ptr++) {
cout << ptr->id_no; cout << ptr->name;
cout << ptr->address; cout << ptr->age;}

Passing structure to functions

We can pass structures as arguments to a
functions, and retrun structures from functions.

A structure may be passed into a function as
pass by value, reference and by address.

You can also return a structure from a function or
apointer to dynamically allocated structure in
the function.

A program example is to display the contents of a
structure passing the individual elements to a
function is shown next.

include < iostream.h >

e struct Employee{ intemp_id; char name[25];
char department[10]; float salary; };

* Employee readEmp() { Employee emp1;
cin >>empl.name; cin >>empl. emp_id;
cin >>empl.department; cin >> empl.salary;
return(empl); }

e void printEmp(Employee e)
{ cout<<e.name; cout << e.emp_id;
cout << e.department; cout << e.salary; }

e void main() {Employee em1; eml =reademp();
printEmp(); }

Example

e Write a function that takes and array of info as
parameter and array size; in your function
return a stucture of the oldest students.

info largSt(info A[], int size)
{
info st; st =A[0];
for (inti=1;i< size; i++)
if (st.age < A[i].age) st = AJil;
return(st);

Other Examples

e Given an array of structure info call it A, size 100
Write code to do the following

(1) Print the the count of students that start with
the letter ‘A’ or ‘a’, Start and end with same letter.

the count of names larger that 10 characters.
print the name of students that are from Jenin.

(2) sort the array A in according the name in
ascending order. Then compute total salaries.

(3) Sort the array A in descending order according to
salary. Print employee name of the largest salary.

pl
int counta =0, countsl =0, countg10 =0, jen =0;
for (inti=0;i<100; i++)

{
if (A[i].name[0] == ‘A" && A[i].name[0] == ‘@’)
counta++;
if(A[i].name[0] == name[strlen(A[i].name)-1]))
countsl++;

if(strlen(A[i].name) > 10) countgl0++;
if (strcmp(A[i].name,”Jenin”) jen++;

p2
Info temp;
for (inti=0;i<99;i++)
for (intj=i+1; j < 100; j++)
if(strcemp(A[i].name,A[j].name) > 0){
temp = A[i];
Ali]l = A[jl;
A[j] = temp;
}
// compute total salaries.
int sum =0; for (int | =0; | <100;i++) sum+= Ali].salary;

p3
info temp;
for (inti=0;i<99;i++)
for (intj=i+1; j < 100; j++)
if(A[i].salary < A[j].salary)
{
temp = A[i];
Alil = ALl;
A[j] = temp;
}

cout << “the highest salary is “ << A[i].name <<
“with salary” << A[i].salary.

Computer Programming
An-Najah N. University
Computer Engineering Department
Luai Malhis, Ph.D,

Input/Output files with C++

File IO

e Important points:

 arrays provide capability for storing related
values in a single entity

e can access individual values using an index

e can traverse through the indices,
systematically access all values in the array

* can pass the entire array as a single
parameter

 for efficiency reasons, arrays are treated as
pointers (references) to memory

File IO Continue

Arrays make it possible to store and access
large amounts of data

* requiring the user to enter lots of data
by hand is tedious.

e each execution of the program requires
re-entering the data

e petter solution: store the data in a

separate file, read directly from the file.

* Requires only one entry k(?l the user, can
re-read as many times as desired

File Input

to read from a file, must declare an input file
stream

= similar to the standard input stream, only
input comes from a file

= in particular, can read values using >>
= defined in the <fstream> library

= Steps to read data from file shown next
slide.

Reading data from file

#include <fstream> // loads definition of the input
file stream class (ifstream)

ifstream myin; // declares input file stream

myin.open("nums.dat"); // opens the input file
stream using the file "nums.dat"

int numbers[100];

// reads numbers from the input file stream
// and stores them in the array

for (inti=0;i<100; i++) {

myin >> numberslil;//

}

myin.close(); // closes the input file stream

Averaging Grades

suppose we wanted to store grades in a file to compute
their average, don't need to store the grades in an
array — just read and process

OPEN INPUT FILE STREAM;
Set COUNTER, SUM to zero.

READ FIRST GRADE;

while (there are more grdaes){
ADD GRADE TO SUM;
INCREMENT GRADE COUNTER;
READ NEXT GRADE;

}
COMPUTE & DISPLAY AVERAGE

Averaging Grades 2

#include <iostream.h>
#include <fstream.h>

int main()

ifstream myin;
myin.open("grades.dat");

int numGrades =0, gradeSum = 0;

int grade;
// continue next slide

Averaging grades 3

myin >> grade;
while (grade !=-1) {
gradeSum += grade;
numGrades++;
myin >> grade;
}
if (numGrades > 0) {
double avg = (double)gradeSum/numGrades;
cout << "Your average is " << avg << end|;
}
else {cout << "There are no grades!" << end|I;}
myin.close(); }

Grade display

Grade Display 2

#include <iostream.h>

#include <fstream.h>

const int MAX_GRADES = 100;

void ReadGrades(int grades[], int & numGrades);

int CountAbove(int grades[], int numGrds, int cutoff);

void main()
{
int grades[MAX_GRADES], numGrades;
ReadGrades(grades, numGrades);
int cutoff;
cout << "Enter the desired grade cutoff: ';
cin >> cutoff;
cout << "There are "
<< CountAbove(grades, numGrades, cutoff)
<< " grades above " << cutoff << endl;

void ReadGrades(int grades[], int & numGrades){
// Results: reads grades and stores in array
ifstream myin;
myin.open(‘'grades.dat™);
numGrades = O;

int grade; myin >> grade;

while (grade = -1){
grades[numGrades] = grade;
numGrades++;

myin >> grade;

}

myin.close();

Grade Display 3

int CountAbove(int grades[],
int numGrds, iInt cutoff)

// Assumes: grades contains numGrades grades

// Returns: number of grades >= cutoff
{
int numAbove = 0;
for(int 1 = 0; 1 < numGrds; i++) {
it (grades[i] >= cutoff) {
numAbove++;
}
ks

return numAbove;

Improvement 1: end-of-file

= Each file has a special marker called EOF that
marks the end of input

input via >> evaluates to a Boolean value

= if the input succeeds (the expected type of input
Is read in), the expression evaluates to true

= if the input fails (the wrong tyﬁe of input is read
in or end-of-file has been reached), the
expression evaluates to false

thus, can have a while loop driven by an input
statement

Read until end of file

void ReadGrades(int grades[], int&
numGrades){

// Results: reads grades and stores iIn array

ifstream myin;

myin.open(''grades.dat');

numGrades = O;

Iint grade;

while (myin >> grade){
grades[numGrades] = grade;
numGrades++;}

myin.close();

Generalizing file names

we can generalize the program to read from an arbitrary file
= can prompt the user for the file name, read into a string

void ReadGrades(int grades[], int & numGrades)
// Results: reads grades and stores in array
// numGrades i1s set to the # of
grades
{ char TfTilename[80];
cout << "Enter the grades file name: ';
cin >> fTilename;
ifstream myin; myin.open(filename);
numGrades = 0; iInt grade;
while (numGrades < MAX_GRADES && myin >>
grade) { grades[numGrades] = grade;
numGrades++; }
myin.close();

Guarding against file errors

we can test the ifstream to be sure that the
specified file was opened correctly

® the ifstream has a Boolean value associated
with it

= if the file exists (and not past end-of-file), the
ifstream evaluates to true

= otherwise, the ifstream evaluates to false

= must clear the input file stream between
attlem)pts to open (in order to reset true/false
value

void ReadGrades(int grades[], int & numGrades)
// Results: reads grades and stores in array
// numGrades is set to the # of grades
{ char filename[50];
cout << "Enter the grades file name: ";
cin >> fTilename;
ifstream myin; myin.open(filename);
while (Imyin) {
cout << "File not found. Try again: "
cin >> fTilename;
myin.clear(); myin.open(filename); }
numGrades = 0; int grade;
while (numGrades < MAX_GRADES && myin >> grade)
{ grades[numGrades] = grade; numGrades++; }
myin.close();

File Output

It is possible to direct program output to a file
= must declare an output file stream (ofstream)

= open using a file name (same as with
ifstreams)

= write using <<
= close when done (same as with ifstreams)

File Output

#include <fstream>

// loads definition of the outputfile
stream class(ofstream)

ofstream myout;
//declares output file stream
myout.open(*'nums.out');

//opens the output file stream using the
file"'nums.out”

for (int i = 0; 1 < 100; i++) {

// writes numbers to output file,
myout << 1 << endl;

}

myout.close();

// closes the output file stream

Updating the grade file

#include <iostream.h>
#include <fstream.h>
const int MAX_GRADES = 100;

void ReadGrades(int grades[], int &numGrades, char fname[]);

void ScaleUp(int grades[], int numGrades);

void WriteGrades(int grades[], int numGrades,char fname[50]);

int main()
{
int grades[MAX_GRADES], numGrades;
char fileName[50];
ReadGrades(grades, numGrades,fileName);
ScaleUp(grades, numGrades);
WriteGrades(grades, numGrades, fileName);
return O;

void ReadGrades(int grades[], int & numGrades, char fname[50]) {
/I Results: reads grades and stores in array
/I fname is the name of the input file.

cout << "Enter the grades file name: *; cin >> fname;
ifstream myin; myin.open(fname);
while ('myin) {
cout << "File not found. Try again:"; myin.clear();
cin >> fname; myin.open(fname)
¥
numGrades = 0; int grade;

while (numGrades < MAX_GRADES && myin >> grade)
{ grades[numGrades] = grade; numGrades++; }
myin.close();

}
/I next slide the code for ScaleUp and WriteGrade

Updating the grade file Continue

void ScaleUp(int grades|[], int numGrades) {
/I Assumes: grades contains numGrades grades
/I Results: a bonus is added to each grade
int bonus;
cout << "How many bonus points are there? *;
for(inti=0; i < numGrades; i++)
{ grades[i] += bonus;if (grades[i] > 100)

cin >> bonus;

void WriteGrades(int grades[], int numGrades, char fname[50]) {
ofstream ofstr; ofstr.open(fname);

for (inti =0; i <numGrades; i++) { ofstr << grades[i] << endl;
ofstr.close();

grades[i] = 100; }

}

Copy a file to another file

would the following code suffice to copy the
contents of a file?

I.e., does copy.txt look exactly like the input file?
recall that >> ignores all whitespace

= thus, the previous program will copy all non-
whitespace chars, but spacing will be lost

the get member function (from <tostream>)
reads a character, including whitespace

= applied to an input stream

= one argument: a char

Copy Example 1

#include <iostream.h> #include <fstream.h>
#include <string.h>
void main()
{
char infile[40];
cout << "Enter the input file name: "
cin >> infile;
ifstream ifstr;
ofstream ofstr;
char ch;
while (ifstr.get(ch)) {
ifstr.close();

ifstr.open(infile);
ofstr.open(‘'copy.txt™);

ofstr << ch; 3}
ofstr.close();

Faster Copy

the getl ine function (from <tostream>) reads an entire line of
text, including whitespace two arguments: input stream and a string

#include <iostream.h> #include <fstream.h>

#include <string.h>

void main(Q)

{ char infile[40];
cout << "Enter the input file name: "
infile;
ifstream ifstr;
ofstream ofstr;
char line[255];
while (getline(ifstr, line)) {
endl; }

cin >>

ifstr.open(infile);
ofstr.open('copy.txt");

ofstr << line <<

ifstr.close(); ofstr.close();

