An-Najah National University Faculty of Science-Department of Physics Quantum mechanics 22453 Spring 2014 Second Exam, Nov 16th 2014

3. (6 points) Consider a one-dimensional simple harmonic oscillator whose classical angular frequency is ω_0 . For t < 0 it is known to be in the ground state. For t > 0 there is also a time-dependent force $F(t) = F_0x\cos(wt)$, where F_0 is constant in both space and time. Obtain an expression for the expectation value < x > as a function of time using time-dependent perturbation theory to the second non-vanishing order. [You may use < $m|x|n > = \sqrt{\frac{\hbar}{2m\omega_0}}(\sqrt{n+1}\delta_{m,n+l} + \sqrt{n}\delta_{m,n-l})$]

4. (4 points) If an electron at state n=5, l-0, m=0, show how it will decay to state n=1

Question:	1	2	3	4	Total
Points:	6	4	6	4	20
Score:					

Good Luck