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The scattering parameter formulation for the envelope correlation in an (N ,N) MIMO antenna array has been modified to take
the intrinsic antenna power losses into account. This method of calculation provides a major simplification over the use of antenna
radiation field patterns. Its accuracy is illustrated in three examples, which also show that the locations of the correlation minima
are sensitive to the intrinsic losses.

1. Introduction

MIMO systems employ multiple antennas at transmitter and
receiver to improve the reliability and capacity of wireless
links in a rich electromagnetic scattering environment. It is
well known that the capacity of an (N ,N) MIMO system
increases with N , the number of antennas in the transmit and
receive arrays on the assumption of independent Rayleigh
fading between each pair of transmit and receive antennas
[1]. In practice, the independence of the received signals
will depend on the angular distribution in the channel, the
arrangement and radiation pattern of the antennas, and their
polarization. It will be reduced by mutual coupling between
antennas [2]. The avoidance of mutual coupling and the
ability to distinguish between paths arriving at closely spaced
angles is favored by larger antenna spacing, whilst practical
constraints often demand compact arrangements, especially
in mobile systems. To optimize the diversity performance
of the array, antennas should be located so as to sample
the channel at separations that exhibit minimum spatial
correlation [3, 4], taking account of mutual coupling effects
[5–7]. (Note that in some circumstances, mutual coupling
can enhance MIMO capacity [8, 9].) Since the optimum
separation distance will depend on the angle-of-arrival
distributions, practical systems may elect to optimize the

separation for an average channel, for which a common
assumption is of a rich scattering environment with scatter-
ers uniformly distributed in angle. For this reason, it is useful
in developing practical systems to have a straightforward
means to evaluate the spatial, complex-envelope correlation
for the system of antennas [6, 10].

The theory presenting a generalized analysis of signal
correlation between any two array elements to include non-
identical elements and arbitrary load termination of passive
antenna ports was presented in [11], the method is related
to the power balance concept and based on the antenna
impedance matrix. In [4, 12], theoretical and simulation
studies have been conducted to explain the experimentally
observed effect that the correlation between signals of closely
spaced antennas is smaller than that predicted using the
well-known theoretical methods. A simple expression to
compute the correlation coefficients from the far field pattern
including the propagation environment characteristic and
the terminating impedance was introduced in [13].

There are three possible methods to compute the enve-
lope correlation. The first method is based on the use of
far field pattern data [8], and the use of actual or simulated
radiation field data is time consuming if spread over several
design iterations. The second method employs the scattering
parameters measured at the antenna terminals [14], and
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there is a third method based on Clarke’s formula [15].
The calculation may also be formulated in terms of a
generalised impedance matrix [11]. In practice, we require
the correlation between any two antennas in an array. In
[16] a useful relation was presented including the effect of
the antenna efficiencies on the calculated spatial correlation.
The correlation is sensitive to the intrinsic power losses in
the radiating structures. The scattering formulation derived
and tested in [14, 17] does not include these losses, and this
provides the rationale for the method presented below.

2. Background Theory

The envelope correlation for two antennas may be calculated
from (1):

ρe =
∣
∣
∫∫

4πdΩF1(θ,φ)∗ · F2(θ,φ)
∣
∣

2

∫∫

4πdΩ
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∣F1(θ,φ)

∣
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∣
∣2 , (1)

where Fi(θ,φ) = Fi
θ(θ,φ)âθ +Fi

φ(θ,φ)âφ is the radiation field
of the ith antenna and the surface integrations are over the 2-
sphere [15]. On this basis, the envelope correlation between
antennas i and j may be obtained from (2), as described in
[16],
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where Ci, j(N) is expressed as

Ci, j(N) =
N
∑

n=1

S∗i,nSn, j . (3)

Hence, from (2) and (3), the explicit scattering parameter
formula for envelope correlation is [17]:
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Although (4) offers a simple approach compared with
radiation pattern, it should be emphasized that this equation
is limited by certain three assumptions as in [18].

In this paper, the computed two-antenna envelope
correlation for an (N , N) MIMO system will be evaluated
from the scattering parameters and the intrinsic power losses
in the radiating structures. This calculation represents a sig-
nificant simplification over using the far field patterns in (1).

3. Summary of the Method

Considering the electromagnetic geometry in Figure 1, the
total power is given by

Ptotal = Prad + Ploss, (5)

where Prad and Ploss are the total radiated power and power
loss, respectively. Ptotal is also known as the accepted power
and may be computed in terms of the incident wave,
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Figure 1: The electromagnetic geometry for the N antenna element
system.

amplitude a and reflected amplitude b by (a†a− b†b), where
† denotes the Hermitian conjugate.

The analysis developed below, and the subsequent case
studies shown in Figure 2, have been presented for conve-
nience in a wire antenna formulation and the solved using
NEC. It should be understood that the underlying concepts
are fully general, and can be readily rewritten in terms of
general surface and volume currents.

The surface current density on a wire antenna (dipole)
structure can be written as

Js(θ, l) = I(θ, l)
2πr

âl ≈ I(l)
2πr

âl, (6)

where r is the radius of the dipole wire.
The power loss may be computed in terms of the surface

currents on the antenna structures as follows. These currents
may be expressed in terms of the incident waves a1, a2, . . . an
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(7)

The IiN terms are the normalised currents on structure i due
to the incident wave N , and Rs is the surface impedance of
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Figure 2: Examples under test: (a) Uniform linear array, (b) Ring array.

the antenna. The power loss on the ith antenna structure is
calculated by

Plossi =
∫∫

Jsi · Js∗i rdθdl,
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∫∫{
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solving for circumferential integral leads to

Plossi =
1
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Subject to (9), the power losses may be expressed in matrix
notation as follows,

Ploss = a†La, (10)

where the linear operator L can be defined by the following:

L = L1 + L2 + L3 + · · · + Li. (11)

The matrix representations of the elements of L, as example
L1 and Li can be written as below:
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Hence the energy balance for the system expressed
through (5) may be re-expressed fully in terms of the incident
wave amplitudes, and the scattering matrix S ∈ CN×N ,

a†
(

1− S†S
)

a = a†La + a†Ra. (13)

This is essentially a modification of Stein’s formulation for a
multi-beam array [19], where R is a general N × N matrix.
The explicit form of R is as follows,
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where Di is the maximum directivity of the ith antenna.
Now, considering the above equations, the envelope

correlation between the antennas i and j in the (N ,N)
MIMO system can be expressed in terms of the scattering
parameters and the intrinsic power losses as follows:
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As an example, for a (3,3) MIMO system (i.e., three-antennas
at each end), the spatial correlation between antennas 1 and
2 may be calculated directly from the following,

ρe(1, 2, 3)
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)][
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(
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)] .
(16)

4. Simulation and Results

To verify (16), the spatial envelope correlation has been
computed between two half wavelength dipole antennas, in
free space for a three-antenna system, as a function of their
separation distance. The far field and scattering parameters
have been computed using the NEC code.

For this example, the dipole radius for each structure
was set to 0.002 wavelengths. Three different sources of loss
were considered for validation purposes, and two distinct
MIMO configurations were investigated, namely, a uniform
linear array, and a circular (ring) array. In each case, the
three dipoles were loaded by two lumped 25Ω resistive loads,
separated by 0.095 wavelengths from the input source, as
shown in Figure 2. The excitation was simply modeled by a
voltage source at the centre of each dipole, and the applied
termination load is 50Ω.

Departures between the results of this method and
the lossless approach were checked through simulation.
The spatial envelope correlations between the antenna
elements 1 and 2 in the three element uniform linear array
were calculated using the far field as a function of the dipole

separation distances. The results are presented in Figure 3 for
the lossy and lossless cases. Close agreement may be observed
between the lossy analysis derived from (16), and the far
field analysis in (1). The envelope correlation for dipole
separation distances less than 0.5 wavelengths and between
each of the intervals from 0.8 to 0.9 wavelengths, 1.35 to 1.45
wavelengths and 1.85 to 1.95 wavelengths can take values
bigger than the achieved S21 values. It is also interesting to
note that the nulls of the spatial envelope correlation are
shifted as compared with those computed via the lossless
approach.

In Figure 4, the spatial envelope correlation between
dipole elements 1 and 3 in the same uniform linear array
are recorded, also as a function of their separation distance,
for both lossy and lossless cases. It can be seen that the
correlation values for the lossless case are smaller than for
the lossy case, this is due to the middle element acting as a
perfect reflector in the lossless case, thus contributing to a
higher reflected power as compared to radiation power. The
separation distance between the two radiators will affect the
transmittance, |S21| which is associated with their mutual
coupling.
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Figure 4: The computed spatial envelope correlations and scattering parameters between dipoles 1 and 3 versus their separation distance, in
a MIMO system of three elements, arranged in a uniform linear array.

In Figure 5, the spatial envelope correlation between
dipole elements 1 and 2 in a three-antenna element ring
array are recorded as a function of the ring radius in wave-
lengths, for both the lossy and lossless cases. These results
show close agreement between the lossy analysis and the
far field analysis from (1). For dipole separation less than
0.15 wavelengths and in the interval between 0.4 to 0.55
wavelengths the spatial envelope correlation can take values
bigger than the S21 values. Furthermore, the nulls of the
envelope correlation calculated by the current method are
shifted compared with the corresponding values from the
lossless calculation, indicating the significance of including
the intrinsic losses in the calculations. The spatial envelope

correlations between elements 2 and 3, and 1 and 3, in the
ring array will be the same as for 1 and 2 due to symmetry.

Figure 6 depicts the variation of the spatial envelope
correlation between dipole elements 1 and 2 versus the
surface conductivities for a three-antenna element uniform
linear array and a ring array. The separation distance
between the parallel dipoles in the case of the uniform linear
array was kept constant at 0.5 wavelengths, and in the case
of the ring array the ring radius was set to 0.5 wavelengths.
It can be noted, from Figure 6 that the envelope correlation
values become unaffected when the values of the surface
conductivities get higher. Also, it is noticeable from Figure 6
that the envelope correlation values are within 1 dB and



6 International Journal of Antennas and Propagation

10

0

−10

−20

−30

−40

−50
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Radius of the ring array in wavelength

From far field without loss
From far field with loss

S11

S21

(d
B

)

From S parameters with loss

Figure 5: The computed spatial envelope correlations and scattering parameters between dipoles 1 and 2 versus their separation distance, in
a MIMO system of three elements, arranged in a ring array.

−15

−16

−17

−18

−19

−20

−21

−22

−23

−24

Electrical Conductivity (S\m)

(d
B

)

From far field with loss for uniform linear array

S21 for ring array
From far field with loss for ring array
S21 for uniform linear array

S31 for uniform linear array

103 104 105 106 107 108 109

Figure 6: The computed spatial envelope correlations and scattering parameters between dipoles 1 and 2 versus their wire electric
conductivity, in a MIMO system of three elements, arranged in a uniform linear array and in a ring array.

0.5 dB of the S21 values for the uniform linear array and ring
array, respectively.

In summary, the analysis described here, based on the
conceptual framework summarized in (16), provides a direct
and accurate forecast of spatial envelope correlations, as
compared with those obtained from the far field data in (1).

5. Conclusion

A direct calculation method has been presented for the
spatial envelope correlation between any two antennas in

a (N ,N) MIMO array using the scattering parameters and
intrinsic losses in the radiating structures. This formula
should reduce the complexity and effort involved in spa-
tial envelope correlation calculations for practical designs
especially where low envelope correlation is required. Three
examples have been presented to validate the technique. The
results have shown close agreement between this method
and the full computation using the far field pattern data.
Several practical methods exist, for example, radiometer
[20, 21], random field [22], and reverberation chamber [23],
for direct measurement of the radiation efficiency of passive
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antennas. These can be used for multiport structures and can
provide independent checks of the diagonal terms in (12).
Such practical implementations of the proposed method will
be considered further in future work.
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