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Abstract 
 

Distributed Discrete Event Systems (Distributed 
DES) are increasing with the development of networks. 
A major problem of these systems is the evaluation of 
their performance at the design stage. We are 
particularly interested in assessing the impact of 
computer networking protocols on the control of 
manufacturing systems. In our design methodology, 
these systems are modeled using Petri nets. In this 
context, we propose an approach to modeling network 
protocols based on Oriented Object Petri Nets. Our 
ultimate objective is to assess by means of simulations 
the performances of such a system when one 
distributes their control models on an operational 
architecture. In this study, we are implementing a 
component based approach designed to encourage 
reuse when modeling new network protocols. To 
illustrate our approach and its reuse capabilities, we 
will implement it to model the link layer protocols of 
the norms IEEE 802.11b and IEEE 802.3. 
 
1. Introduction 
 

The development of computer networks has 
enabled the emergence of new applications benefiting 
from the power and flexibility offered by the 
distribution of their functions on different computers. 
We are interested particularly in the networked control 
of manufacturing systems which are a class of 
distributed discrete event systems. These systems, 
where flexibility and reconfiguration capacities are 
essential features, are increasingly dependent on 
computer networks.  

The work presented in this paper is part of a 
broader approach on the design of distributed systems 
by the evaluation in the design phase of the impact of 
network protocols on the distribution on different 
computers of the functions of a distributed system. 

Our actual methodology for the design of the 
control of manufacturing systems is based on the use of 
Petri nets. In order to have a uniform modeling tool 
allowing making assessments by the means of 
simulations, we have also opted for the use of Object-
Oriented Petri Nets (OOPN hereafter) to model 
network protocols.  

We propose a modeling approach that answers all 
the constraints of communication protocols. More 
particularly, we address constraints such as timing and 
synchronization that are important in distributed 
discrete event systems. We also take the stochastic 
requirement into consideration for the bit rate errors 
and the transmission depending on the services. 
Another constraint is to be able to analyze the impact 
of other traffics on a specific one between two 
workstations.  

The main difficulties of the modeling phase of a 
system are generally due to its size and the precision of 
the model one wants to obtain. One of the methods to 
overcome such problem is the use of generic and 
modular modeling which consists of dividing the 
model into small reusable components and to deal with 
them separately. As an example, several LAN 
protocols own same features such as the backoff 
mechanism for medium access. Our approach proposes 
in addition generic reusable components for features 
such as backoff. 

The paper is organized as it follows. Section 2 
gives a mathematical definition of Object-Oriented 
Petri Nets. In Section 3, we focus on the modular 
modeling. Section 4 presents a component-based 
approach with goal to develop a library of reusable 
components based on Petri Nets formalism. In this 
section, the reusability of our components is illustrated 
by two examples: IEEE 802.11b DCF and Ethernet. In 
Section 5, we use simulation to prove the correctness 
of our models. 
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2. Object-Oriented Petri Nets 
 

Petri nets have been proposed by C. A. Petri in 
1962 [1, 2]. Petri nets are a powerful modeling 
formalism in computer science, system engineering 
and many other disciplines. They are used to study and 
describe different types of systems: distributed, 
parallel, and stochastic; mainly discrete event systems.  

An Object-Oriented Petri Net [3, 4] OOPN can be 
considered as a special kind of high level Petri nets 
which allow representing and manipulating objects. In 
OOPN, tokens are considered as tuples of instances of 
object classes which are defined as lists of attributes. It 
can represent all parts of complex systems, increasing 
the flexibility of the model. It is a collection of 
elements comprising constants, variables, net elements, 
class elements… 

Based on high level object oriented programming 
language, an OOPN system is composed of mutually 
communicating physical objects and their 
interconnection relations. From the mathematical point 
of view an OOPN is defined as: N = (O, W) where: 
• O is a set of physical objects in the system, {Oi, i= 

1, 2,…, I} (I = the total number of physical objects 
in the system). 

• W is a set of message passing relations among 
distinct objects in the system {Wi,j, i, j = 1, 2, . . . , 
I; i ≠ j}. W is defined as: Wi,j= (OPi, GTi,j, IPj) 
where: GTi,j is a special transition called gate 
transition. 
A physical object can be defined as Oi= (Pi, Ti, IPi, 

OPi, IAi, OAi, Mi, Σi, Gi, Λi, Ei) where: 
• Pi is a set of state places in Oi, P={p1, p2, …, pm}, 
• Ti is a set of active object transitions in Oi, T={t1, 

t2, …, tn}, 
• IPi is a set of input message places, 
• OPi is a set output message places, 
• IAi is a set of the input transition arcs, 
• OAi is a set of the output transition arcs, 
• Mi is the input and output relationships between 

active transitions and state/message places for the 
physical object Oi.  
M⊆(P×T) (T×P) (IP×T) (T×IP) (OP×T) (T×
OP), 

• Σi is a finite set of non-empty color sets in Oi, 
• Λi is a color function in Oi, Λ: P, OP, IP → Σ, 
• Gi is a guard function in Oi, G: T → Boolean 

expression, where:  
∀t∈T: [Type(G(t)) = Bexp ∧ Type (Var(G(t))) ⊆Σ] 

• Ei is an arc expression function in Oi, E: IA, OA 
→ E(a), where:  
∀a∈A:[Type(E(a))=Λ(p(a))∧Type(Var(E(a)))⊆Σ], 
(A is the input and output transition arcs)  
p(a) is the place of arc a. 

• Ii is an initialization function in Oi, I: P → a closed 
expression I(p) (without variables) where: 
∀p∈P: [ Type (I(p)) = Λ(p)] 
An OOPN is taking into account all the aspects of 

network protocols (frame identification, temporal 
expressions, stochastic behavior …). 

 
3. Modular Component-Based Modeling 
 

A modular model [5] is made of independent 
elements viewed as black boxes connected together. 
The modification, adding or removing of an element in 
a model can be done easily. This composite structure 
can be found at different abstraction levels: a black box 
itself can be made of smaller blocks. This gives the 
possibility to treat its components in a separate stage. 
In addition, the use of small pieces helps in upgrading 
the model.  

Another advantage, with blocks working alone, is 
the opportunity to reuse them to reduce the overall 
cost. Blocks libraries can be developed specifically to 
handle communication networks.  
 
3.1 Modeling Communication Protocols 

 
Since we use Petri nets (PN) to model the different 

component behaviours, the inputs of a module are 
places and the outputs are modeled by transitions. This 
choice is coherent with the traditional way to model 
asynchronous communication between processes 
modeled by Petri Nets. A producer module fires an 
output transition to put tokens in the input places of 
consumer modules. The workstation detects signals 
and checks channel changes 

The modeling process is helpful in studying the 
performance analyses of communication protocols. 
However, this modeling process can also be used in a 
design stage to check the correctness of a protocol. In 
both cases, it is important that the model allows static 
and dynamic checking. Static checkings are for 
example analyses of PN properties such as boundness, 
liveness and non-blocking. By dynamic checking one 
wants to mean the capacity to simulate the model.  So, 
modeling the architecture of protocols for discrete 
event systems will help to verify the quantitative and 
qualitative properties of these systems.  

 
3.2 Connectors between Modules 

 
In our approach, the input and output gates of a 

module are respectively modeled by places and 
transitions and connected by arcs. The connection 
between transitions and input places between two 
blocks can be 1-to-many, many-to-1 or 1-to-1. As an 
example, figure 3.1 shows a many-to-1 and a 1-to-
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many connections. A many-to-1connection is used to 
connect workstations output transitions to a medium 
input place since workstations put their data on the 
medium only. A 1-to-many connection is used to 
connect the medium output transitions to workstations 
input places, since all the workstations can see the 
signals propagating on the medium.   

 

 
Figure 3.1, Many-to-1 and 1-to-many connection  

 
This approach is very useful to deal with the 

complexity due to the size of a system. Indeed, if one 
has already a model of some stations connected on a 
bus and one wants to increase the size of its model,   
the connection of new workstations can be done easily 
just by adding an arc between the output transition of 
the bus model and the input place of the station model. 
Conversely, if the transitions are used as input gates 
and places as output gates, the addition of new 
workstation would need to add a new token in the 
output place.  

As an example to model IEEE 802.11 protocol, 
one can consider two modules: workstation based 
module and medium based module. Figure 3.2 shows 
the inputs/outputs of workstation and medium 
modules. The workstation module is with one output 
transition “Send”, and three input places “Receive”, 
“Busy” and “Idle”. These gates represent the signals 
that a workstation can send or receive. 

 

 
Figure 3.2, Workstation and Medium Modules 

 
The medium module is with one input place 

“Receive”, and three output transitions “Send”, “Busy” 
and “Idle”. As we can see, these gates are the same as 
the gates on the workstation module with respect to 
directions. 

 
4. Component-Based Application Models 

 
In the rest of this paper, we will illustrate our 

modeling method through the examples of IEEE 
802.11 MAC protocol [6] and Ethernet IEEE 802.3 

MAC protocol. 802.11 protocol is a wireless MAC 
protocol, IEEE standard, for Wireless Local Area 
Network WLAN. It is widely used in the wireless 
mobile internet. In 802.11, there are two mechanisms 
to access the medium in a fair way. The basic 
mechanism is the Distributed Coordination Function 
DCF [7]. It is a random access technique based on the 
carrier sense multiple accesses with collision 
avoidance (CSMA/CA) mechanism. The second 
mechanism to access the medium in 802.11 is the Point 
Coordination Function PCF [8] or Priority-based 
access which is a centralized MAC protocol. 

 
4.1 Channel Check 
 

When a workstation wants to transmit over 
CSMA/CA, it must first sense if the channel is idle for 
more than a period of time called Distributed Inter-
Frame Space DIFS. If so, it starts a random backoff. 
During the backoff time, it continues sensing the 
channel. If the channel stays free during the backoff, it 
can send its packet. However, if the channel becomes 
busy, it stops decrementing the backoff, but it keeps its 
remaining value (CA). Then, it repeats the first step. 
The remaining value of the backoff is decremented. 
Figure 4.1 shows the access method to the channel. 
 

 
Figure 4.1, DCF access to channel 

 
Figure 4.2 shows the channel check component. 

The dark places and transitions represent the interfaces 
of this module, the hashed ones represent the reused 
places and transitions to build this component and the 
white ones represent the connected parts from other 
components. Initially the channel is free. This is 
represented by the presence of a token in place “Idle”. 

 

 
Figure 4.2, Channel Check 
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If the workstation wants to transmit data, a token 
is put in place “Data send”. If after 50µs the channel 
stays idle (the notation @50 means that the token in 
place “Idle” must stay for 50 units of time after putting 
a token in place “Data send” before transition TF can 
fire), transition TF can be fired and the workstation can 
start its random backoff.  

If the channel status is changed (a token is put in 
place “Busy”), the workstation can be in three cases: 
(i) it is during the DIFS waiting period, then T2 is 
fired, (ii) it is during the backoff period, then T3 is 
fired, (iii) it has no data or it is the transmitter to send 
then T1. In any case, the channel status becomes idle. 

 
4.2 Contention Window 

 
The value of the backoff depends on the 

contention window CW value. The workstation picks a 
number between zero and CW. The picked value is 
multiplied by the slot time to have backoff value. To 
decrement the backoff, the workstation continues 
checking the channel and each time the channel is free 
for a time slot, it decrements one of the picked value. 
However, if a collision occurs (detected by using a 
watchdog technique associated with the receipt of an 
ACK sent back by the recipient workstation) the value 
of CW is doubled. The minimum value of CW or 
CWmin equals to 16 and the maximum value or 
CWmax equals to 1024. Once a successful reception, 
the value of CW return to CWmin.  
 

 
Figure 4.3, Backoff Decrementation with OOPN 

 
Figure 4.3 proposes an OOPN modeling of the 

backoff mechanism. At the beginning, the token in 
place N (number of transmissions) is initialized to 1. 
The value of N is multiplied by 16 to determine the 
value of CWnew. The normally distributed function 
Math.random() is used to pick a random value between 
0 and 15 (16 is not included, and the function “int” 
returns an integer value between 0 and n*16). The 
transition T6 has a guard that must be true to be 
enabled: the value of n must be greater than zero (the 
value of n is decremented each slot time when the 
channel is always idle). Once n equals to zero which is 
a condition on the arc, T12 is enabled.  

Transitions T20 and T21 are used as a watchdog 
for the retransmission. So, if the maximum value of 
CW is reached then the packet cannot be retransmitted, 
and hence T21 is fired. Otherwise T20 is fired. After a 
successful transmission the counter N is reset to zero 
by firing transition “OK”. 

 
4.3 Receiving Data and Sending ACK 

 
Once the workstation sends its packet, it waits for 

a time equals to SIFS and checks if it receives an 
acknowledgement or not. If it does not receive an 
acknowledgement after SIFS (10μs in 802.11b), it 
doubles the backoff and restarts the transmission 
process.  

Figure 4.4 shows the receiving process. The 
workstation has one receive link, so it receives both 
ACK and data packets. It checks first if the packet 
belongs to it or not. The guard condition associated 
with transition T15 checks if the received frame is for 
the considered workstation. Next the guard condition 
of transition T10 checks if the received packet is an 
ACK. If it is not an ACK frame, then the T11 is fired. 
Hence, T10 and T11 are never in conflict and T10 is 
not fireable if the workstation is not the transmitter 
because a token must be put in place “wait” since the 
firing of T12. 
 

 
Figure 4.4, Receiving Data and Sending ACK 

 
The transition T13 models a watchdog mechanism 

to check if the ACK is not received after a period 
depending on the length of the sent frame. L+11 
represents the time needed to transmit the data frame 
plus a waiting time greater than SIFS. As in an OOPN, 
the token belongs to an object class, one can define as 
many n-tuple based on the token attributes. As an 
example, the arc between place “Transmission” and 
transition T12 is labeled by [S, D, data, L]. This n-
tuple is useful to characterize the source address of the 
frame (attribute S), the address of the receiver (D), the 
data of the frame and also the transmission time of the 
frame that is equivalent to its length L. From figures 
4.3 and 4.4, one can see that OOPN have a modeling 
power comparable with temporal, stochastic and 
colored Petri nets. 
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4.4 Component Composite Approach 
 
Figure 4.5 shows a detailed OOPN of a wireless 

workstation, modeled with “Renew 2.1” [9]. All 
workstations have potentially a bandwidth of 11 Mbps 
(Without considering the bandwidth attenuation which 
depends on the distance between the two stations). 
However, distance attenuation or bandwidth drop can 
be modeled since we use a dynamic function to 
represent the packet transmission as a function of time. 

 

 
Figure 4.5, A detailed OOPN of a Wireless Workstation 

 
The hashed blocks represent the reused 

components. The white places and transitions are used 
to complete the connections between these components 
to build the composite. While the black places and 
transitions represent the interfaces of the composite 
(seen as black-box).  
 

 
Figure 4.6, A detailed OOPN of an Ethernet Workstation 

One of the benefits that one can get from 
modularity is the ability to reuse some components 
from previous models. If we take the Ethernet 802.3 
protocol [10], the channel check, the reception of 
packets or the backoff processes are nearly the same 
(we just need to modify some values but not the 
structure of the components). This means that we can 
build a library of components that can be used in many 
other systems and save cost of modeling.  

Figure 4.6 shows an Ethernet workstation module. 
As one can see, there are some differences between 
both modules that transition T16 is not connected to 
place “Send” since no acknowledgment is send over 
Ethernet network. Also place “IC” is not used since no 
channel check is needed in Ethernet. The parameters 
on the arcs are also not the same since they depend on 
the systems itself. 
 
5. Simulation and Results Comparisons 

 
To evaluate the quality and accuracy of our model, 

let us compare the obtained performances with data 
given by other studies about IEEE 802.11b network 
[12, 13] and also the results of NS-2 simulation 
performed in the same conditions. Our simulations are 
based on full-mesh dense networks with different 
numbers of workstations. The simulation can be 
performed step by step or continuously. 

 Each simulation assumes that all nodes transmit at 
11Mbps and all nodes try to send data as soon as 
possible. Each host has 1000 packets with average 
length of 1150 bytes. Both simulations are achieved on 
Intel® Core™ 2 Duo Processor T2300. 

 

 
Figure 5.1, Collisions rate percentage 

 

 
Figure 5.2, Time needed to transmit a packet in msec 
 
Figure 5.1 shows how the collision rate increases 

when the number of workstations increases, while 
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figure 5.2 shows the time needed to transmit one 
packet depending on the number of nodes on the 
network. The transmission time increases linearly due 
to the number of sent packets on the network. 

Table 5.1 shows the collision rate the bandwidth 
per node and the total effective bandwidth. The last 
one is decreasing due to the collision rate increment. 
 
Table 5.1, Collision rate, Total Bandwidth and Time / Packet 

No of 
Nodes 

Collision 
rate 

BW/
Node 
Mbps 

Time/ 
Packet 

ms  

Total 
effective 

BW 
3 7,95% 2.76  3.541  8,29 Mbps 
4 10,34% 2,06  4.694  8,25 Mbps 
8 18,70% 0,92  10.15  7,34 Mbps 
12 23,18% 0,58  15.52  6,97 Mbps 
 
Figure 5.3 shows the throughput of 802.11b nodes 

sharing a bandwidth of 11Mbps. As we can see, the 
values are nearly the same with our approach and with 
NS-2 based simulations. This result confirms the 
correctness of our model.   

 

 
Figure 5.3, Bit Rate Variation with Number of Nodes 

 
As one can see in figure 5.4, the simulation time 

increases in a linear way when the number of nodes is 
increased. If one returns to figure 5.2, one can see the 
confirmation of these results.  
 

 
Figure 5.4, Simulation Time verses number of nodes 

 
6. Conclusion 

 
A component-based modular approach based on 

OOPN allows modeling in the same formalism 
network protocol and the services of a DES distributed 
application. As an example, we have chosen wireless 

protocol IEEE 802.11b and Ethernet 802.3. With 
means of simulation to evaluate our model, NS-2 and a 
comparison with existing measurements, we proved the 
correctness of our technique and the nearly exact 
results that we have obtained from the analysis. We 
have also examined the reusing of generic components 
which reduces the time and the cost needed to build 
new models. 

In the future, we want to propose a complete 
modeling framework that covers also services and 
applications. This will allow a designer building a 
model depending on the user specifications, and just by 
selecting the most appropriate basic models in given 
libraries. 
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