Introduction to Algorithms

ALGORITHMS

Chapter 22: Elementary Graph
Algorithms

‘ Graph Terminology

= Agraph G=(V, E)
o V= set of vertices
o £=set of edges

= In an undirected graph.
o edge(u, V) = edge(Vv, U)

= In a directed graph:

o edge(u,V) goes from vertex vto vertex v, notated v —
v

o edge(u, V) is not the same as edge(v, u)

‘ Graph Terminology

9
9‘ ©
9

Directed graph: Undirected graph.
v={A B C D} v={A B C D}
E={(AB), (A0, (AD) (CB} E={(AB). (A0, (AD),(CBH),

(BA), (CA), (DA). (B.O}

| Graph Terminology

= Adjacent vertices. connected by an edge
o Vertex vis adjacent to v if and only if (¢, v) € E.

o In an undirected graph with edge (v, v), and
hence (v, v), vis adjacent to v and v is adjacent

to v.
Vertex ais adjacent to cand Vertex cis adjacent to g, but
vertex cis adjacent to a vertex ais NOT adjacent to ¢

‘ Graph Terminology

= A Pathin a graph from vto vis a sequence of edges
between vertices w,, w;, ..., w,, such that (w; w,,) € E,
u=wyand v=w,for0</< k
o The length of the path is 4, the number of edges on

IENE SN

acde is a path.

abedce is a path.
abec is NOT a path.

cdeb is a path.
bca is NOT a path.

‘ Graph Terminology

= Loops
o If the graph contains an edge (v, v) from a vertex to itself,
then the path v, vis sometimes referred to as a /oop.

e’A‘e.

o The graphs we will consider will generally be loopless.

A simple path is a path such that a// vertices are distinct, except that the first
and last could be the same.

o abedc is a simple path.
A cdec is a simple path.
abedce is NOT a simple path.

‘ Graph Terminology

= simple path: no repeated vertices

bec

' Graph Terminology

= Cycles
u A cyclein a directed graph is a path of length at least 2
such that the first vertex on the path is the same as the
last one; if the path is simple, then the cycle is a simpl/e

cycle.
abeda is a simple cycle.
o abeceda is a cycle, but is NOT a simple cycle.

Q&G abedc is NOT a cycle.

o A cyclein a undirected graph
= A path of length at least 3 such that the first vertex on the path

is the same as the last one.
= The edges on the path are distinct.
abais NOT acycle.

abedceda is NOT a cycle.
(o) abedcea is a cycle, but NOT simple.
A abea is a simple cycle.

@ O,

Graph Terminology

If each edge in the graph carries a value, then the graph is
called weighted graph.

o A weighted graph is a graph G = (V, E, W), where each
edge, e € £is assigned a real valued weight, (e).

A complete graph is a graph with an edge between every
pair of vertices.

o A graph is called complete graph if every vertex is
adjacent to every other vertex.

A
0‘0'0

weighted graph complete graph

Graph Terminology

Complete Undirected Graph
o has all possible edges

10

Graph Terminology

connected graph: any two P LT e !
vertices are connected by | b i
some path | b :

| Vo :

o An undirected graphis I LM M :

connected if, for every
pair of vertices vand v
there is a path from v to
V.

Graph Terminology

tree - connected graph without cycles

forest - collection of trees

12

| Graph Terminology

1 2 1 2 1 21 21 2
4 3 4 34 8 4 34/ 3

Connected Path Cycle Disconnected Tree

13

' Graph Terminology

= £End vertices (or endpoints) of an edge a
o Uand V are the endpoints of a

= Edges incident on a vertex V
o a, d, and b are incident on V

= Adjacent vertices
o UandV are adjacent

= Degree of a vertex X
o X has degree 5

= Parallel edges
o handi are parallel edges

= Self-loop
a | is aself-loop

14

' Graph Terminology

= Path

o sequence of alternating
vertices and edges

o begins with a vertex
o ends with a vertex

= Simple path
o path such that all its vertices
and edges are distinct.
= Examples
a P, =(V, X, Z)is a simple path.
o P,=(U W, X Y, W,V)isa
path that is not simple.

15

' Graph Terminology

= Cycle

o circular sequence of
alternating vertices and edges

= Simple cycle
o cycle such that all its vertices
and edges are distinct

= Examples
o C=(V,X,Y,W,U,V)isa
simple cycle
a C,=(U,W, X, Y,W,V,U)isa
cycle that is not simple

16

| In-Degree of a Vertex

= in-degree is number of incoming edges
o indegree(2) = 1, indegree(8) =0

AP

17

‘ Out-Degree of a Vertex

= out-degree is number of outbound edges
o outdegree(2) = 1, outdegree(8) = 2

'{\7 Ta¥s

18

' Applications: Communication

Network
m vertex = City, edge = communication link

A

19

| Driving Distance/Time Map

m Vertex = City,
= edge weight = distance/time

NREN

’ 7

20

Street Map
Some streets are one way
A bidirectional link represented by 2 directed
edge
a (5,9)(9,5)

Computer Networks

Electronic circuits cslabla - cslablb
o Printed circuit board

Computer networks
o Local area network

o Internet
o Web
\ —()
(e
Graphs Graph Search Methods

We will typically express running times in
terms of

a | = number of vertices, and

a |£ = number of edges

o If |£] = | U? the graph is dense

o If |£] = | the graph is sparse

If you know you are dealing with dense or
sparse graphs, different data structures may
make sense

23

Many graph problems solved using a search
method

- Path from one vertex to another

- Is the graph connected?

- etc.

m Commonly used search methods:
- Breadth-first search
- Depth-first search

24

Graph Search Methods

A vertex v is reachable from vertex v iff there is
a path from vto w.

A search method starts at a given vertex v and
visits every vertex that is reachable from v.

g
"

25

Breadth-First Search

Visit start vertex (s) and put into a FIFO
queue.

Repeatedly remove a vertex from the queue,
visit its unvisited adjacent vertices, put newly
visited vertices into the queue.

All vertices reachable from the start vertex
(s) (including the start vertex) are visited.

26

Breadth-First Search

Again will associate vertex “colors” to guide
the algorithm
o White vertices have not been discovered

All vertices start out white

o Green vertices are discovered but not fully
explored
They may be adjacent to white vertices

o Black vertices are discovered and fully explored

They are adjacent only to black and green vertices
Explore vertices by scanning adjacency list of
green vertices

27

Breadth-First Search

BFS(G, s) {
// initialize vertices;
for each u € V(G) - {s}{
do color[u] = WHITE
d[u] = // distance from s to u
p[ul = NIL // predecessor or parent of u

rWNER

5 color[s] = GREEN

6 d[s] =0

7 p[s] = NIL

8 Q = Empty;

9 Enqueue (Q,s); /7 Q is a queue; initialize to s
10 while (Q not empty) {

11 u = Dequeue(Q);

12 for each v e adj[u] {

13 if (color[v] == WHITE)

14 color[v] = GREEN; What doesd[v] represent?
ig SEH _ ﬂ;[u] L What doesp[Vv] represent?
17 Enqueue(Q, Vv);

}
18 color[u] = BLACK;

28

Breadth-First Search

Lines 1-4 paint every vertex white, set dLu] to be
infinity for each vertéx (u), and set p[u] the
parent of every vertex to'be NIL.

Line 5 paints the source vertex (S) green.

Line 6 initializes d[s] to O.

Line 7 sets the parent of the source to be NIL.
Lines 8-9 initialize Q to the queue containing just
the vertex (s).

The while loop of lines 10-18 iterates as long as
there remain green vertices, which are _
discovered vertices that have not yet had their
adjacency lists fully examined.

o This while loop maintains the test in line 10, the queue
Q consists o? R1e set o% ﬂ?le green vertices. g

29

Breadth-First Search

Prior to the first iteration in line 10, the only green vertex,
and the only vertex in Q, is the source vertex (s).

Line 11 determines the green vertex (u) at the head of the
queue Q and removes it from Q.

The for loop of lines 12-17 considers each vertex (v) in the
adjacency list of (u).

If (v) is white, then it has not yet been discovered, and the
algorithm discovers it by executing lines 14-17.

o Itis first greened, and its distance d[v] is set to d[u]+1.

o Then, u is recorded as its parent.

o Finally, it is placed at the tail of the queue Q.

When all the vertices on (u’s) adjacency list have been
examined, u is blackened in line 18.

30

Breadth-First Search: Example

r S t u
4 w

X y

31

Breadth-First Search: Example
()—O@ (=
OB On®

32

Breadth-First Search: Example

v w X y

Breadth-First Search: Example

Breadth-First Search: Example

Breadth-First Search: Example

Breadth-First Search: Example Breadth-First Search: Example

r S t u

3
Y
Q v 7 % Q u |y
Breadth-First Search: Example Breadth-First Search: Example
r S t u r S t u

39 40

Depth-First Search

Depth-first searchis another strategy for
exploring a graph
o Explore “deeper” in the graph whenever possible

o Edges are explored out of the most recently
discovered vertex vthat still has unexplored
edges

o When all of Vs edges have been explored,
backtrack to the vertex from which vwas

Depth-First Search

Initialize

o color all vertices white

Visit each and every white vertex using DFS-
Visit

Each call to DFS-Visit(v) roots a new tree of
the depth-first forest at vertex v

A vertex is white if it is undiscovered

A vertex is green if it has been discovered but
not all of its edges have been discovered

A vertex is black after all of its adjacent vertices
have been discovered (the ad;. list was

discovered examined completely)
41 42
DFES Example DFS Example
source source Discovery N
i Finishing
vertex vertex time time

T~

43

\df
ER—C— D

a4

DFS Example DFES Example

source source
vertex vertex

DFES Example DFS Example

source source
vertex vertex

DFS Example DFES Example

source source
vertex vertex

DFES Example DFS Example

source source
vertex vertex

DFES Example DFES Example

source source
vertex vertex

DFES Example DFES Example

source source
vertex vertex

\df

DFES Example

source
vertex

57

DFES Example

source
vertex

\a’f

58

DFES Example

source
vertex

\df

59

DFES Example

u \ w u Vv w u \ w
@B O DB (O
i D A @)

X y zZ X y zZ X y z

u \ w u Vv w u Vv w

60

DFS Example

DFES Example

61

62

