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Abstract 
 

A quasi-orthogonal space time block coding (QO-STBC) scheme that exploits Hadamard matrix 

properties is studied and evaluated. At first, an analytical solution is derived as an extension of 

some earlier proposed QO-STBC scheme based on Hadamard matrices, called diagonalized 

Hadamard space-time block coding (DHSBTC). It explores the ability of Hadamard matrices 

that can translate into amplitude gains for a multi-antenna system, such as the QO-STBC 

system, to eliminate some off-diagonal (interference) terms that limit the system performance 

towards full diversity. This property is used in diagonalizing the decoding matrix of the QO-

STBC system without such interfering elements. Results obtained quite agree with the analytical 

solution and also reflect the full diversity advantage of the proposed QO-STBC system design 

scheme. Secondly, the study is extended over an interference-free QO-STBC multi-antenna 

scheme, which does not include the interfering terms in the decoding matrix. Then, following 

the Hadamard matrix property advantages, the gain obtained (for example, in 4x1 QO-STBC 

scheme) in this study showed 4-times louder amplitude (gain) than the interference-free QO-

STBC and much louder than earlier DHSTBC for which the new approach is compared with. 
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Keywords: QO-STBC, STBC, Hadamard matrix, null interference, full diversity, multiple 

antennas. 

 

1 Introduction 

 
Multiple antenna systems are useful in achieving excellent broadband technology [1]. They offer 

high communication data rate by multiplexing large input data over multiple antenna spaces. The 

signals while traversing the multipath channel environment exploit the channel paths as gains for 

some advantage. Since the fading for each transmission branch in a multi-antenna system between 

a pair of transmit and receive antennas are usually independent, the probability that the 

information is detected correctly is increased [2]. Thus, the probability that the transmit signal will 

be decoded correctly increases with the diversity order. In this case, the received signal is quite 

louder (in amplitude with respect to the diversity order) at the receiver so that better throughput 

and reliable network service is obtained.  

 

One of the commonest methods of deploying the multiple antenna system is by the use of space 

time block codes (STBC) [3]. This has been extended using Hadamard matrices [3]. Two transmit 

antenna design using STBC attains full transmission rate and full diversity [4]. However, beyond 

the two transmit antenna, STBC scheme does not achieve full transmission diversity since the 

decoding matrix is not a diagonal matrix [5,6]. Full diversity is a criterion that demonstrates the 

advantage of a space time code and must show reasonable gain at low bit error ratio (BER) values. 

It (full diversity) depends on the number of transmit antennas, the number of receive antennas and 

the rank of a temporal correlation matrix of the channel [5,7]. For multicarrier systems, the full 

diversity criterion also depends on the number of subcarriers available in the design [5,8]. 

 

Orthogonal STBC can as well be layered in a special way for more than two transmit diversity. 

This is usually discussed as the quasi-orthogonal space-time bloc codes (QO-STBC) [9-11]. QO-

STBC is used to design multiple antenna systems with more than two transmit antenna to achieve 

full transmission rate [9]. The QO-STBC of this nature does not achieve full diversity since the 

decoding matrix is not a diagonal matrix. Earlier methods for achieving full transmission diversity 

have been pursued in [5,6,12-15]. Most recently, [6] proposed the use of the Hadamard matrix in 

achieving an interference-free QO-STBC and was extended in [16] for interference-free 

processing. The method followed in that study does not attain full diversity even though the 

Hadamard matrix that permit orthogonal column codes with decoding matrix which is a diagonal 

matrix of louder amplitude was applied. In this study, a method has been proposed to modify the 

QO-STBC based on Hadamard matrix earlier proposed in [6] towards achieving full diversity by 

layering the codes in a special way. It will be found that the results obtained in this study have 

quite significant improvement as expected of full diversity advantage synchronous to the 

mathematical characteristics of the Hadamard matrix. The proposed method demonstrate that full 

diversity require that the system performance gets better at lower BER values which is absent in 

[6]. This study has been carried out for a quadrature phase shift keying (QPSK) scheme only, and 

can be extended to other mapping techniques. 

 

In Section 2, the system model used in the study is discussed while the traditional Hadamard 

approach is discussed in Section 3 with the proposed modification. The conclusion is presented in 

Section 4.  
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2 System Model 

 
In this section, the QO-STBC system model is discussed. It follows from the linear system model. 

A system that permits linear decoding must satisfy the full diversity design criterion of a multi-

antenna system, such as the QO-STBC. 

 

2.1 Channel Model 

 
Let there be (in general) L maximum receive antennas and J maximum transmit antennas (where J 

= 4). Then, the received signal at t time slot and on l-receive antenna (0 ≤ l ≤ L-1) can be 

expressed in a simplified form as: 

 

∑
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(1) 

 

where ktS ,  is the input signal, lk ,α is the path gain of the kth path and ltZ ,  is the additive white 

Gaussian noise (AWGN) with zero mean and necessarily a matrix (vector) of the form [13,17]: 

 



















−
=

*
1

2

*
2

1

,

z

z

z

z

Z lt  

 

 

 (2) 

 

The path gains are contributed by the frequency responses of the channel, H. If the channel matrix 

is H and the codeword is G, the received signal can be expressed as: 

 

=ltR , HG Z+  (3) 

 

In Equation 3, H is the frequency domain content of the channel impulse response defined as 

[18,19]: 
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The impulse response suggests k
th

-path delay (τk) as a function of time discussed, 1
,

×∈ K
lt Ch is 

the channel impulse response of the k
th

 multipath with kθ  phase with a -amplitude. If the 

transmission channel is flat, then a will be uniform for all K paths. For more than one transmit 

antenna such as TNi ∈ , each received signal by l
th

-antenna (equivalently L=1 in this study) is 

contributed by; 
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where (.)
T
 is a transposition. If H is the frequency response of the channel, the transmit signal is G, 

and there are NT-transmit antennas, then the received signal on each branch will be [20]; 

 

ltR ,  = 
TN
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G ilH , + Z ,         
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(6) 

 

For simplicity, ilH , will be replaced by vH to discuss the equivalent channel matrix, where ρ is 

the signal to noise ratio (SNR) respective to each transmission branch signal of the codeword G 

represented as [5]; 
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(7) 

 

where NT is the maximum number of transmit antenna and N is the length of the input symbols. 

Notice that G TNN
C

×∈  matrix such that TNN
C

×
is a complex vector of NT-by-N dimension; this 

is the conventional QO-STBC system. In this study (for 4 transmit antennas and 1 receiver 

antenna), Equation 7 can be expressed as: 
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(8) 

 
Equation 8 can be decomposed into G1 and G2 to permit maximum-likelihood decoding as [13]: 

 

G = G1(g1,0,g3,0) + G2(0,g2,0,g4) (9) 

 

This is because, 01221 =+ GGGG
HH

, where 
H)(⋅ is the Hermitian operator. Let the equivalent 

channel matrix be defined as: 
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Now, the decoding method can proceed as: 

 

Ĝ ⋅=⋅= v
H
v

H
v HHRH G ZH

H
v ⋅+  

(11a) 

 

Or, 

 

=Ĝ D4 +⋅G ZH
H
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(11b) 

 

where D4 is the quasi-orthogonal detection matrix for four transmit antennas and is defined as:  
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Equation 12 is the typical decoding matrix of a QO-STBC system which is not a diagonal matrix 

.λ is the diagonal of the ( 44 × )I4 matrix which is the sum of the channel power (or the path 

gains) and represented as 4,,1,
1

2
L=∀=∑

=

ih
TN

i

iλ . Also, β represents the interfering terms 

that degrade the full diversity performance expected of the 4-transmit antenna elements and is 

computed as: 42314231 hhhhhhhh
∗∗∗∗ +++=β . Thus, β will degrade the BER performance of the 

system so long as the discussed decoding approach is followed. This can be improved by using a 

more complex decoding approach such that a better estimate of the transmit symbol can be 

obtained [6, 17]. Let the effective estimate of the transmit symbols be: 
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So that, 

=G
(

G ZHHH
H
vv

H
v ⋅⋅+ −1

)(  
(13b) 

G
(

is the effective received symbol after the channel is duly compensated. The result of this 

method is shown in Fig. 1.  

 

2.2 QO-STBC System with Linear Decoding 

 
Equation 12 represents the estimate of the equivalent channel detection matrix and the interference 

terms also. In orthogonal STBC, the detection matrix, D, is always a diagonal matrix, and so 

enables a simple linear decoding [17]. This is not possible in QO-STBC since the matrix is not 

orthogonal, instead quasi-orthogonal. The detection matrix in this case is not a diagonal matrix, 
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and so would not permit linear decoding and full diversity cannot be attained. An interference-free 

QO-STBC decoding matrix (diagonal matrix) can be expressed as [6,12,17]: 
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 (14) 

 

In the next section, we follow the Hadamard matrix approach to eliminate the interference term as 

in [6].We have attempted similar approach in [16]. 

 

3 Hadamard Matrix Based QO-STBC System 

 
In this section, the conventional Hadamard QO-STBC system is discussed with the proposed 

modified Hadamard QO-STBC system. In signal processing, the Hadamard matrix can be thought 
of as being formed from the traditional orthogonal STBC codes. For instance, let the orthogonal 

codes of the channel matrix for a two transmitter system be defined as [21];  
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From Equation 15, the eigenvectors of the matrix can be given as [22]; 

 










−
=

11

11
2V  

 

 (16) 

 

The Hadamard matrices are described as matrices of 1’s and -1’s entries whose columns are 

orthogonal. It has the property that [23, 24]; 
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where In is an identity matrix for an n × n order. In terms of the channel matrix, the diagonal terms 

of Equation 15 are the channel gains. In [21], a real n × n matrix G with entries g1, –g1, g2, –g2, 

…,gN, –gN, satisfy the following property[21]; 
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Whereas a complex n × n matrix G has the form, 
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where b is a constant,  ∑= =
N
i i

g1
2λ , G

H
 is the Hermitian of the matrix G and In is the n × n 

identity matrix. 

 
In that case, Equation 17 can be discussed that the gain is amplified n-times. Since the Hadamard 

matrix is defined for rem(n,4)=0, then in this study where n=4, the gain is amplified by 4. We then 

characterize a 4 transmit element system (with one receiver) following Equation 16as; 
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Now, Equation 19 can be extended to the decoding matrix of QO-STBC systems to linearize the 

decoding matrix. However, recall that the codes that construct QO-STBC are not orthogonal, 

instead quasi-orthogonal. Only the codes that construct the orthogonal STBC are orthogonal. But 

the columns of the QO-STBC system demonstrate the orthogonal characteristics. Constructing the 

decoding matrix according to a Hadamard matrix explicitly eliminates the interfering terms so that 

exact full diversity will be achieved. The Hadamard matrix is applied in the design of a QO-STBC 

that permit linear decoding using the following eigenvectors for 4×4 matrix: 
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Equation 20 is the Hadamard matrix expected to volunteer the diagonalization property for which 

the QO-STBC design will attain full diversity. It is expected to eliminate the off-diagonal 

elements of the decoding matrix of QO-STBC system. 

 

3.1 The Diagonalized Hadamard QSTBC 

 
The diagonalized Hadamard matrix was used to propose the diagonalized Hadamard space time 

block coding (DHSTBC) in [6]. The codes are formed such as [5,6]; 
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Equation 21 is for 4 transmit antennas with entries [ ] )/(
21 ,, TT
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N Csss

×∈L where 
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is a complex vector matrix of )/( TNN NT × dimension and N is the length of the 

input symbols. 
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Recall the Hadamard matrix of order four defined in Equation 20; by combining Equation 20 and 

21: 
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which is equivalent to; 
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Equation 22 is the encoding matrix according to the Hadamard criteria that designs a QO-STBC 

code. This matrix has the property similar to Equation 15, such that; 
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This technique constructs quasi-orthogonal space time block codes such that the Hadamard 

property (S
H
S) of Equation 17 does not completely exploit the gain to achieve full diversity as in 

the interference-free QO-STBC form (i.e. Equation 14) as shown in Equation 23or in [16]. Also, 

Equation 23 is expected to be 4-times louder than Equation 14. Consequently, this method of 

constructing QO-STBC using the Hadamard matrix does not achieve full diversity. 

 

If the equivalent channel matrix of Equation 21 is constructed as; 
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Thus, the equivalent Hadamard matrix to be combined with Equation 24 will be: 
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 By combining Equations 24 and 25, the channel matrix can be constructed as; 
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Equation 26a (when expanded) is equivalent to: 
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Consequently, 



















=

4

3

2

1

4000

0400

0040

0004

.)(

β

β

β

β

Hadv
H

Hadv HH  

 

 

(27) 

Using numerical simulation, a QPSK system for 4×1 QO-STBC is used to demonstrate the 

performance of the traditional QO-STBC, the interference-free QO-STBC [6,12,17] labelled 

(Dama-QOSTBC) and the earlier proposed QO-STBC based on Hadamard matrix (DHSTBC) [6] 

in Fig. 1. Notice that Fig. 1 compares the performance of the code words in Equation 22 with both 

the interference-free and traditional QO-STBC. All results have been presented using MATLAB. 

 

In Fig. 1, it can be observed clearly that the earlier DHTSBC (depicted as old DHSTBC) 

performed similarly with interference-free QO-STBC (DamaQO-STBC) scheme at 0dB. Also, the 

DHSTBC performed up to 2dB better than the traditional QO-STBC at low bit energy to noise 

power ratio (EBN0) values. Meanwhile, beyond the low EBN0 values the inefficiency of the 

DHSTBC scheme becomes pronounced such that maximum diversity is not experienced at lower 

BER. It is a requirement that the full diversity must be as large as possible [5,20]. This (full 

diversity) dependent on the upper bound (or the rank) of a pairwise error probability statistic of 

two different codewords belong to the transmit and the corresponding received codewords [20] 

which the DHSTC scheme has not exploited.  
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Fig. 1. Comparison of traditional QO-STBC, Interference-free QO-STBC and Dama-

DHSTBC for 4 x 1 MISO System 

 

3.2 Proposed (Improved) QO-STBC 

 
In this section, the QO-STBC system that satisfies the full diversity criterion is constructed. It 

follows from the Hadamard matrix idea earlier proposed in [6] and is discussed in Section 3.1. Let 

the channel matrix be constructed as: 
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Then, let the channel matrix of order four according to the Hadamard criterion be: 
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Equation 28 can be thought of, as being orthogonal, although the internal elements can be thought 

of as being quasi-orthogonal. Also, let the equivalent Hadamard matrix be: 
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Combining Equation 29a and Equation 28b such as: 
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This is equivalent to: 
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(30b) 

 

Recall Equation 18b for complex entries of a matrix, and then by applying the Hadamard property 

of Equation 17: 
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(31) 

 

where, 42314231 hhhhhhhh
∗∗∗∗ +++=β , 4,,1,
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*
13 hhhhhhhhhhhhhhhh +−−−++−=α . Meanwhile, notice that in 

Equation 31, there are some off-diagonal terms (which are necessarily interfering terms,α) that 

may degrade the performance of the QO-STBC scheme. Since the diagonal of the decoding matrix 

(in Equation 31) already satisfied the interference-free statistic of Equation 14 although 4-times 

louder (according to the Hadamard criteria of Equation 17), the rest interfering terms can be 

nulled as follows: 

nullVQQ ⊗= 4  (32) 

 

where ⊗  is a kronecker multiplicative operator and Vnull is defined as: 
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(33) 

 

Consequently, Equation 33 will null the interfering terms so that the Hadamard multiplication 

criterion of Equation 17 is attained and fully diversity exploited. Thus, Equation 32 can be 

expressed as: 
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(34) 

 

where 4,,1,
1

2
L=∀=∑ nh

N

nλ and 
42314231 hhhhhhhh

∗∗∗∗ +++=β  

 

Notice that Equation 34 yields full diversity and is 4-times louder in amplitude compared to the 

interference-free QO-STBC which has a diagonal matrix. Also the Hadamard property of 

Equation 17 defined as (Hv)
H
Hv = nIn is well satisfied. 

 

The equivalent encoding matrix for the four transmit element can be formed as: 
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(35) 

 

For three transmit elements, the fourth antenna element is nulled in h34 such that the term h34 in 

Equation 30, becomes: 
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Using Equations 30 and 36, the three transmit element channel matrix can be formed as: 
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The equivalent encoding symbols can be easily formed by the foregoing discussion. In Fig. 2, the 

results of the traditional QO-STBC, the interference-free QO-STBC (designated as Dama QO-

STBC), the earlier DHSTBC (designated as oldDHSTBC) and the proposed QO-STBC 

(designated as new DHSTBC) are compared for four-antenna and 3-antenna elements.  

 

From the results in Fig. 3, it is noticed that even the free-interference QO-STBC in [6] well 

outperformed the old DHSTBC. However, the proposed QO-STBC outperforms the free-

interference QO-STBC circa 4-dB as suggested by the numerical equations. 
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Fig. 2. Comparison of new QO-STBC with traditional QO-STBC (4x1) 

 

 
 

Fig. 3. Comparison of new QO-STBC with traditional QO-STBC (3x1) 
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However, it can be seen that the mathematical description of the new QO-STBC is very evident 

with about 4-times louder amplitude than the interference-free QO-STBC. This demonstrates the 

full diversity advantage plus the amplitude gain volunteered by the Hadamard matrix discussed in 

this work. In comparison to the old DHSTBC, it can be seen that new DHSTBC outperformed the 

Dama-approach from 0dB EBN0. Thenceforth, the new QO-STBC (which is not limited by non-

diversity advantage exploitation) maximally outperformed the old DHSTBC up to 15dB at 10
-4

 

BER. Notice that this result is consistent in behaviour for 4x1 QO-STBC shown in Fig. 2 and 3x1 

QO-STBC also shown in Fig. 3. 

 

3. Conclusion  
 
In this paper, the Hadamard based QO-STBC has been presented. Such matrix which is widely 

used in engineering is shown to be an important matrix in this study. It was discussed as a matrix 

of 1’s and -1’s. An earlier method for using the scheme for designing QO-STBC to achieve full 

diversity has been modified. This was studied for three-transmit antenna QO-STBC and four 

transmit antenna QO-STBC systems. Following mathematical proofs, results obtained showed n-

time louder amplitude gain (n is number of transmit antennas considered) when the Hadamard 

matrix was used in designing QO-STBC than the interference elimination approach. That was a 

significant improvement compared to the conventional QO-STBC. This scheme achieves full 

diversity and as well satisfies the Hadamard matrix properties. 
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