
A Component Modular Modeling Approach based on Object Oriented Petri
Nets for the Performance Analysis of Distributed Discrete Event Systems

Aladdin Masri Thomas Bourdeaud’huy Armand Toguyeni
LAGIS – CNRS UMR 8146

Ecole Centrale de Lille
59651 Villeneuve d’ASCQ, France

{aladdin.masri, thomas.bourdeaud_huy, armand.toguyeni@ec-lille.fr}

Abstract

Distributed Discrete Event Systems (Distributed
DES) are increasing with the development of networks.
A major problem of these systems is the evaluation of
their performance at the design stage. We are
particularly interested in assessing the impact of
computer networking protocols on the control of
manufacturing systems. In our design methodology,
these systems are modeled using Petri nets. In this
context, we propose an approach to modeling network
protocols based on Oriented Object Petri Nets. Our
ultimate objective is to assess by means of simulations
the performances of such a system when one
distributes their control models on an operational
architecture. In this study, we are implementing a
component based approach designed to encourage
reuse when modeling new network protocols. To
illustrate our approach and its reuse capabilities, we
will implement it to model the link layer protocols of
the norms IEEE 802.11b and IEEE 802.3.

1. Introduction

The development of computer networks has
enabled the emergence of new applications benefiting
from the power and flexibility offered by the
distribution of their functions on different computers.
We are interested particularly in the networked control
of manufacturing systems which are a class of
distributed discrete event systems. These systems,
where flexibility and reconfiguration capacities are
essential features, are increasingly dependent on
computer networks.

The work presented in this paper is part of a
broader approach on the design of distributed systems
by the evaluation in the design phase of the impact of
network protocols on the distribution on different
computers of the functions of a distributed system.

Our actual methodology for the design of the
control of manufacturing systems is based on the use of
Petri nets. In order to have a uniform modeling tool
allowing making assessments by the means of
simulations, we have also opted for the use of Object-
Oriented Petri Nets (OOPN hereafter) to model
network protocols.

We propose a modeling approach that answers all
the constraints of communication protocols. More
particularly, we address constraints such as timing and
synchronization that are important in distributed
discrete event systems. We also take the stochastic
requirement into consideration for the bit rate errors
and the transmission depending on the services.
Another constraint is to be able to analyze the impact
of other traffics on a specific one between two
workstations.

The main difficulties of the modeling phase of a
system are generally due to its size and the precision of
the model one wants to obtain. One of the methods to
overcome such problem is the use of generic and
modular modeling which consists of dividing the
model into small reusable components and to deal with
them separately. As an example, several LAN
protocols own same features such as the backoff
mechanism for medium access. Our approach proposes
in addition generic reusable components for features
such as backoff.

The paper is organized as it follows. Section 2
gives a mathematical definition of Object-Oriented
Petri Nets. In Section 3, we focus on the modular
modeling. Section 4 presents a component-based
approach with goal to develop a library of reusable
components based on Petri Nets formalism. In this
section, the reusability of our components is illustrated
by two examples: IEEE 802.11b DCF and Ethernet. In
Section 5, we use simulation to prove the correctness
of our models.

2009 Fifth International Conference on Networking and Services

978-0-7695-3586-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNS.2009.101

227

2009 Fifth International Conference on Networking and Services

978-0-7695-3586-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNS.2009.101

222

2. Object-Oriented Petri Nets

Petri nets have been proposed by C. A. Petri in
1962 [1, 2]. Petri nets are a powerful modeling
formalism in computer science, system engineering
and many other disciplines. They are used to study and
describe different types of systems: distributed,
parallel, and stochastic; mainly discrete event systems.

An Object-Oriented Petri Net [3, 4] OOPN can be
considered as a special kind of high level Petri nets
which allow representing and manipulating objects. In
OOPN, tokens are considered as tuples of instances of
object classes which are defined as lists of attributes. It
can represent all parts of complex systems, increasing
the flexibility of the model. It is a collection of
elements comprising constants, variables, net elements,
class elements…

Based on high level object oriented programming
language, an OOPN system is composed of mutually
communicating physical objects and their
interconnection relations. From the mathematical point
of view an OOPN is defined as: N = (O, W) where:
• O is a set of physical objects in the system, {Oi, i=

1, 2,…, I} (I = the total number of physical objects
in the system).

• W is a set of message passing relations among
distinct objects in the system {Wi,j, i, j = 1, 2, . . . ,
I; i ≠ j}. W is defined as: Wi,j= (OPi, GTi,j, IPj)
where: GTi,j is a special transition called gate
transition.
A physical object can be defined as Oi= (Pi, Ti, IPi,

OPi, IAi, OAi, Mi, Σi, Gi, Λi, Ei) where:
• Pi is a set of state places in Oi, P={p1, p2, …, pm},
• Ti is a set of active object transitions in Oi, T={t1,

t2, …, tn},
• IPi is a set of input message places,
• OPi is a set output message places,
• IAi is a set of the input transition arcs,
• OAi is a set of the output transition arcs,
• Mi is the input and output relationships between

active transitions and state/message places for the
physical object Oi.
M⊆(P×T) (T×P) (IP×T) (T×IP) (OP×T) (T×
OP),

• Σi is a finite set of non-empty color sets in Oi,
• Λi is a color function in Oi, Λ: P, OP, IP → Σ,
• Gi is a guard function in Oi, G: T → Boolean

expression, where:
∀t∈T: [Type(G(t)) = Bexp ∧ Type (Var(G(t))) ⊆Σ]

• Ei is an arc expression function in Oi, E: IA, OA
→ E(a), where:
∀a∈A:[Type(E(a))=Λ(p(a))∧Type(Var(E(a)))⊆Σ],
(A is the input and output transition arcs)
p(a) is the place of arc a.

• Ii is an initialization function in Oi, I: P → a closed
expression I(p) (without variables) where:
∀p∈P: [Type (I(p)) = Λ(p)]
An OOPN is taking into account all the aspects of

network protocols (frame identification, temporal
expressions, stochastic behavior …).

3. Modular Component-Based Modeling

A modular model [5] is made of independent
elements viewed as black boxes connected together.
The modification, adding or removing of an element in
a model can be done easily. This composite structure
can be found at different abstraction levels: a black box
itself can be made of smaller blocks. This gives the
possibility to treat its components in a separate stage.
In addition, the use of small pieces helps in upgrading
the model.

Another advantage, with blocks working alone, is
the opportunity to reuse them to reduce the overall
cost. Blocks libraries can be developed specifically to
handle communication networks.

3.1 Modeling Communication Protocols

Since we use Petri nets (PN) to model the different

component behaviours, the inputs of a module are
places and the outputs are modeled by transitions. This
choice is coherent with the traditional way to model
asynchronous communication between processes
modeled by Petri Nets. A producer module fires an
output transition to put tokens in the input places of
consumer modules. The workstation detects signals
and checks channel changes

The modeling process is helpful in studying the
performance analyses of communication protocols.
However, this modeling process can also be used in a
design stage to check the correctness of a protocol. In
both cases, it is important that the model allows static
and dynamic checking. Static checkings are for
example analyses of PN properties such as boundness,
liveness and non-blocking. By dynamic checking one
wants to mean the capacity to simulate the model. So,
modeling the architecture of protocols for discrete
event systems will help to verify the quantitative and
qualitative properties of these systems.

3.2 Connectors between Modules

In our approach, the input and output gates of a

module are respectively modeled by places and
transitions and connected by arcs. The connection
between transitions and input places between two
blocks can be 1-to-many, many-to-1 or 1-to-1. As an
example, figure 3.1 shows a many-to-1 and a 1-to-

228223

many connections. A many-to-1connection is used to
connect workstations output transitions to a medium
input place since workstations put their data on the
medium only. A 1-to-many connection is used to
connect the medium output transitions to workstations
input places, since all the workstations can see the
signals propagating on the medium.

Figure 3.1, Many-to-1 and 1-to-many connection

This approach is very useful to deal with the

complexity due to the size of a system. Indeed, if one
has already a model of some stations connected on a
bus and one wants to increase the size of its model,
the connection of new workstations can be done easily
just by adding an arc between the output transition of
the bus model and the input place of the station model.
Conversely, if the transitions are used as input gates
and places as output gates, the addition of new
workstation would need to add a new token in the
output place.

As an example to model IEEE 802.11 protocol,
one can consider two modules: workstation based
module and medium based module. Figure 3.2 shows
the inputs/outputs of workstation and medium
modules. The workstation module is with one output
transition “Send”, and three input places “Receive”,
“Busy” and “Idle”. These gates represent the signals
that a workstation can send or receive.

Figure 3.2, Workstation and Medium Modules

The medium module is with one input place

“Receive”, and three output transitions “Send”, “Busy”
and “Idle”. As we can see, these gates are the same as
the gates on the workstation module with respect to
directions.

4. Component-Based Application Models

In the rest of this paper, we will illustrate our

modeling method through the examples of IEEE
802.11 MAC protocol [6] and Ethernet IEEE 802.3

MAC protocol. 802.11 protocol is a wireless MAC
protocol, IEEE standard, for Wireless Local Area
Network WLAN. It is widely used in the wireless
mobile internet. In 802.11, there are two mechanisms
to access the medium in a fair way. The basic
mechanism is the Distributed Coordination Function
DCF [7]. It is a random access technique based on the
carrier sense multiple accesses with collision
avoidance (CSMA/CA) mechanism. The second
mechanism to access the medium in 802.11 is the Point
Coordination Function PCF [8] or Priority-based
access which is a centralized MAC protocol.

4.1 Channel Check

When a workstation wants to transmit over
CSMA/CA, it must first sense if the channel is idle for
more than a period of time called Distributed Inter-
Frame Space DIFS. If so, it starts a random backoff.
During the backoff time, it continues sensing the
channel. If the channel stays free during the backoff, it
can send its packet. However, if the channel becomes
busy, it stops decrementing the backoff, but it keeps its
remaining value (CA). Then, it repeats the first step.
The remaining value of the backoff is decremented.
Figure 4.1 shows the access method to the channel.

Figure 4.1, DCF access to channel

Figure 4.2 shows the channel check component.

The dark places and transitions represent the interfaces
of this module, the hashed ones represent the reused
places and transitions to build this component and the
white ones represent the connected parts from other
components. Initially the channel is free. This is
represented by the presence of a token in place “Idle”.

Figure 4.2, Channel Check

229224

If the workstation wants to transmit data, a token
is put in place “Data send”. If after 50µs the channel
stays idle (the notation @50 means that the token in
place “Idle” must stay for 50 units of time after putting
a token in place “Data send” before transition TF can
fire), transition TF can be fired and the workstation can
start its random backoff.

If the channel status is changed (a token is put in
place “Busy”), the workstation can be in three cases:
(i) it is during the DIFS waiting period, then T2 is
fired, (ii) it is during the backoff period, then T3 is
fired, (iii) it has no data or it is the transmitter to send
then T1. In any case, the channel status becomes idle.

4.2 Contention Window

The value of the backoff depends on the

contention window CW value. The workstation picks a
number between zero and CW. The picked value is
multiplied by the slot time to have backoff value. To
decrement the backoff, the workstation continues
checking the channel and each time the channel is free
for a time slot, it decrements one of the picked value.
However, if a collision occurs (detected by using a
watchdog technique associated with the receipt of an
ACK sent back by the recipient workstation) the value
of CW is doubled. The minimum value of CW or
CWmin equals to 16 and the maximum value or
CWmax equals to 1024. Once a successful reception,
the value of CW return to CWmin.

Figure 4.3, Backoff Decrementation with OOPN

Figure 4.3 proposes an OOPN modeling of the

backoff mechanism. At the beginning, the token in
place N (number of transmissions) is initialized to 1.
The value of N is multiplied by 16 to determine the
value of CWnew. The normally distributed function
Math.random() is used to pick a random value between
0 and 15 (16 is not included, and the function “int”
returns an integer value between 0 and n*16). The
transition T6 has a guard that must be true to be
enabled: the value of n must be greater than zero (the
value of n is decremented each slot time when the
channel is always idle). Once n equals to zero which is
a condition on the arc, T12 is enabled.

Transitions T20 and T21 are used as a watchdog
for the retransmission. So, if the maximum value of
CW is reached then the packet cannot be retransmitted,
and hence T21 is fired. Otherwise T20 is fired. After a
successful transmission the counter N is reset to zero
by firing transition “OK”.

4.3 Receiving Data and Sending ACK

Once the workstation sends its packet, it waits for

a time equals to SIFS and checks if it receives an
acknowledgement or not. If it does not receive an
acknowledgement after SIFS (10μs in 802.11b), it
doubles the backoff and restarts the transmission
process.

Figure 4.4 shows the receiving process. The
workstation has one receive link, so it receives both
ACK and data packets. It checks first if the packet
belongs to it or not. The guard condition associated
with transition T15 checks if the received frame is for
the considered workstation. Next the guard condition
of transition T10 checks if the received packet is an
ACK. If it is not an ACK frame, then the T11 is fired.
Hence, T10 and T11 are never in conflict and T10 is
not fireable if the workstation is not the transmitter
because a token must be put in place “wait” since the
firing of T12.

Figure 4.4, Receiving Data and Sending ACK

The transition T13 models a watchdog mechanism

to check if the ACK is not received after a period
depending on the length of the sent frame. L+11
represents the time needed to transmit the data frame
plus a waiting time greater than SIFS. As in an OOPN,
the token belongs to an object class, one can define as
many n-tuple based on the token attributes. As an
example, the arc between place “Transmission” and
transition T12 is labeled by [S, D, data, L]. This n-
tuple is useful to characterize the source address of the
frame (attribute S), the address of the receiver (D), the
data of the frame and also the transmission time of the
frame that is equivalent to its length L. From figures
4.3 and 4.4, one can see that OOPN have a modeling
power comparable with temporal, stochastic and
colored Petri nets.

230225

4.4 Component Composite Approach

Figure 4.5 shows a detailed OOPN of a wireless

workstation, modeled with “Renew 2.1” [9]. All
workstations have potentially a bandwidth of 11 Mbps
(Without considering the bandwidth attenuation which
depends on the distance between the two stations).
However, distance attenuation or bandwidth drop can
be modeled since we use a dynamic function to
represent the packet transmission as a function of time.

Figure 4.5, A detailed OOPN of a Wireless Workstation

The hashed blocks represent the reused

components. The white places and transitions are used
to complete the connections between these components
to build the composite. While the black places and
transitions represent the interfaces of the composite
(seen as black-box).

Figure 4.6, A detailed OOPN of an Ethernet Workstation

One of the benefits that one can get from
modularity is the ability to reuse some components
from previous models. If we take the Ethernet 802.3
protocol [10], the channel check, the reception of
packets or the backoff processes are nearly the same
(we just need to modify some values but not the
structure of the components). This means that we can
build a library of components that can be used in many
other systems and save cost of modeling.

Figure 4.6 shows an Ethernet workstation module.
As one can see, there are some differences between
both modules that transition T16 is not connected to
place “Send” since no acknowledgment is send over
Ethernet network. Also place “IC” is not used since no
channel check is needed in Ethernet. The parameters
on the arcs are also not the same since they depend on
the systems itself.

5. Simulation and Results Comparisons

To evaluate the quality and accuracy of our model,

let us compare the obtained performances with data
given by other studies about IEEE 802.11b network
[12, 13] and also the results of NS-2 simulation
performed in the same conditions. Our simulations are
based on full-mesh dense networks with different
numbers of workstations. The simulation can be
performed step by step or continuously.

 Each simulation assumes that all nodes transmit at
11Mbps and all nodes try to send data as soon as
possible. Each host has 1000 packets with average
length of 1150 bytes. Both simulations are achieved on
Intel® Core™ 2 Duo Processor T2300.

Figure 5.1, Collisions rate percentage

Figure 5.2, Time needed to transmit a packet in msec

Figure 5.1 shows how the collision rate increases

when the number of workstations increases, while

5%

10%

15%

20%

25%

0 2 4 6 8 10 12

No of Nodes

Collision rate

0

4

8

12

16

0 2 4 6 8 10 12

msec

No of Nodes

TransTime/Packet

231226

figure 5.2 shows the time needed to transmit one
packet depending on the number of nodes on the
network. The transmission time increases linearly due
to the number of sent packets on the network.

Table 5.1 shows the collision rate the bandwidth
per node and the total effective bandwidth. The last
one is decreasing due to the collision rate increment.

Table 5.1, Collision rate, Total Bandwidth and Time / Packet

No of
Nodes

Collision
rate

BW/
Node
Mbps

Time/
Packet

ms

Total
effective

BW
3 7,95% 2.76 3.541 8,29 Mbps
4 10,34% 2,06 4.694 8,25 Mbps
8 18,70% 0,92 10.15 7,34 Mbps
12 23,18% 0,58 15.52 6,97 Mbps

Figure 5.3 shows the throughput of 802.11b nodes

sharing a bandwidth of 11Mbps. As we can see, the
values are nearly the same with our approach and with
NS-2 based simulations. This result confirms the
correctness of our model.

Figure 5.3, Bit Rate Variation with Number of Nodes

As one can see in figure 5.4, the simulation time

increases in a linear way when the number of nodes is
increased. If one returns to figure 5.2, one can see the
confirmation of these results.

Figure 5.4, Simulation Time verses number of nodes

6. Conclusion

A component-based modular approach based on

OOPN allows modeling in the same formalism
network protocol and the services of a DES distributed
application. As an example, we have chosen wireless

protocol IEEE 802.11b and Ethernet 802.3. With
means of simulation to evaluate our model, NS-2 and a
comparison with existing measurements, we proved the
correctness of our technique and the nearly exact
results that we have obtained from the analysis. We
have also examined the reusing of generic components
which reduces the time and the cost needed to build
new models.

In the future, we want to propose a complete
modeling framework that covers also services and
applications. This will allow a designer building a
model depending on the user specifications, and just by
selecting the most appropriate basic models in given
libraries.

7. References

[1] T. Murata. “Petri nets: Properties, Analysis and

Applications.” Proc. of the IEEE, 77(4), 1989.
[2] C. Law, B. Gwee, J. Chang “Fast and memory-

efficient invariant computation of ordinary Petri
nets.” IET Computers and Digital Techniques,
VOL 1(5), 2007.

[3] C. Lakos. “From Coloured Petri Nets to Object
Petri Nets.” Lecture Notes in Computer Science,
VOL 935, PATPN, 1995.

[4] Z. YU, Y. CAI. “Object-Oriented Petri nets Based
Architecture Description Language for Multi-
agent Systems”, IJCSNS, VOL 6(1), 2006.

[5] C. Potts, "A Generic Model for Representing
Design Methods.." 11th International Conference
on Software Engineering, 1989.

[6] IEEE Computer Society. “Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications.” IEEE Std. 802.11™-2007.

[7] G. Bianchi. “Performance Analysis of the IEEE
802.11 Distributed Coordination Function.” IEEE
Journal on Selected Areas in Communications,
Vol. 18, No. 3, March 2000.

[8] T. Suzuki, S. Tasaka. “Performance evaluation of
priority-based multimedia transmission with the
PCF in an IEEE 802.11 standard wireless LAN.”
IEEE PIMRC 2007.

[9] http://www.renew.de/
[10] IEEE Std 802.3™ “Carrier sense multiple access

with collision detection (CSMA/CD) access
method and physical layer specifications.” 2002.

[11] http://www.isi.edu/nsnam/ns/index.html
[12] G. Anastasi, E. Borgia, M. Conti, E. Gregori.

“IEEE 802.11b Ad Hoc Networks: Performance
Measurements.” Cluster Computing VOL 8, 2005.

[13] M. Heusse, F. Rousseau, G. Berger-Sabbatel, A.
Duda. “Performance anomaly of 802.11 b.”
INFOCOM, 2003.

-2.66E-1

0.6

1.2

1.8

2.4

3

0 2 4 6 8 10 12 14

Mbps

No of Nodes

BW/node

OOPN
NS-2

0

5

10

15

20

25

0 2 4 6 8 10 12 14

No of Nodes

232227

