An-Najah National University Faculty of Graduate Studies Faculty of Science-Department of Physics Quantum Mechanics I Spring 2014 1^{st} Exam, Mar. 5^{th} 2014

3.7		
Name:		

Number:

1. Vectors $|a\rangle$ and $|b\rangle$ belong to a certain abstract vector space such that:

$$|a> < a| + |b> < b| = 1$$

- (a) (2 points) What is the dimension of the space
- (b) (4 points) Find $Tr(e^{|a\rangle\langle a|})$
- (c) (2 points) Find $\left[e^{|a\rangle\langle a|}, e^{|a\rangle\langle b|}\right]$
- 2. Consider a physical system whose three-dimensional state space is spanned by the ortho-normal basis formed by the three kets $|u_1\rangle$, $|u_2\rangle$, $|u_3\rangle$. In this basis, the Hamilton operator H and the observable A are written as:

$$H = \hbar\omega_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad A = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

where ω_0 and a are positive real constants. The physical state at time t=0 is the state:

$$|\psi(t=0)\rangle = \frac{1}{\sqrt{2}}|u_1\rangle + \frac{1}{2}|u_2\rangle + \frac{1}{2}|u_3\rangle$$

- (a) (3 points) If operator A is measured at t=0, what values we might get and with what probability.
- (b) (2 points) What is $|\psi(t)\rangle$
- (c) (2 points) What is $\langle A(t) \rangle$
- 3. (5 points) Consider a spin-1/2 particle with magnetic moment $\mu = \gamma \sigma$ in a uniform magnetic field that points in the z-direction. If at time t=0 the x-component of the spin as measured and were found to be $\frac{\pm \hbar}{2}$. At time t, y-component of the spin as measured and were found to be $\frac{\pm \hbar}{2}$, what is t?
- 4. A quantum mechanical system is known to posses only two energy eigenstaes denoted $|1\rangle$ and $|2\rangle$. The system also includes three other observables **P**, **Q**, and **R**. The eigenstates $|1\rangle$ and $|2\rangle$ are normalized but not necessary to be eigenstates for the observables **P**, **Q**, and **R**. A series of experiment were performed and the following results were obtained:
 - 1. Experiment 1: $\langle 1|P|1 \rangle = \frac{1}{2}, \langle 1|P^2|1 \rangle = \frac{1}{4}$
 - 2. Experiment 2: $<1|Q|1>=\frac{1}{2},<1|Q^2|1>=\frac{1}{6}$
 - 3. Experiment 3: $\langle 1|R|1 \rangle = \frac{1}{2}, \langle 1|R^2|1 \rangle = \frac{5}{4}, \langle 1|R^3|1 \rangle = \frac{7}{4}$
 - (a) (2 points) One of the experiment yields an unphysical results, which one?
 - (b) (3 points) Find as many as possible eigenvalues of P and Q as possible, from the given information

Question	Points	Score
1	8	
2	7	
3	5	
4	5	
Total:	25	