
Introduction to Algorithms

Chapter 22: Elementary Graph 
Algorithms

Graph TerminologyGraph Terminology
A graph G = (V E)A graph G = (V, E)

V = set of vertices 
E = set of edgesE  set of edges 

In an undirected graph:In an undirected graph:
edge(u, v) = edge(v, u)

In a directed graph:
edge(u,v) goes from vertex u to vertex v, notated u →edge(u,v) goes from vertex u to vertex v, notated u →
v
edge(u, v) is not the same as edge(v, u)
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Graph TerminologyGraph Terminology

A A

CB CB

D D

Directed graph:

V = {A B C D}

Undirected graph:

V = {A B C D}V  {A, B, C, D}
E = {(A,B), (A,C), (A,D), (C,B)}

V  {A, B, C, D}
E = {(A,B), (A,C), (A,D), (C,B), 

(B,A), (C,A), (D,A), (B,C)}
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Graph TerminologyGraph Terminology
Adjacent vertices: connected by an edgeAdjacent vertices: connected by an edge

Vertex v is adjacent to u if and only if (u, v) ∈ E. 
I di t d h ith d ( ) dIn an undirected graph with edge (u, v), and 
hence (v, u), v is adjacent to u and u is adjacent 
to vto v.

a b a b

d e

c

d e

c

Vertex a is adjacent to c and
vertex c is adjacent to a

Vertex c is adjacent to a, but
vertex a is NOT adjacent to c
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Graph Terminology
A Path in a graph from u to v is a sequence of edges 
b i h h ( ) E

Graph Terminology

between vertices w0, w1, …, wk, such that (wi, wi+1) ∈ E, 
u = w0 and v = wk, for 0 ≤ i < k

The length of the path is k, the number of edges onThe length of the path is k, the number of edges on 
the path

b ba b

c

a b

c

d e d e

abedce is a path.
cdeb is a path

acde is a path.
b i NOT thcdeb is a path.

bca is NOT a path.
abec is NOT a path.
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Graph Terminology
Loops

If the graph contains an edge (v v) from a vertex to itself

Graph Terminology
If the graph contains an edge (v, v) from a vertex to itself, 
then the path v, v is sometimes referred to as a loop.

a b

d e

c

The graphs we will consider will generally be loopless.

A simple path is a path such that all vertices are distinct, except that the first 
and last could be the same.

ba b

c abedc is a simple path.
cdec is a simple path.

d e
cdec is a simple path.
abedce is NOT a simple path.
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Graph TerminologyGraph Terminology

simple path: no repeated verticessimple path: no repeated vertices
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Graph Terminology
Cycles

A cycle in a directed graph is a path of length at least 2
such that the first vertex on the path is the same as the

p gy

such that the first vertex on the path is the same as the 
last one; if the path is simple, then the cycle is a simple 
cycle.

a b

abeda is a simple cycle.
abeceda is a cycle, but is NOT a simple cycle.
abedc is NOT a cycle

a b

c

A cycle in a undirected graph
A th f l th t l t 3 h th t th fi t t th th

abedc is NOT a cycle.
d e

A path of length at least 3 such that the first vertex on the path 
is the same as the last one.
The edges on the path are distinct.

ba b

c

aba is NOT a cycle.
abedceda is NOT a cycle.
abedcea is a cycle, but NOT simple.
abea is a simple cycle

d e
abea is a simple cycle.
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Graph Terminologyp gy
If each edge in the graph carries a value, then the graph is 
called weighted graph.called weighted graph.

A weighted graph is a graph G = (V, E, W), where each 
edge, e ∈ E is assigned a real valued weight, W(e).

A complete graph is a graph with an edge between every 
pair of vertices.

A h i ll d l t h if t iA graph is called complete graph if every vertex is 
adjacent to every other vertex.

Graph TerminologyGraph Terminology
Complete Undirected Graph 

has all possible edges

n = 1 n = 2 n = 3 n = 4n  1 n  2 n  3
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Graph Terminologyp gy
connected graph: any two 
vertices are connected byvertices are connected by 
some path

An undirected graph isAn undirected graph is 
connected if, for every 
pair of vertices u and vp
there is a path from u to 
v.

Graph TerminologyGraph Terminology
tree - connected graph without cycles

forest - collection of trees
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Graph TerminologyGraph Terminology
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Graph Terminology
End vertices (or endpoints) of an edge a

U and V are the endpoints of a

p gy
p

Edges incident on a vertex V
a, d, and b are incident on V V

b
a, d, and b are incident on V

Adjacent vertices
U and V are adjacent XU Z

a b

d
h j

U and V are adjacent

Degree of a vertex X
X has degree 5

XU

W

Z
c e

d

g
i

X has degree 5 

Parallel edges
h d i ll l d

W

Y
f

g

h and i are parallel edges

Self-loop

Y

j is a self-loop
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Graph Terminology
Path

sequence of alternating 

p gy

vertices and edges 
begins with a vertex
ends with a vertex V

P1

ends with a vertex

Simple path
path such that all its vertices XU

V

Z

a b

dpath such that all its vertices 
and edges are distinct.

Examples
P (V X Z) i i l th

XU Z
c e

d
hP2

P1 = (V, X, Z) is a simple path.
P2 = (U, W, X, Y, W, V) is a 
path that is not simple.

W

f

g

Y
f
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Graph Terminology
Cycle

circular sequence of

p gy

circular sequence of 
alternating vertices and edges 

Simple cycle VSimple cycle
cycle such that all its vertices 
and edges are distinct

XU

V

Z

a b

d

Examples
C1 = (V, X, Y, W, U, V) is a C1

XU Z

c e

d
hC2

C1  (V, X, Y, W, U, V) is a 
simple cycle
C2 = (U, W, X, Y, W, V, U) is a 
cycle that is not simple

1
W

c

f

g

cycle that is not simple
Y

f
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In-Degree of a VertexIn-Degree of a Vertex

in degree is number of incoming edgesin-degree is number of incoming edges
indegree(2) = 1, indegree(8) = 0

2
3

88
101

44
5 9 11

6
77
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Out-Degree of a VertexOut-Degree of a Vertex

out degree is number of outbound edgesout-degree is number of outbound edges
outdegree(2) = 1, outdegree(8) = 2

2
3

8
101

4
5 9 11

6
7
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Applications: Communication pp
Network

vertex = city,         edge = communication link
2

3
8

101 10

4
5 99 11

6
7
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Driving Distance/Time MapDriving Distance/Time Map
vertex = city,e e c y,
edge weight = distance/time

2
3

8
4

8
101

4

6
2

4
4 5

35 9 11
65

4 3

6
7

7
7
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Street Mapp
Some streets are one way
A bidirectional link represented by 2 directed p y
edge

(5, 9) (9, 5)

2
3

88
101

44
5 9 11

6
77
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Computer Networks
cslab1bcslab1aElectronic circuits

Computer Networks

math.brown.edu

ect o c c cu ts
Printed circuit board

cs.brown.edu
Computer networks

Local area network brown.edu

att.net
qwest.net

Local area network
Internet
Web

cox.net

Web

John

DavidPaul
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GraphsGraphs
We will typically express running times in y y g
terms of

|V| = number of vertices, and|V|  number of  vertices, and
|E| = number of edges
If |E| ≈ |V|2 the graph is denseIf |E| ≈ |V|2 the graph is dense
If |E| ≈ |V| the graph is sparse

If you know you are dealing with dense or y y g
sparse graphs, different data structures may 
make sensemake sense
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Graph Search MethodsGraph Search Methods
Many graph problems solved using a searchMany graph problems solved using a search 
method

Path from one vertex to anotherPath from one vertex to another
Is the graph connected?
etc.

Commonly used search methods:
Breadth first searchBreadth-first search
Depth-first search
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Graph Search MethodsGraph Search Methods
A vertex u is reachable from vertex v iff there is 
a path from v to ua path from v to u.
A search method starts at a given vertex v and 
visits every vertex that is reachable from v. y

2
3

8
1

10

4
5 9

10

6
11

6
7
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Breadth-First SearchBreadth-First Search
Visit start vertex (s) and put into a FIFO 
queue.

Repeatedly remove a vertex from the queue, 
visit its unvisited adjacent vertices put newlyvisit its unvisited adjacent vertices, put newly 
visited vertices into the queue.

All vertices reachable from the start vertex 
(s) (including the start vertex) are visited.
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Breadth-First SearchBreadth-First Search
Again will associate vertex “colors” to guide g g
the algorithm

White vertices have not been discoveredWhite vertices have not been discovered
All vertices start out white

Green vertices are discovered but not fullyGreen vertices are discovered but not fully 
explored

They may be adjacent to white verticesy y j
Black vertices are discovered and fully explored

They are adjacent only to black and green verticesThey are adjacent only to black and green vertices

Explore vertices by scanning adjacency list of 
green verticesgreen vertices
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Breadth-First SearchBreadth-First Search
BFS(G, s) {

// initialize vertices;
1 for each u ∈ V(G) – {s}{1 for each u ∈ V(G) {s}{
2 do color[u] = WHITE
3 d[u] = ∞ // distance from s to u
4 p[u] = NIL // predecessor or parent of u

}}
5 color[s] = GREEN
6 d[s] = 0
7 p[s] = NIL
8 Q = Empty;8 Q = Empty;
9 Enqueue (Q,s); // Q is a queue; initialize to s
10 while (Q not empty) {    
11 u = Dequeue(Q);
12 for each v ∈ adj[u] {12 for each v ∈ adj[u] {
13 if (color[v] == WHITE)
14 color[v] = GREEN;
15 d[v] = d[u] + 1;
16 p[v] = u; What does p[v] represent?

What does d[v] represent?
16 p[v] = u;
17 Enqueue(Q, v);

}
18 color[u] = BLACK;

}

p[ ] p

}
}
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Breadth-First SearchBreadth-First Search
Lines 1-4 paint every vertex white, set d[u] to be Lines 1 4 paint every vertex white, set d[u] to be 
infinity for each vertex (u), and set p[u] the 
parent of every vertex to be NIL.
Line 5 paints the source vertex (s) greenLine 5 paints the source vertex (s) green.
Line 6 initializes d[s] to 0.
Line 7 sets the parent of the source to be NIL.Line 7 sets the parent of the source to be NIL.
Lines 8-9 initialize Q to the queue containing just 
the vertex (s).
Th hil l f li 10 18 it t lThe while loop of lines 10-18 iterates as long as 
there remain green vertices, which are 
discovered vertices that have not yet had their 

dj li t f ll i d
y

adjacency lists fully examined.
This while loop maintains the test in line 10, the queue 
Q consists of the set of the green vertices.
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Breadth-First SearchBreadth-First Search
Prior to the first iteration in line 10, the only green vertex, 
and the only vertex in Q is the source vertex (s)and the only vertex in Q, is the source vertex (s).
Line 11 determines the green vertex (u) at the head of the 
queue Q and removes it from Q.q
The for loop of lines 12-17 considers each vertex (v) in the 
adjacency list of (u).
If (v) is white, then it has not yet been discovered, and the 
algorithm discovers it by executing lines 14-17.

It is first greened and its distance d[v] is set to d[u]+1It is first greened, and its distance d[v] is set to d[u]+1.
Then, u is recorded as its parent.
Finally it is placed at the tail of the queue QFinally, it is placed at the tail of the queue Q.

When all the vertices on (u’s) adjacency list have been 
examined, u is blackened in line 18.
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Breadth-First Search: ExampleBreadth-First Search: Example

∞ ∞ ∞ ∞
r s t u

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞
v w x y
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Breadth-First Search: ExampleBreadth-First Search: Example

∞ 0 ∞ ∞
r s t u

∞ 0 ∞ ∞

∞ ∞ ∞ ∞
v w x y

sQ:Q:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 ∞ ∞
r s t u

1 0 ∞ ∞

∞ 1 ∞ ∞
v w x y

wQ: rQ:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 2 ∞
r s t u

1 0 2 ∞

∞ 1 2 ∞
v w x y

rQ: t xQ:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 2 ∞
r s t u

1 0 2 ∞

2 1 2 ∞
v w x y

Q: t x vQ:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 2 3
r s t u

1 0 2 3

2 1 2 ∞
v w x y

Q: x v uQ:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 2 3
r s t u

1 0 2 3

2 1 2 3
v w x y

Q: v u yQ:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 2 3
r s t u

1 0 2 3

2 1 2 3
v w x y

Q: u yQ:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 2 3
r s t u

1 0 2 3

2 1 2 3
v w x y

Q: yQ:
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Breadth-First Search: ExampleBreadth-First Search: Example

1 0 2 3
r s t u

1 0 2 3

2 1 2 3
v w x y

Q: ØQ:
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Depth-First SearchDepth-First Search
Depth-first search is another strategy for ep s sea c s a o e s a egy o
exploring a graph

Explore “deeper” in the graph whenever possibleExplore deeper in the graph whenever possible

Ed l d t f th t tlEdges are explored out of the most recently 
discovered vertex v that still has unexplored 
edgesedges

Wh ll f ’ d h b l dWhen all of v’s edges have been explored, 
backtrack to the vertex from which v was 
discovereddiscovered
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Depth-First SearchDepth-First Search
Initialize

color all vertices white
Visit each and every white vertex using DFS-
Vi iVisit
Each call to DFS-Visit(u) roots a new tree of 
th d th fi t f t t tthe depth-first forest at vertex u
A vertex is white if it is undiscovered
A vertex is green if it has been discovered but 
not all of its edges have been discovered
A vertex is black after all of its adjacent vertices 
have been discovered (the adj. list was 

i d l t l )examined completely)
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DFS ExampleDFS Example
sourcesource
vertex
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DFS ExampleDFS Example
source Discovery

Fi i hisource
vertex

d      f
time Finishing 

time

1 |  |  |  

|  |  

||| |  | |  
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  |  |  

2 |  |  

||| |  | |  
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  |  |  

2 |  |  

||3 | |  | 3 |  
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  |  |  

2 |  |  

||3 | 4 |  | 3 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  |  |  

2 |  |  

|5 |3 | 4 |  5 |  3 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  |  |  

2 |  |  

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  |  |  

2 | 7 |  

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  8 |  |  

2 | 7 |  

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  8 |  |  

2 | 7 9 |  

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  8 |  |  

2 | 7 9 |10

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |  8 |11 |  

2 | 7 9 |10

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |12 8 |11 |  

2 | 7 9 |10

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |12 8 |11 13|  

2 | 7 9 |10

|5 | 63 | 4 |  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |12 8 |11 13|  

2 | 7 9 |10

14|5 | 63 | 4 14|  5 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |12 8 |11 13|  

2 | 7 9 |10

14|155 | 63 | 4 14|155 | 63 | 4
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DFS ExampleDFS Example
sourcesource
vertex

d      f
1 |12 8 |11 13|16

2 | 7 9 |10

14|155 | 63 | 4 14|155 | 63 | 4
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DFS ExampleDFS Example

u v w
1/

u v w
1/ 2/

u v w
1/ 2/

x y z x y z x y z
3/

u v w
1/ 2/

u v w
1/ 2/

u v w
1/ 2/

x y z

1/ 2/

3/4/
x y z

1/ 2/

3/4/

B

x y z

1/ 2/

3/4/5

B

x y z x y z x y z
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DFS ExampleDFS Example

u v w
1/ 2/

B

u v w
1/ 2/7

B

u v w
1/ 2/7

BF

x y z
3/64/5

x y z
3/64/5

x y z
3/64/5

F

u v w u v w u v w
1/8 2/7

3/64/5

BF
1/8 2/7

3/64/5

BF
9/ 1/8 2/7

3/64/5

BF
9/

C

x y z x y z x y z
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DFS ExampleDFS Example

u v w
1/8 2/7

BF
9/

C

u v w
1/8 2/7

BF
9/

C

u v w
1/8 2/7

BF
9/

C

x y z
3/64/5 10/

x y z
3/64/5 10/ B

x y z
3/64/5 10/11 B

u v w
1/8 2/7 9/12

x y z

1/8 2/7

3/64/5

BF
9/12

C

10/11 B
x y z
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